Zbigniew Grande, Institute of Mathematics, Kazimierz Wielki University, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland.
email: grande@ukw.edu.pl

ON THE MAXIMAL ADDITIVE AND MULTIPLICATIVE FAMILIES FOR THE QUASICONTINUITIES OF PIOTROWSKI AND VALLIN

Abstract

In this article we investigate the maximal additive and maximal multiplicative families for the classes of quasicontinuous functions in the sense of Piotrowski and Vallin introduced in [8].

1 Introduction.

If $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ are topological spaces and (Z, ρ) is a metric space, then a function $f: X \rightarrow Z$ is said to be

1. quasicontinuous at a point $x \in X([6,7])$ if for every set $U \in T_{X}$ containing x and for each positive real η, there is a nonempty set $U^{\prime} \in T_{X}$ contained in U such that $f\left(U^{\prime}\right) \subset K(f(x), \eta)=\{t \in Z ; \rho(t, f(x))<\eta\}$.
A function $f: X \times Y \rightarrow Z$ is said to be
2. quasicontinuous at (x, y) with respect to x (alternatively y) if for every set $U \times V \in T_{X} \times T_{Y}$ containing (x, y) and for each positive real η, there are nonempty sets $U^{\prime} \in T_{X}$ contained in U and $V^{\prime} \in T_{Y}$ contained in V such that $x \in U^{\prime}$ (alternatively $\left.y \in V^{\prime}\right)$ and $f\left(U^{\prime} \times V^{\prime}\right) \subset K(f(x, y), \eta)$ ([8]);
3. symmetrically quasicontinuous at (x, y) if it is quasicontinuous at (x, y) with respect to x and with respect to y ([8]);

[^0]4. separately continuous if the sections $f_{x}(t)=f(x, t)$ and $f^{y}(u)=f(u, y)$, $x, u \in X, y, t \in Y$, are continuous.
Observe that if a function $f: X \times Y \rightarrow Z$ is quasicontinuous at (x, y) with respect to x (alternatively y), then the section f_{x} (alternatively f^{y}) is quasicontinuous at y (alternatively x).

Let (\mathbb{R}, ρ) be the set of all reals with the natural metric $\rho\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right|$. For a family \mathcal{A} of functions $f: X \times Y \rightarrow \mathbb{R}$, define the maximal additive family for \mathcal{A} (see [1]) as

$$
\operatorname{Max}_{\mathrm{ad}}(\mathcal{A})=\{g: X \times Y \rightarrow \mathbb{R} ; \text { for all } f \in \mathcal{A} \text { the sum } f+g \in \mathcal{A}\}
$$

Similarly, we define the maximal multiplicative family for \mathcal{A} (see [1]) as
$\operatorname{Max}_{\text {mult }}(\mathcal{A})=\{g: X \times Y \rightarrow \mathbb{R} ;$ for all $f \in \mathcal{A}$ the product $f g \in \mathcal{A}\}$.
If the function constant $0 \in \mathcal{A}$ (resp. $1 \in \mathcal{A})$, then evidently $\operatorname{Max}_{\text {ad }}(\mathcal{A}) \subset \mathcal{A}$ $\left(\right.$ resp. $\left.\operatorname{Max}_{\text {mult }}(\mathcal{A}) \subset \mathcal{A}\right)$.

The maximal additive and multiplicative families for the class Q of all quasicontinuous functions from X to \mathbb{R} were investigated in [2] and [3]. In this article we investigate these families for the quasicontinuities of Piotrowski and Vallin.

2 Maximal Additive Families.

In [2] it is proved that the maximal family $\operatorname{Max}_{\mathrm{ad}}(Q)$ for the class Q of all quasicontinuous functions from X to \mathbb{R} is the same as the family of all continuous functions from X to \mathbb{R}.

Denote by Q_{1} (alternatively Q_{2}) the family of all functions $f: X \times Y \rightarrow \mathbb{R}$ which are quasicontinuous with respect to x (alternatively with respect to y) at each point. Moreover let $Q_{3}=Q_{1} \cap Q_{2}$ denote the family of all symmetrically quasicontinuous functions from $X \times Y$ to \mathbb{R}. Since the constant function $0 \in Q_{3}$, the inclusions $\operatorname{Max}_{\mathrm{ad}}\left(Q_{i}\right) \subset Q_{i}$ are true for $i=1,2,3$.
Theorem 1. A function $g: X \times Y \rightarrow \mathbb{R}$ belongs to $\operatorname{Max}_{\mathrm{ad}}\left(Q_{1}\right)$ (alternatively to $\operatorname{Max}_{\mathrm{ad}}\left(Q_{2}\right)$) if and only if $g \in Q_{1}$ (alternatively $g \in Q_{2}$) and the sections $g_{x}, x \in X$, (alternatively $g^{y}, y \in Y$), are continuous.
Proof. Let $f, g: X \times Y \rightarrow \mathbb{R}$ be quasicontinuous functions with respect to x. Assume that the sections $g_{x}, x \in X$, are continuous. For the proof of the quasicontinuity with respect to x of the sum $f+g$, fix a point $(a, b) \in X \times Y$, a real $\eta>0$ and sets $U \in T_{X}$ and $V \in T_{Y}$ with $(a, b) \in U \times V$. Since the section g_{a} is continuous at the point b, there is a set $V_{1} \in T_{Y}$ such that

$$
b \in V_{1} \subset V \text { and }|g(a, v)-g(a, b)|<\frac{\eta}{3} \text { for } v \in V_{1}
$$

From the quasicontinuity of f at (a, b) with respect to x it follows that there are nonempty sets $U_{2} \in T_{X}$ and $V_{2} \in T_{Y}$ such that

$$
a \in U_{2} \subset U, V_{2} \subset V_{1} \text { and }|f(u, v)-f(a, b)|<\frac{\eta}{3} \text { for }(u, v) \in U_{2} \times V_{2}
$$

Fix a point $c \in V_{2}$. Since g is quasicontinuous at (a, c) with respect to x, there are nonempty sets $U_{3} \in T_{X}$ and $V_{3} \in T_{Y}$ such that

$$
a \in U_{3} \subset U_{2}, V_{3} \subset V_{2} \text { and }|g(u, v)-g(a, c)|<\frac{\eta}{3} \text { for }(u, v) \in U_{3} \times V_{3}
$$

So, $a \in U_{3} \subset U, V_{3} \subset V$ and for $(u, v) \in U_{3} \times V_{3}$ we have

$$
\begin{aligned}
& |f(u, v)+g(u, v)-f(a, b)-g(a, b)| \leq|f(u, v)-f(a, b)|+|g(u, v)-g(a, b)| \\
\leq & |f(u, v)-f(a, b)|+|g(u, v)-g(a, c)|+|g(a, c)-g(a, b)|<\frac{\eta}{3}+\frac{\eta}{3}+\frac{\eta}{3}=\eta .
\end{aligned}
$$

This finishes the proof of the quasicontinuity of the sum $f+g$ with respect to x. If $f, g \in Q_{2}$, then the proof of the quasicontinuity of $f+g$ with respect to y is analogous.

For the proof of the inverse implication, suppose that g is a function in the class $\operatorname{Max}_{\mathrm{ad}}\left(Q_{1}\right) \subset Q_{1}$. Assume, to a contradiction, that there is a point $(u, v) \in X \times Y$ such that the section $g_{u}: Y \rightarrow \mathbb{R}$ is discontinuous at the point $v \in Y$. Since $g \in Q_{1}$, the section g_{u} is quasicontinuous. But the section g_{u} is discontinuous at v, so by [2] there is a quasicontinuous function $h: Y \rightarrow \mathbb{R}$ such that the sum $g_{u}+h$ is not quasicontinuous. Put

$$
f(x, y)=h(y) \text { for }(x, y) \in X \times Y
$$

and observe that $f \in Q_{1}$. Since the section $(f+g)_{u}=f_{u}+g_{u}=h+g_{u}$ is not quasicontinuous, the function $f+g \notin Q_{1}$ and we obtain a contradiction to $g \in \operatorname{Max}_{\mathrm{ad}}\left(Q_{1}\right)$.

The proof of the continuity of the sections $g^{y}(y \in Y)$ for a function g in $\operatorname{Max}_{\mathrm{ad}}\left(Q_{2}\right)$ is analogous.

Corollary 1. If a function $g: X \times Y \rightarrow \mathbb{R}$ belongs to Q_{3} and is separately continuous, then $g \in \operatorname{Max}_{\mathrm{ad}}\left(Q_{3}\right)$.

Recall that there are topological spaces $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ and separately continuous functions $g: X \times Y \rightarrow \mathbb{R}$ which are not symmetrically quasicontinuous $([4,5])$.

For a set $A \subset X \times Y$, denote by $A_{x}=\{v \in Y ;(x, v) \in A\}, x \in X$, the vertical section of A and by $A^{y}=\{u \in X ;(u, y) \in A\}, y \in Y$, the horizontal section of A.

For the investigation of the family $\operatorname{Max}_{\mathrm{ad}}\left(Q_{3}\right)$, we will use the following notation.

Let $(x, y) \in X \times Y$ be a point. We will say that a closed set $A \subset X \times Y$ belongs to the family $S(x, y)$ (resp. $P(x, y)$) if and only if it fulfils the following conditions:

- $A_{x}=\{y\}\left(\right.$ resp. $\left.A^{y}=\{x\}\right) ;$
- for each point $\left.(u, v) \in A \backslash\{(x, y)\}, u \in \operatorname{cl}(\operatorname{int}(A))^{v}\right)$ and $v \in \operatorname{cl}\left((\operatorname{int}(A))_{u}\right)$ (int and cl denote the interior and the closure operations, respectively);

$$
\left.-x \in \operatorname{cl}\left((\operatorname{int}(A))^{y}\right)\left(\text { resp. } y \in \operatorname{cl}(\operatorname{int}(A))_{x}\right)\right)
$$

Observe that if a point (x, y) is isolated in $X \times Y$ and the singleton $\{(x, y)\}$ is closed, then $\{(x, y)\} \in S(x, y) \cap P(x, y)$.

Moreover, if $X=Y=\mathbb{R}$ and $T_{X}=T_{Y}$ is the natural topology, then for all topologies $T_{1}, T_{2} \supset T_{X}$ in \mathbb{R} such that for each open interval (a, b) the closure (in T_{1} and in T_{2}) of (a, b) is the closed interval $[a, b]$, the product topology $T_{1} \times T_{2}$ in \mathbb{R}^{2} is such that for each point $(x, y) \in \mathbb{R}^{2}$ the set

$$
\left\{(u, v) \in \mathbb{R}^{2} ; u \geq x \text { and }-u+(x-y) \leq v \leq u+(y-x)\right\} \in S(x, y)
$$

and the set

$$
\left\{(u, v) \in \mathbb{R}^{2} ; v \geq y \text { and }-v+(x-y) \leq u \leq v+(y-x)\right\} \in P(x, y)
$$

Theorem 2. Let $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ be topological spaces such that for each point $(x, y) \in T_{X} \times T_{Y}$ the families $S(x, y)$ and $P(x, y)$ are nonempty. If a function $g: X \times Y \rightarrow \mathbb{R}$ belongs to $\operatorname{Max}_{\mathrm{ad}}\left(Q_{3}\right)$, then g is separately continuous.
Proof. Assume to the contrary that there is a function $g: X \times Y \rightarrow \mathbb{R}$ belonging to $\operatorname{Max}_{\mathrm{ad}}\left(Q_{3}\right)$ which is not separately continuous. So there is a point $(a, b) \in \mathbb{R}^{2}$ such that either the section g_{a} is discontinuous at b or the section g^{b} is discontinuous at a. Suppose that g_{a} is discontinuous at b. Then there is an open bounded interval $\left(c_{1}, d_{1}\right)=I \ni g(a, b)$ such that $b \in \operatorname{cl}\left(\left(g_{a}\right)^{-1}(\mathbb{R} \backslash I)\right)$. Without loss of generality we can assume that $b \in \operatorname{cl}\left(\left(g_{a}\right)^{-1}\left(\left[d_{1}, \infty\right)\right)\right.$. Fix a real $d \in\left(g(a, b), d_{1}\right)$ and a set $A \in S(a, b)$. Observe that the function

$$
f(x, y)= \begin{cases}-d & \text { if }(x, y) \in A \\ -d & \text { if }(x, y) \notin A \text { and } g(x, y)>d \\ -g(x, y) & \text { otherwise on } X \times Y\end{cases}
$$

is symmetrically quasicontinuous. Consider the section $(g+f)_{a}$ of the sum $g+f$. Since

$$
g(a, b)+f(a, b)=g(a, b)-d<0 \text { and } g(a, y)+f(a, y)=0 \text { for } y \neq b
$$

the section $(g+f)_{a}$ is not quasicontinuous, and consequently the sum $f+g$ is not symmetrically quasicontinuous. So, $g \notin \operatorname{Max}_{\mathrm{ad}}\left(Q_{3}\right)$ and we obtain a contradiction. In the other cases the reasoning is analogous.

From Theorems 1 and 2 we deduce
Theorem 3. Let $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ be topological spaces such that for each point $(x, y) \in T_{X} \times T_{Y}$ the families $S(x, y)$ and $P(x, y)$ are nonempty. A function $g: X \times Y \rightarrow \mathbb{R}$ belongs to $\operatorname{Max}_{\mathrm{ad}}\left(Q_{3}\right)$ if and only if it belongs to Q_{3} and is separately continuous.

Problem. Let $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ be arbitrary topological spaces and let $g: X \times Y \rightarrow \mathbb{R}$ be a function belonging to $\operatorname{Max}_{\mathrm{ad}}\left(Q_{3}\right)$. Is the function g separately continuous?

3 Maximal Multiplicative Families.

Since the constant function $1 \in Q_{1} \cap Q_{2}$, evidently $\operatorname{Max}_{\operatorname{mult}}\left(Q_{i}\right) \subset Q_{i}$ for $i=1,2,3$.

A function $h: X \rightarrow \mathbb{R}$ satisfies Foran's condition (F) (compare [3]) if for each discontinuity point x of h the value $h(x)=0$ and $x \in \operatorname{cl}\left(C(h) \cap h^{-1}(0)\right)$, where $C(h)$ denotes the set of all continuity points of h.

Let \mathcal{F} denote the class of all functions $h: X \rightarrow \mathbb{R}$ satisfying Foran's condition (F). In [3] it is proved that $\mathcal{F} \subset \operatorname{Max}_{\text {mult }}(Q)$. Moreover, in [3] the following theorem is proved.

Theorem 4. Let $f: X \rightarrow \mathbb{R}$ be a function. If there is a nonempty set $U \in T_{X}$ such that $A=\{u \in U ; f(u)=0\} \neq \emptyset$ and $f(u) \neq 0$ for every point $u \in C(f) \cap \operatorname{cl}(U)$, then there exists a function $g \in Q$ such that $f g \notin Q$.

In this article we will prove the following theorems.
Theorem 5. If a function $g: X \times Y \rightarrow \mathbb{R}$ belongs to Q_{1} (alternatively to Q_{2}) and if the sections $g_{u}, u \in X$ (alternatively the sections $g^{v}, v \in Y$), satisfy condition (F), then $g \in \operatorname{Max}_{\text {mult }}\left(Q_{1}\right)$ (alternatively $g \in \operatorname{Max}_{\text {mult }}\left(Q_{2}\right)$).
Proof. Let $f, g: X \times Y \rightarrow \mathbb{R}$ be quasicontinuous functions with respect to x. Assume that the sections $g_{u}, u \in X$, satisfy condition (F). For the proof of the quasicontinuity with respect to x of the product $f g$, fix a point $(a, b) \in X \times Y$, a real $\eta>0$ and sets $U \in T_{X}$ and $V \in T_{Y}$ with $(a, b) \in U \times V$.

At the start we suppose that the section g_{a} is continuous at b. Fix a positive real number

$$
M>\max (|f(a, b)-\eta|,|f(a, b)+\eta|,|g(a, b)-\eta|,|g(a, b)+\eta|)
$$

Since the section g_{a} is continuous at the point b, there is a set $V_{1} \subset V$ belonging to T_{Y} and such that

$$
b \in V_{1} \text { and }|g(a, v)-g(a, b)|<\frac{\eta}{3 M} \text { for } v \in V_{1}
$$

From the quasicontinuity of f with respect to x at the point (a, b), it follows that there are nonempty sets $U_{2} \in T_{X}$ and $V_{2} \in T_{Y}$ such that

$$
a \in U_{2}, U_{2} \times V_{2} \subset U \times V_{1} \text { and }|f(u, v)-f(a, b)|<\frac{\eta}{3 M} \text { for }(u, v) \in U_{2} \times V_{2}
$$

Fix a point $c \in V_{2}$. Since the function g is quasicontinuous with respect to x at the point (a, c), there are nonempty sets $U_{3} \in T_{X}$ and $V_{3} \in T_{Y}$ such that

$$
a \in U_{3} \subset U_{2}, V_{3} \subset V_{2} \text { and }|g(u, v)-g(a, c)|<\frac{\eta}{3 M} \text { for }(u, v) \in U_{3} \times V_{3}
$$

Observe, for $(u, v) \in U_{3} \times V_{3}$, the inequalities
$|g(u, v)-g(a, b)| \leq|g(u, v)-g(a, c)|+|g(a, c)-g(a, b)|<\frac{\eta}{3 M}+\frac{\eta}{3 M}=\frac{2 \eta}{3 M}$
and

$$
\begin{gathered}
|f(u, v) g(u, v)-f(a, b) g(a, b)|= \\
|f(u, v) g(u, v)-f(a, b) g(u, v)+f(a, b) g(u, v)-f(a, b) g(a, b)| \\
\leq|g(u, v)||f(u, v)-f(a, b)|+|f(a, b)||g(u, v)-g(a, b)|<M \frac{\eta}{3 M}+M \frac{2 \eta}{3 M}=\eta .
\end{gathered}
$$

This finishes the proof of the quasicontinuity with respect to x of the product $f g$ at (a, b) in the considered case.

Now suppose that the section g_{a} is discontinuous at b. Then, by condition (F) of g_{a}, the value $g(a, b)=0$ and there is a continuity point $c \in V$ of g_{a} with $g(a, c)=0$. By the previous part of the proof there is a nonempty set $U_{3} \times V_{3} \subset U \times V$ such that $U_{3} \times V_{3} \in T_{X} \times T_{Y}, a \in U_{3}$ and

$$
\begin{aligned}
&|f(u, v) g(u, v)-f(a, c) g(a, c)| \\
&=|f(u, v) g(u, v)| \\
&=|f(u, v) g(u, v)-f(a, b) g(a, b)|<\eta
\end{aligned}
$$

for $(u, v) \in U_{3} \times V_{3}$. This finishes the proof of the quasicontinuity with respect to x of the product of $f g$. The proof of the quasicontinuity of $f g$ with respect to y is analogous.

As an immediate consequence we obtain the following.

Corollary 2. If the sections g_{u} and $g^{v}, u \in X, v \in Y$, of a symmetrically quasicontinuous function $g: X \times Y \rightarrow \mathbb{R}$ satisfy condition (F), then $g \in$ $\operatorname{Max}_{\text {mult }}\left(Q_{3}\right)$.

Theorem 6. Let $g: X \times Y \rightarrow \mathbb{R}$ be a function belonging to Q_{1} (alternatively to Q_{2}). If there is a point $a \in X$ (alternatively $b \in Y$) such that the section g_{a} (alternatively g^{b}) does not belong to $\operatorname{Max}_{\text {mult }}(Q)$, then $g \notin \operatorname{Max}_{\operatorname{mult}}\left(Q_{1}\right)$ (alternatively $g \notin \operatorname{Max}_{\text {mult }}\left(Q_{2}\right)$).

Proof. The section $g_{a}: Y \rightarrow \mathbb{R}$ is quasicontinuous everywhere on Y and does not belong to $\operatorname{Max}_{\text {mult }}(Q)$, so there is a quasicontinuous function $h: Y \rightarrow \mathbb{R}$ such that the product $g_{a} h: Y \rightarrow \mathbb{R}$ is not quasicontinuous. For $(u, v) \in X \times Y$, let $f(u, v)=h(v)$. Then the function f is quasicontinuous with respect to x, but the product $g f$ is not quasicontinuous with respect to x, because its section $(g f)_{a}=g_{a} h$ is not quasicontinuous. So $g \notin \operatorname{Max}_{\text {mult }}\left(Q_{1}\right)$. Similarly, we can prove in the alternative case that $g \notin \operatorname{Max}_{\text {mult }}\left(Q_{2}\right)$.

Theorem 7. Let $g: X \times Y \rightarrow \mathbb{R}$ be a function belonging to Q_{3}. If there is a point $(a, b) \in X \times Y$ such that
(i) the section g_{a} is discontinuous at b and there is a set $A \in S(a, b)$ with $g^{-1}(0) \subset A$
or
(ii) the section g^{b} is not continuous at a and there is a set $B \in P(a, b)$ with $g^{-1}(0) \subset B$,
then $g \notin \operatorname{Max}_{\text {mult }}\left(Q_{3}\right)$.
Proof. Assume that (i) holds. Since the section g_{a} is not continuous at b, there is a real $r>0$ such that $b \in \operatorname{cl}\left(\left(g_{a}\right)^{-1}(\mathbb{R} \backslash(g(a, b)-r, g(a, b)+r))\right)$ and $(g(a, b)-r)(g(a, b)+r) \neq 0$. Suppose that $b \in \operatorname{cl}\left(\left(g_{a}\right)^{-1}([g(a, b)+r, \infty))\right)$. Observe that the function $h(x, y)=\min (g(x, y), g(a, b)+r)$ is symmetrically quasicontinuous. So the function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{1}{g(x, y)} & \text { for } \quad(x, y) \in(X \times Y) \backslash A \\
\frac{1}{g(a, b)+r} & \text { for } \quad(x, y) \in A
\end{array}\right.
$$

is also symmetrically quasicontinuous. Since

$$
f(a, y) g(a, y)=g(a, y) \frac{1}{g(a, y)}=1 \text { for } y \neq b
$$

and

$$
f(a, b) g(a, b)=g(a, b) \frac{1}{g(a, b)+r} \neq 1
$$

the section $(f g)_{a}$ of the product $f g$ is not quasicontinuous, and consequently $f g \notin Q_{3}$. So $g \notin \operatorname{Max}_{\text {mult }}\left(Q_{3}\right)$ in the considered case. In the other cases the reasoning is similar.

If, for each point $(x, y) \in X \times Y$, the classes $S(x, y)$ and $P(x, y)$ are nonempty and

$$
Q_{4}=\left\{f \in Q_{3} ; f^{-1}(0)=\emptyset\right\}
$$

then, from Theorems 5 and 6 , it follows that

$$
\operatorname{Max}_{\operatorname{mult}}\left(Q_{4}\right)=\left\{f \in Q_{4} ; f \text { is separately continuous }\right\}
$$

References

[1] A. M. Bruckner, Differentiation of Real Functions, Lectures Notes in Math. 659, Springer-Verlag, (1978).
[2] Z. Grande and L. Soltysik, Some Remarks on Quasicontinuous Real Functions, Problemy Matematyczne, 10 (2000), 117-125.
[3] Z. Grande, On the Maximal Multiplicative Family for the Class of Quasicontinuous Functions, Real Anal. Exch., 15(2) (1989/90), 437-441.
[4] Z. Grande, Some Observations on the Symmetrical Quasicontinuity of Piotrowski and Vallin, Real Anal. Exch., 31(1) (2005/06), 309-314.
[5] Z. Grande and T. Natkaniec, On Some Topologies of O’Malley Type on \mathbb{R}^{2}, Real Anal. Exch., 18(1) (1992/93), 241-248.
[6] S. Kempisty, Sur les Fonctions Quasicontinues, Fund. Math., 19 (1932), 184-197.
[7] T. Neubrunn, Quasi-continuity, Real Anal. Exch., 14(2) (1988/89), 259306.
[8] Z. Piotrowski and R. W. Vallin, Conditions Which Imply Continuity, Real Anal. Exch., 29(1) (2003/04), 211-217.

[^0]: Key Words: Symmetrical quasicontinuity, product spaces, maximal additive family, maximal multiplicative family

 Mathematical Reviews subject classification: 54C05, 54C08, 54C30, 26B05
 Received by the editors February 1, 2007
 Communicated by: B. S. Thomson

