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POINTS OF WEAK SYMMETRY

Abstract

We show that every set of reals is a set of points of weak symmetry
for some function f : R→ N.

1 Preface.

The weakest notion of continuity is probably the following definition:

Definition 1.1. A function f : R→ R is weakly (or peripherally) continuous
at x if limn→∞ f(xn) = f(x) for some sequence xn → x.

The following theorem characterizes the sets of points of weak continuity:

Theorem 1.2 (Chapter 2 of [4] and Theorem 4 of [3]). Any function has only
countably many points of weak discontinuity, and any countable set is the set
of points of weak discontinuity for some function.

2 Notation and Definitions.

Basic notion for our investigations is the following definition (see, for example,
[1], [2] or [3]):
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Definition 2.1. A function f : R→ R is weakly symmetrically continuous at
a point x if there exists a sequence 〈hn〉 of positive numbers converging to 0
such that

lim
n→∞

f(x+ hn)− f(x− hn) = 0.

For f : R→ R, let S(f) denote the set of all points at which f is not weakly
symmetrically continuous.

Definition 2.2. A function f : R → R is weakly symmetric (also called
Schwartz symmetric) at a point x if there exists a sequence 〈hn〉 of positive
numbers converging to 0 such that

lim
n→∞

f(x+ hn) + f(x− hn)− 2 · f(x) = 0.

Analogously, for f : R→ R, let T (f) be the set of all x ∈ R such that f is
not weakly symmetric at x, that is,

T (f) = {x ∈ R : f is not weakly symmetric at x} =

{x ∈ R : there is no sequence hn ↘ 0 with lim
n→∞

f(x+hn)+f(x−hn)−2f(x) = 0}.

Let us formulate a “template” of general problems for characterizing the
set S(f), namely:

Problem 2.3. Suppose that Y ⊆ R is a fixed set. Find a characterization of
the collection of all possible sets of the form S(f) for any f : R→ Y .

Notice that for some special cases of Y the answer is known, while for some
others it is still an open problem. For example, we have:

Theorem 2.4 (M. Szyszkowski, [3]). Any set A ⊂ R is the set of points of
weak symmetry for some function f : R→ N.

However, such a problem is still open for the case Y = n, where n ≥ 4.
Let us formulate a little stronger definition than Definition 2.2:

Definition 2.5. A function f : R → R is *-weakly symmetric at x ∈ R if
there exists a sequence 〈hn〉 of positive numbers converging to 0 such that
∀n f(x− hn) = f(x+ hn) = f(x).

Analogously, for f : R → R, let T ∗(f) be the set of all x ∈ R such that f
is not *-weakly symmetric at x. Obviously, we have T (f) ⊆ T ∗(f). Notice
that there is no provable inclusion between T (f) and S(f). The aim of this
paper is to prove an analogous result to Theorem 2.4 in case of T (f) instead
of S(f). Let us notice that the case of T ∗(f) is still open; i.e., we are unable
to solve the following:
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Problem 2.6. Is every set A ⊂ R of the form T ∗(f) for some function from
R to N?

3 Main Result.

Let us formulate the main theorem which solves Problem 6 from [2]:

Theorem 3.1. For every set A ⊆ R, there exists a function f : R → ω such
that T (f) = A.

We will need the following notion:

Definition 3.2. By a four-points-block with a center r ∈ R, we mean a set
B(r, η, δ) = {r − η, r − δ, r + δ, r + η}, where η, δ > 0 are arbitrary and η 6= δ.

Notice that a center of a fixed four-points-block is determined uniquely,
that is, B(r1, η1, δ1) = B(r2, η2, δ2) ⇒ r1 = r2. Let us start with a lemma
which is a strengthening of Lemma 8 from [3].

Lemma 3.3. Suppose that A ⊆ R is any set, and let {aµ : µ < κ} be an
enumeration without repetitions of its elements, where κ = |A|. Then for each
µ < κ, there exist a system of sequences:

(xnµ)n∈ω; (ynµ)n∈ω;

such that:

1. ∀µ<ξ<κ {xnµ, ynµ : n ∈ ω} ∩ {xnξ , ynξ : n ∈ ω} = ∅.

2. ∀µ<κ∀n∈ω
xnµ+ynµ

2 = aµ and xnµ ↗ aµ.

3. The set X = {xnµ, ynµ : n ∈ ω∧µ < κ} contains no four-points-block with
a center from R \A.

4. ∀µ<κ {xnµ, ynµ : n ∈ ω} ∩ {aξ : ξ < µ} = ∅.

Proof. We will construct the sequences

(xnµ)n∈ω; (ynµ)n∈ω;

by a transfinite induction. So, suppose that we are in the stage ζ < κ, and we
have constructed sequences:

(xnµ)n∈ω; (ynµ)n∈ω;

for µ < ζ. Denote X∗ζ = {xnµ, ynµ : µ < ζ ∧ n ∈ ω}. We are looking for a
sequence (xnζ )n∈ω; (ynζ )n∈ω of the form:
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xnζ = aζ − dζ
2n and ynζ = aζ + dζ

2n ,

where dζ > 0 is a positive real number which fulfills the following conditions.

1. dζ 6= ±2n · (x− y − z + aζ) for x, y, z ∈ X∗ζ and n ∈ ω.

2. dζ 6= x−y
± 1

2n±
1

2m
for x, y ∈ X∗ζ and n,m ∈ ω, n 6= m.

3. dζ 6= x−y
± 2

2n
for x, y ∈ X∗ζ and n ∈ ω.

4. dζ 6= x+y−2aζ
± 1

2n±
1

2m
for x, y ∈ X∗ζ and n,m ∈ ω, n 6= m.

5. dζ 6= aζ−x
± 1

2n±
1

2m±
1
2l

for x ∈ X∗ζ and m,n, l ∈ ω and ± 1
2n ±

1
2m ±

1
2l
6= 0.

6. dζ 6= ±2n · (x− aζ) for x ∈ X∗ζ and n ∈ ω.

7. dζ 6= ±2n · (aζ − aµ) for µ < ζ and n ∈ ω.

Notice that all these conditions are fulfilled if we simply assume that dζ 6∈
spanQ(X∗ζ ∪{aµ : µ ≤ ζ}) (linear space spanned on X∗ζ ∪{aµ : µ ≤ ζ}). Define
X = {xnµ, ynµ : µ < κ ∧ n ∈ ω}.

For brevity, denote: Xµ = {xnµ, ynµ : n ∈ ω} for any µ < κ. We will show
that there is no four-points-block B ⊆ X with center from R \ A. So suppose
that B ⊆ X is a four-points-block. We will show that there exists µ < κ such
that B ⊆ Xµ. By way of contradiction, consider the following cases:
Case 1: There exists ζ < κ such that |B ∩Xζ | = 1 and |B ∩X∗ζ | = 3.

So, let n ∈ ω be a natural number such that B ∩ Xζ = {aζ ± dζ
2n }. Let

x, y, z ∈ B∩X∗ζ be distinct elements. Then we have (after possibly exchanging
x and y): x− y = z − (aζ ± dζ

2n ), and hence dζ = ±2n · (−x+ y + z − aζ). By
Assumption 1, this is impossible.
Case 2: There exists ζ < κ such that |B ∩Xζ | = 2 and |B ∩X∗ζ | = 2.

So let n,m ∈ ω be natural numbers such that B∩Xζ = {aζ± dζ
2n , aζ±

dζ
2m }.

Let x, y ∈ B ∩X∗ζ be distinct elements. Then we have two cases:

Case (a) x − (aζ ± dζ
2n ) = y − (aζ ± dζ

2m ). If m 6= n, then dζ = x−y
± 1

2n∓
1

2m
,

which is impossible by Assumption 2, and if n = m, then (after possibly
exchanging x and y) x− (aζ − dζ

2n ) = y − (aζ + dζ
2n ) so dζ = x−y

− 2
2n

which
is impossible by Assumption 3.
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Case (b) x−(aζ± dζ
2n ) = (aζ± dζ

2m )−y. If n 6= m, then dζ = x+y−2aζ
± 1

2m±
1

2n
which is

impossible by Assumption 4. If m = n, then x−(aζ± dζ
2n ) = (aζ∓ dζ

2n )−y
which is impossible because four-points-block B would have a center at
aζ ∈ A.

Case 3: There exists ζ < κ such that |B ∩Xζ | = 3 and |B ∩X∗ζ | = 1.

So, let B ∩Xζ = {aζ ± dζ
2n , aζ ±

dζ
2m , aζ ±

dζ
2l
}, and let B ∩X∗ζ = {x}. Then

we have (aζ ± dζ
2n ) − (aζ ± dζ

2m ) = (aζ ± dζ
2l

) − x. Hence, dζ = aζ−x
± 1

2n±
1

2m∓
1
2l

,

which is a contradiction by Assumption 5. In this way, we conclude that there
exists µ < κ such that B ⊆ Xµ for some µ < κ. This is, however, possible
only in the case where B = {aµ − dµ

2n , aµ −
dµ
2m , aµ + dµ

2m , aµ + dµ
2n }. Hence, B

has the center at the point aµ.
This shows that condition 3 from Lemma 3.3 is satisfied. Condition 1 from

the Lemma is satisfied by Assumption 6, and Condition 4 from the Lemma is
satisfied by Assumption 7.

Proof of Theorem 3.1. It will be simpler to construct a function f with
T (f) = R \ A (simply switch A with R \ A to get f as in the Theorem). Let
h1 : R → ω be a function such that T (h1) = R which exists by the Corollary
1.2 from [1]1. Define h : R→ ω by h(x) = 5 · h1(x). We also have T (h) = R.

Let {aµ : µ < κ = |A|} be an enumeration of A, and the set

X = {xnµ, ynµ : µ < κ, n ∈ ω}

is as in Lemma 3.3. We will also use the auxiliary sets Xζ and X∗ζ from the
proof of Lemma 3.3. Let us define a function g : X → ω by induction:

Suppose that we have already constructed functions gµ : Xµ → ω for µ < ζ,
where ζ < κ. We want to define gζ : Xζ → ω. Consider the following cases:
Case 1: aζ 6∈ X∗ζ

Then define gζ(xζn) = h(aζ)− 1 and gζ(yζn) = h(aζ) + 1.
Case 2: aζ ∈ X∗ζ

Then aζ ∈ Xξ for some ξ < ζ. Define gζ(xζn) = gζ(yζn) = gξ(aζ). In such a
way, we have defined the function g. Now define the final function f : R→ ω:

f(x) =

{
h(x) if x ∈ R \X
g(x) if x ∈ X.

1To obtain such a function just put h1(x) = 3f(x), where f is a function from [1].
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We will check that such defined function f has the property T (f) = R \A. It
is easy to see that if a ∈ A, then a ∈ R \ T (f). Indeed, there is ζ < κ such
that aζ = a. Hence, by the construction of the function g, f(xζn) = g(xζn) =
h(aζ) − 1 and f(yζn) = g(yζn) = h(aζ) + 1, or f(xζn) = g(xζn) = g(aζ) and
f(yζn) = g(yζn) = g(aζ). In both cases, f(xζn) + f(yζn)− 2f(aζ) = 0, and hence
a ∈ R \ T (f).

On the other hand, suppose that b ∈ R\A and let hn ↘ 0 be any sequence.
By way of contradiction, suppose that

lim
n→∞

|f(b+ hn) + f(b− hn)− 2f(b)| → 0.

At first, observe that since f(b+ hn) + f(b− hn)− 2f(b) ∈ Z, we can assume
without loss of generality that ∀n∈ωf(b+ hn) + f(b− hn)− 2f(b) = 0.

We have f(b+hn) = 5kn+sn; f(b−hn) = 5k′n+s′n for some kn, k′n ∈ ω\{0}
and sn, s′n ∈ {−1, 0, 1}. Also, we have f(b) = 5k + s for some k ∈ ω \ {0} and
s ∈ {−1, 0, 1}. Then, we have 5kn + 5k′n − 2 · 5k + sn + s′n − 2 · s = 0, and
therefore sn + s′n = 2 · s.
We will verify that this last equation cannot be satisfied.

If s ∈ {−1, 1}, then sn = s′n = s, but this shows that ∀n∈ω b−hn, b+hn ∈
X, which is impossible by Condition 3 of Lemma 3.3.

If s = 0, then sn = s′n = 0 or sn · s′n = −1.
By the same argument as above, we have that ∃M∈ω∀n>M sn = s′n = 0,

which is impossible, since b ∈ T (h) = R.
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