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ON FUNCTIONS DIFFERENTIABLE ON
COMPLEMENTS OF COUNTABLE SETS

Abstract

We will prove the following.

Theorem. If f is a nondecreasing function with zero derivative almost
everywhere on R, and if there are at most countably many points where
f has an infinite derivate, then f is the sum of nondecreasing functions
that assume no more than 3 values. Furthermore, in every open interval
on which f is not constant, there is an open subinterval in which f has
exactly one point of discontinuity and f assumes no more than 3 values.

We will also prove the existence of a function g with zero derivative at
every irrational point but whose range has the power of the continuum.

We mean by a jump function centered at a point u in the real line R, a
real valued function h on R that is constant on intervals (−∞, u) and (u, ∞),
and

h(u−) < h(u+), h(u−) ≤ h(u) ≤ h(u+).

In [P], George Piranian proved that if E is a countable Gδ-set in R, then there
exists a bounded nondecreasing function f on R such that

f ′(x) =

{
∞ for x ∈ E and
0 for x /∈ E.

He made f the sum of (countably many) jump functions centered at the points
of E.

So now let f be a bounded nondecreasing function on R with zero derivative
almost everywhere. Let the set

S =
{
x ∈ R : D+f(x) +D−f(x) = +∞

}
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be at most a countable set. (Here D+f , D−f , D+f , D−f are the usual Dini
derivates of f .) In Theorem 1 we will prove that f is the sum of jump functions
centered at (some of) the points of S. Moreover, we will prove that the set of
points u contained in some interval (u − ε, u + ε) such that f is constant on
(u − ε, u) and on (u, u + ε), and f(u−) < f(u+), must be dense in S. (The
idea is that f is locally like a jump function around the point u.)

We begin with a lemma that may be familiar to readers interested in point-
set topology.

Lemma 1. Let X be a Gδ-subset of R and let Y be a nonvoid subset of X
dense in itself. Then X has the power of the continuum.

Proof. Let X = ∩nUn where Un is an open subset of R. For each finite
sequence z of 0’s and 1’s, we will use induction on the number of components
of z to define a point P (z) ∈ Y and a compact neighborhood V (z) of P (z).

Choose distinct points P (0) and P (1) in Y and choose disjoint compact
neighborhoods V (0) and V (1) of P (0) and P (1), respectively, so that

V (0) ∪ V (1) ⊂ U1.

Now assume that P (z) ∈ Y and V (z) have been chosen for every sequence z
with n− 1 components (n > 1). For b with n− 1 components, choose distinct
points P (b, 0) and P (b, 1) in

(
interior V (b)

)
∩ Y whose distance from P (b) is

less than 2−n, and choose disjoint compact neighborhoods V (b, 0) and V (b, 1)
of P (b, 0) and P (b, 1), respectively, such that

V (b, 0) ∪ V (b, 1) ⊂
(

interiorV (b)
)
∩ Un.

The induction is complete.
For any infinite sequence A of 0’s and 1’s, let xn = P (b) where b is the

initial segment of A with n components. Clearly (xn) is a Cauchy sequence.
Moreover, xj (j ≥ n) lie in a compact subset V (b) of U1 ∩ . . . ∩ Un, and it
follows that the limit of (xn) lies in X = ∩nUn.

If A and A′ are different sequences of 0’s and 1’s, let b and b′ be the shortest
initial segments in which A and A′ differ. Say b and b′ have n components.
Then there are disjoint compact sets V (b) and V (b′) containing xj (j ≥ n)
and x′j (j ≥ n), respectively, and the sequences associated with A and A′ have
different limits in X.

Finally, we have associated with each infinite sequence of 0’s and 1’s a
unique point in X; no two such sequences are associated with the same point.
There must be as many points in X as there are such sequences. But there
are clearly continuum many such sequences.
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This also has analogues where R is replaced by a complete metric space or
a compact Hausdorff space. However, we will not address these issues here.

Our next lemma does not require monotone functions.

Lemma 2. Let g be a real valued function (monotone or not) and let

S =
{
x ∈ R :

∣∣D+g(x)
∣∣+
∣∣D−g(x)

∣∣+
∣∣D+g(x)

∣∣+
∣∣D−g(x)

∣∣ =∞
}
.

Then S is a Gδ-set. (Here D+, D−, D+, D− denote the usual Dini derivates.)

Proof. For each positive integer n, let

Un =
{
u ∈ R : there is an x ∈ R such that 0 < |x− u| < 1

n

and
∣∣∣g(u)− g(x)

u− x

∣∣∣ > n
}
.

Fix u ∈ Un. We consider two cases.
Case 1. g is continuous from the left at u.

It follows that there is a number d > 0 such that if 0 < u− y < d, then

0 < |x− y| < 1
n

and
∣∣∣g(y)− g(x)

y − x

∣∣∣ > n.

It follows that (u− d, u) ⊂ Un.
Case 2. g is not continuous from the left at u.

There is a number w < u such that∣∣∣g(u)− g(w)
u− w

∣∣∣ > n and |w − u| < 1
n
.

Now select y ∈ (w, u). Say

g(u)− g(w)
u− w

= r,
g(u)− g(y)
u− y

= s,
g(y)− g(w)
y − w

= t.

It follows that

g(u)− g(w) = r(u− w), g(u)− g(y) = s(u− y), g(y)− g(w) = t(y − w)

and hence

r(u− w) = s(u− y) + t(y − w) = r(u− y) + r(y − w).

So either
s(u− y) ≥ r(u− y) and t(y − w) ≤ r(y − w)
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or
s(u− y) ≤ r(u− y) and t(y − w) ≥ r(y − w).

But u− w, u− y, y − w all have the same sign, so either

s ≥ r ≥ t or s ≤ r ≤ t.

Hence, either
|t| ≥ |r| > n or |s| ≥ |r| > n.

We conclude that y ∈ Un. Thus (w, u) ⊂ Un. In either Case 1 or 2, there is a
d > 0 such that (u− d, u) ⊂ Un .

By essentially the same argument (from the right) there is a number d1 > 0
such that (u, u+ d1) ⊂ Un. Hence (u− d, u+ d1) ⊂ Un and Un is an open set
for each index n. So ∩nUn is a Gδ-set. Obviously any point in ∩nUn lies in
S, and any point in S lies in ∩nUn. Finally, S = ∩nUn.

We say that a set P ⊂ R has Jordan content zero if for each ε > 0 we can
cover P with finitely many intervals the sum of whose lengths does not exceed
ε. Clearly P has (Lebesgue) measure zero if P has Jordan content zero. There
exist bounded sets of measure zero that do not have Jordan content zero, for
example the set of rational numbers in (0, 1). But such a set can not be the
range of a nondecreasing function, as we now see.

Lemma 3. Let g be a bounded nondecreasing function on R, and let T be a
closed subset of R. Then the difference of the sets g(T ) and closure g(T ) is at
most a countable set. Also g(T ) has Jordan content zero if g(T ) has measure
zero.

Proof. Let S1 denote the set of points not in g(T ) that are accumulation
points of g(T ) from the left, and let S2 denote the set of points not in g(T )
that are accumulation points of g(T ) from the right. For any y ∈ S1 let x(y)
denote

sup
{
x ∈ R : g(x) ≤ y

}
.

Then g is discontinuous at x(y), and y 7→ x(y) is a one-to-one mapping of S1

to the set of discontinuities of g. It follows that S1 is at most a countable set.
Similarly, S2 is at most a countable set. So the difference between the sets
g(T ) and closure g(T ) is at most a countable set.

Now any covering of closure g(T ) by open intervals has a finite subcovering
by compactness. It follows easily that g(T ) has Jordan content zero if g(T )
has measure zero.
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Lemma 4. Let f be any bounded nondecreasing real valued function noncon-
stant on R. Then f is the sum of jump functions if and only if the range of f
has Jordan content zero.

Proof. Without loss of generality we let inf f = 0. (Use an additive constant
if necessary.) Let u be a point of discontinuity of f . Put

fu(x) =


0 if x < u,

f(u)− f(u−) if x = u,

f(u+)− f(u−) if x > u.

Then fu is a jump function centered at u.
Fix x ∈ R and let u1 < u2 < u3 < · · · < un ≤ x where the uj are points of

discontinuity of f . Then

0 ≤ f(u1−) < f(u1+) ≤ f(u2−) < f(u2+)
≤ · · · ≤ f(un−) ≤ f(un) = f(x) if un = x, and

0 ≤ f(u1−) < f(u1+) ≤ f(u2−) < f(u2+)
≤ · · · ≤ f(un−) < f(un+) ≤ f(x) if un < x.

(1)

Then

0 <
(
f(u1+)− f(u1−)

)
+
(
f(u2+)− f(u2−)

)
+ · · ·+

(
f(un)− f(un−)

)
≤ f(x) if un = x, and

0 <
(
f(u1+)− f(u1−)

)
+
(
f(u2+)− f(u2−)

)
+ · · ·+

(
f(un+)− f(un−)

)
≤ f(x) if un < x.

(2)

Now
fuj

(x) = f(uj+)− f(uj−) for uj < x

and
fun

(x) = f(un)− f(un−) for un = x.

From (2) we obtain in either case

fu1(x) + fu2(x) + · · ·+ fun(x) ≤ f(x). (3)

We deduce from (3) that g(x) ≤ f(x) where g(x) =
∑
u fu(x) and u runs over

all the points of discontinuity of f . But x is arbitrary, so g ≤ f .
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Now let f = g. We must prove that f(R) has Jordan content zero. Select
x ∈ R and ε > 0. Let uj in (3) be chosen so that

fu1(x) + fu2(x) + · · ·+ fun
(x) > f(x)− ε. (4)

The intervals [
f(u1−), f(u1+)

]
,
[
f(u2−), f(u2+)

]
, . . . , (5)

have respective lengths fu1(x), fu2(x), . . ., and we deduce from (4) that the
sum of their lengths exceeds f(x)−ε. So the sum of the lengths of the intervals
complementary (in [0, f(x)]) to their union can not exceed ε. But each interval
in (5) contains at most 3 points in f(R). Here ε is arbitrary, so it follows that
f(R) ∩

[
0, f(x)

]
has Jordan content zero.

The difference of the sets f(R) and f(R) ∩
[
0, f(x)

]
can be covered by an

interval of length sup f(R)− f(x). But

lim
x→∞

f(x) = sup f(R).

Clearly f(R) has Jordan content zero.
Finally, let f(R) have Jordan content zero. We must prove that f = g.

Choose x ∈ R and ε > 0. Let I1, I2, . . . , In, In+1 be compact mutually disjoint
intervals covering f(R) ∩

[
0, f(x)

]
, the sum of their lengths not exceeding

ε. Say I1 < I2 < . . . < In < In+1. For each index j, assume Ij meets
f(R) ∩

[
0, f(x)

]
. Put

yk = sup
{
t : f(t) ∈ I1 ∪ . . . ∪ Ik

}
for k = 1, . . . , n.

Then y1 < y2 < . . . < yn. Each subinterval of
[
0, f(x)

]
complementary

to the union ∪jIj is contained in an interval of the form
[
f(yj−), f(yj)

]
or[

f(yj), f(yj+)
]
. It follows from the definition of fu that

fy1(x) + fy2(x) + · · ·+ fyn
(x) ≥ f(x)− ε

and
g(x) =

∑
u

fu(x) ≥ f(x)− ε.

But ε was arbitrary, so g(x) ≥ f(x) and hence g(x) = f(x). Here x was also
arbitrary, so g = f .

We are now ready for our main result.
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Theorem 1. Let f be a bounded nondecreasing real valued function noncon-
stant on R. Let f ′ = 0 almost everywhere on R. Let the set

S =
{
x ∈ R : D+f(x) +D−f(x) =∞

}
be countable. Then f is the sum of jump functions. Furthermore, if I is
any open interval on which f is not constant, then I contains a subinterval
(t − ε, t + ε) such that f is constant on the intervals (t − ε, t) and (t, t + ε)
and f(t−) < f(t+).

Proof. Let (a, b) be an open interval. Let

T0 =
{
x ∈ (a, b) : f ′(x) = 0

}
,

and for each integer n > 0 let

Tn =
{
x ∈ (a, b) : 0 < Df(x) < n for some Dini derivate Df of f

}
.

By hypothesis, m(Tn) = 0 for all n, where m denoted the Lebesgue outer
measure. From [HS, (17.25), p. 269], we obtain

m
(
f(Tn)

)
≤ n ·m(Tn) and m

(
f(Tn)

)
= 0 for all n > 0.

We deduce from the same reference m
(
f(T0)

)
= 0. Of course m

(
f(S)

)
= 0.

Consequently, f maps (a, b) to a set of measure zero. But (a, b) was arbitrary,
so m

(
f(R

)
= 0. By Lemma 3, f(R) has Jordan content zero, and by Lemma 4,

f is the sum of jump functions.
Now let f be nonconstant on the open interval I. If a jump function is

not centered at a point in I, then it is constant on I. It follows that S ∩ I
is nonvoid. By Lemma 2, S is a Gδ-set and therefore S ∩ I is a Gδ-set. But
S ∩ I is also countable, and we deduce from Lemma 1 that S ∩ I contains an
isolated point t. Say (t− ε, t+ ε) is a subinterval of I that contains no point
of S other than t. Then f is constant on the intervals (t− ε, t) and (t, t+ ε).
Finally, f(t−) < f(t+) because t ∈ S.

The following proposition may be difficult to prove without our Lemma 4.

Proposition 1. Let f and g be bounded nondecreasing functions nonconstant
on R such that f−g is also nondecreasing. Let f be the sum of jump functions.
Then g is the sum of jump functions.
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Proof. By Lemma 4, f(R) has Jordan content zero. Select ε > 0. Let
I1, . . . , In be intervals covering f(R), with

∑
jm(Ij) < ε .

Now for points u and x, u < x, we have

f(x)− g(x) ≥ f(u)− g(u), and hence f(x)− f(u) ≥ g(x)− g(u).

It follows that g
(
f−1(Ij)

)
can be covered by an interval no longer than Ij .

Consequently,

g(R) = g
(
∪jf−1(Ij)

)
= ∪jg

(
f−1(Ij)

)
can be covered by n intervals, the sum of whose lengths is no longer than∑
jm(Ij) < ε . It follows that g(R) has Jordan content zero. By Lemma 4

again, g is the sum of jump functions.

Note that the function K need not be additive in the hypothesis of our
next proposition. Possibly K(a+ b) 6=K(a) +K(b) for some numbers a and b.

Proposition 2. Let the bounded nondecreasing function g be the sum of jump
functions. Let K be a strictly increasing function, absolutely continuous on an
interval containing the range of g. For each x ∈ R, let f(x) = K

(
g(x)

)
. Then

f is the sum of jump functions.

Proof. By Lemma 4, g(R) has Jordan content zero and hence measure zero.
Then K

(
g(R)

)
has measure zero because K is absolutely continuous. For

each x ∈ R we have f(x) ∈ K
(
g(R)

)
. It follows that f(R) has measure zero,

as well. Also, f is nonconstant on R because K is strictly increasing. By
Lemma 3, f(R) has Jordan content zero, and by Lemma 4, f is the sum of
jump functions.

So far, we have used reference [P] only to establish the existence of the
kind of function described in the hypothesis of Theorem 1. Now we offer a
more direct application of [P].

Proposition 3. There exists a function f on R such that f ′(x) = 0 for every
irrational point x, but f(R) has the power of the continuum.

Proof. Let T denote the set of midpoints of all the intervals complementary
(in [0, 1]) to Cantor’s ternary set. Then T consists exclusively of rational
points. The points of T have mutually disjoint neighborhoods, and it easily
follows that T is a Gδ-set. It follows from [P] that there exists a nondecreasing
function f on R discontinuous at each x ∈ T , such that f ′(x) = 0 for all x /∈ T .
Thus f ′(x) = 0 for all irrational x.
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Let V denote the set of all points of the Cantor ternary set E that are
accumulation points from the left to E. Clearly V has the power of the
continuum.

Now f is strictly increasing on T . Between any two points of V there are
points of T . It follows that f is strictly increasing on V . Finally, f(V ) and
likewise f(K) have the power of the continuum.

By an isolated point of discontinuity t of a function h we mean a point of
discontinuity t of h such that there is a neighborhood of t containing no other
point of discontinuity of h.

Next we have a variation on the theme that a function with zero derivative
everywhere must be constant.

Proposition 4. Let f be a function that has zero derivative at every point
of R except possibly countably many points. Let f have no isolated point of
discontinuity. Then f is constant on R.

Proof. We consider two cases. Either f is everywhere continuous, or it is
not.

Case 1. f is not everywhere continuous.
Let Y denote the set of points where f is discontinuous, and let

X =
{
x ∈ R :

∣∣D+f(x)
∣∣+
∣∣D−f(x)

∣∣+
∣∣D+f(x)

∣∣+
∣∣D−f(x)

∣∣ =∞
}
.

Then Y is a nonvoid subset of X by assumption. But X is a Gδ-set by
Lemma 2, and it follows from the hypothesis that the set Y is dense in itself. By
Lemma 1, then, X has the power of the continuum, contrary to our hypothesis.

Case 2. f is everywhere continuous.
We employ a familiar argument. Suppose that a < b and f(a) 6= f(b). Say
f(a) < f(b) for definiteness. (For f(a) > f(b), use the function −f .) Select
a positive number r so small that g(a) < g(b) where g(x) = f(x)− rx. Then
g′(x) = −r for all numbers x except possibly countably many. Select a number
y, g(a) < y < g(b), such that g′(x) = −r for all x satisfying y = g(x). Let u
be the greatest point in the set{

x : a ≤ x ≤ b and y = g(x)
}
.

It follows that u < b and g′(u) = −r < 0, and this violates the intermediate
value property of the continuous function g.

A sum of jump functions need not have a zero derivative at all but count-
ably many points. For example, if the summands are centered at a dense set
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of points, it easily follows from Lemmas 1 and 2 that the sum fails to be differ-
entiable at continuum many points. However, we must have a zero derivative
almost everywhere, as we now see.

Proposition 5. Let f be the sum of jump functions. Then f ′ = 0 almost
everywhere.

Proof. Any jump function has zero derivative at every point but one. Now
for nondecreasing functions, the derivative of the sum equals the sum of the
derivatives almost everywhere (see for example [HS, (17.18), p. 267]). The
conclusion follows from this.
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