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Abstract

We study integral inequalities for the Hardy operator H f of the form
J5S ®H fPldp < co [T ®[erfP]dp, where @ is convex, p is a measure
on Ri, 1 < p < oo, and f is non-increasing. The results we obtain are
extensions of the classical B,— weight theory [1, 5].

1 Introduction.

Let for f: Ry — Ry,

be the Hardy operator. In this paper we will examine Orlicz - type inequalities

| etraridn s [ aleswrlan 1)
0 0

where 1 < p < oo and where p is a Borel measure on R finite on compact
sets. We also restrict ourselves to the important special case of f € D, where
D is the collection of all f: R, — R, non-increasing.

Ifin (1), ®(u) = u, then the study of (1) reduces to the classical B,—theory:
(1) holds with du = w(z)dz if and only if w € B,, that is

[ wruwar<e [ u e 2)

Key Words: weights, Hardy operator

Mathematical Reviews subject classification: 42B25, 42B35
Received by the editors January 22, 2007

Communicated by: Clifford E. Weil

495



496 C. J. NEUGEBAUER

where ¢ is independent of 0 < r < oo [1, 5]. The reason why (1) is important
for f € D is that many operators T'f satisfy (T'f)*(t) < cH(f*)(t), where
g*(t) = inf{y : |[{z : |g(z)| > y}| < t}, the non-increasing rearrangement of
g on Ry [2]. Further, the Bp-condition (2) also arises in the study of the
question when Lorentz spaces are Banach spaces [3].

A natural conjecture for (1) to hold for f € D is

| aleserianse [ an

The restriction on ® : Ry — Ry is that ® is convex and ®(0) = 0. However,
we shall see that an additional hypothesis on ®’ is needed. This led us to the
notion of an index k of ®. The results that we obtain are then generalizations
of the classical B,—case and reduce to it when k = 1. This will be taken up in
the first 6 sections, and additional background and examples will be discussed
in section 7.

We will use standard notation. An exception is x,(7) = X[o,,(7), X" () =
Xr,00) (). The letter c stands for a constant that may change from line to line
but is always independent of f € D.

2 Weighted Inequalities.

Let ® : Ry — R, be convex, ®(0) = 0, and there exist constants 0 < v <
00,0 < a < 1 such that ®'(u) > yu*~!, 0 < u < a for some k > 1. We
call k£ an index of ®. By rescaling - ®(u) — ®(au)/P(a) -we may assume that
®(1) =1 and a = 1. We list now some properties we shall use frequently.

(i) ®(u) < ®(1)u,0 < w <1 from which &'(1) > ®(1).

(ii) For ¢ > 1 we have ®(cu) > ¢®(u). This follows from

b (cu) = / ' (t)dt = c/ &' (cT)dr > c/ ' (1) dr = cP(u),
0 0 0
since @’ is non-decreasing.
(iil) ®(cu) < cP(u)if 0 <c<1.
(iv) If 0 < a < b < o0, then ®(b) — ®(a) > ®(b — a). This can be seen by
writing

b b—a b—a
<I>(b)f<I>(a):/ @’(t)dt:/o @/(T+a)d72/0 o' (1) dr = ®(b—a).

We consider the following classes of Borel measures p on R4 finite on compact

sets: Ba, = {u : /TOO ®((r/x)P]dp < C/OT dM} ;
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where the constant c is independent of 0 < r < co. The other class is

tuy={u: [ aldu< e [ aleislan s e}
0 0
where the constants ¢y, c; are independent of f.
Theorem 1. If ® is as above with index k > 1, then
Bq>7p C T.:p’kp - B.:p,kp.

Remark. If kK = 1 we have an equivalence of the above classes, and this
happens if ®(u) = u the classical By-case, or ®(u) = ue*, ®(u) =e* — 1.

PROOF. The last implication follows by taking f = x,.(z). Then ®[c; f*?(z)] =
B(ex ) (x) and since H f(2)"? = x,(z) + (r/2)x"(z), 1 € Bas

As noted above, we may assume that ®(1) = 1 and a = 1. Let now r = r(y)
be in D and let p(y) = r[®~!(y)]. Then p(y) € D. Since u € Bg, we get

p(y)
/ / y)/x)P dudy<c/ / dudy = R.
p(y)

We interchange the order of integration and see that

—// dy dp(z) = /Omp*(x)du(a:).

The left integral L becomes

- h / fm B((p(y)/2)"] dy dys(z).

By either using integration by parts or comparing areas under the curve t =
D[(p(y)/x)P], the inner integral equals

I(x) = / U@L () /7] dt — B(1)p~ ()
1
= [ o7 ) e w107 @)

- / Bl ()] (uPypuP~ du — p~ (z),
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since ®(1) =

1. Since the measure dv = ® (uP)puP~ldu has the property
v([0,1]) = ®(1) =1

, we can use Jensen’s inequality and get

I(z) > { /0 1 r—l(m)q)/(up)pup—ldu} (@),

From the assumption that ®'(u) > yuF=1,0 < u < 1, we see that

I(z) > ® {/01 rl(xu)’yu”kldu} —p Hx).

We choose now r~1(t) = H f(t)?*~1 f(t). Then

P r_l(xu)u”k_l = py 1 d /mu f(t)dt "
7 pk xPk du \ J, '

Therefore
I(z) > [y H f(x)P*] = p~* (x),
where v9 = 7v/k.
Since p~l(z) = ®r~l(z) = ®[Hf(x)?*"1f(z)], we get from the Bg ,-
condition

/ " B () du < . / " SH @) (@) dp.

We may assume that p, = pk > 1. Young’s inequality gives us

Hfp—1 Hfr- NP« fPe g H fP- NP= [Py

N +

H P.—1 = / - /
e pLNP- P YopL NP+ je
where « is chosen so that

Nf<

)

Since ® is convex we get

/OOO Qo H f(x)P*]dp <

et [ #het @+

1 oo
D[aN* f(z)P]dp s .
— < [ oan s anf

We choose now N so large that ¢, /(yop,N?+) < 1. Then
| obotrer < o [ ales oy du
0 0

Finally the substitution 'yé/ P« f — f shows that u € Tp gp. O
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Corollary. Assume ® : Ry — Ry is conver with index k > 1. If ®p(u) =
®(ul/*) is also convex, then

Bayp =Ta, p-
Proor. This follows from Theorem 1 since the index of &, is 1. O

There is a converse to the first inclusion of Theorem 1 which we state next.

Theorem 2. Assume ® : Ry — Ry is convez, ®(0) =0, and ® does not have
a finite index. Let k > 1. Then there exists p € By 1 such that pn ¢ To k.

PROOF. We assume that for v > 1 the function ® is linear, i.e.,®(u) =
®'(1)(u — 1) + ®(1). There exists a,, — oo such that ®’(1/27) < (1/27)» L,
Let s >k —1.

We claim that z°dx € Bg ;.

[eS) 1
/r q)(r/x)xsdx:rs+1/0 D(t) t5+2 = SHZ/

n>0 /2n+1
2(n+1 (s+1) T
<oty o= atan

where the < follows since @' is non-decreasing. We show now that x*dz ¢ Tg .
Let f’m = mxl/m,m > 1. Then

H frn(2) = mx1m(2) + (1/2)x" ™ (2).

1/2"

ts+2

Hence

k

oo s oo s 1 m dt

1/t dt
E/O <I)(t)tul//ws/k > 0.

However, since @ is linear for ¢t > 1,

v

1/m
/ ®(cym*)z® de = c®(cym”)/m* T — 0,
0

as m — oo, since s > k — 1. O

We give now an application of Theorem 1 which gives an extension of the
integral inequalities of the classical B)-case.
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Theorem 3. Let w(z) € B, for some p > 1 and let 0 < g < co. Then there
ezists 0 < a < 1 such that

/0 T H (@) log? (1/H  (x))w(x) dz < g / " (e f (@) logi (1/er f () w(a) d.

for all f € D with f(0+) < a.

PROOF. Since w € B, we know that w € B, for some 1 < p’ < p [5]. Choose
now 1 < s < oo such that s?p’ = p. Since w € By, we have for the (j + 1)-st
iterated Hardy operator H;4; f the inequality

| i@ ww s < [ f@r7 ww ds. €D,
0 0
If we let f = x,- and note that
Hig1f (@) = (@) + =65 (@/r)X (@),
J

log’
where ¢;(y) = Z Oi y’ then
- !

/ (r/2)* log’ (z/r)w(z) dz < cj/ w(z) de.
T 0
If now j < ¢ < j+ 1, the exponent j above can be replaced by g.

The function g(u) = u®log?(1/u) is convex on some interval [0, a], with
0 < a < 1. We define

9'(a)(u—a) +g(a).

Then & : Ry — R, is convex with index s. We claim now that

L= / 3[(r/x)" Jw(z) dr < c/ w(x) dx.
T 0
r/a o)
We break up L = / —l—/ = I 4+ I5. The integral
r r/a

I, = /T/a e(r/x)®P log?(z/r)w(x) dx < C/o w(z) dz
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and since for r < x < r/a, ®[(r/z)? < ¢(r/z)?" the integral I; < c/ w(z) de.
0

Since ® has index s, by Theorem 1

/ O[H P |w < co/ ®(cy f57 w.
0 0
If f € D and f(0+) < a we get our conclusion since s?p’ = p. O

Remark. If w e By, 1 <p < oo, and ¢ > 0, then

/Ooinp w< ¢ /00701]01) w

o log"(I/Hf) " = " Jo log"(1/erf)

for all f € D and f(0+) < a. The proof is the same as before depending upon
the convexity of g(u) = u/log?(1/u),0 <u < 1/e.

3 Iterated Hardy Operator.

Let ® : Ry — R, be convex with index k and ®(0) = 0. We will examine the
following classes of Borel measures p finite on compact sets. Below p > 1.

Tiop= {M : / O[H 1 fFldu < Co/ QlesHyfPldu, f € D} ;
0 0

where H; f is the j—times iterated Hardy operator.

4 P
< (og’ 'x

o [ () )
N X

for every N < oc.
Theorem 4.
Ba,p UW;jk2p C Tjakp C Baip U Wikp-

PROOF. Since ® has index k, ®'(u) > yu*~1,0 < u < a, and hence ®(1)u >
D(u) > %uk,() <u<a.

If p € Bsyp, then Theorem 1 shows that u € T} g, since H;f € D if
f € D. Assume now that p € W, 42,. Since H;f(z) > c(log’ ' z)/z,z > 1,
we see that

. kp
o) oo (1077t
/ @[clijkp]duz/ ®[c; ckP (ng> ldu
0 N

T

e o [log? ' e
> / c’fck Pl = dp = oo,
N xr



502 C. J. NEUGEBAUER

if N is chosen so large that ¢;c*?((log’ ' z)/x)* < a,z > N.
For the second implication we need to show that

Tjep C B<I>7p U Wj7p~
Let p € T} 0, and choose k, > 1 such that
¢ (y)’ —crcopj—1(y)’ > Ly > ki,
J i

1
where as before ¢;(y) = § : Ogl 2
7!
0

Let f = kyx». Then

and cg, c1 are the constants of y in T} ¢ p.

H3 () = oo ) + 22051 (a/r (0)

Suppose there exists 0 < rg < co such that

[ /o6, e/ro) g = oc.

To

Since p is finite on compact sets, for every N < oo
[ Blerthara/o) ;s (aro)) dn = .
N
Since ®(1)u > ®(u),0 < u <1, we get
. x7¢j_1(x/ro) dp = 00,

if IV is chosen so large that the integrand is < 1. Since logj ~1 2 is the dominant
term in ¢;_1(z) and since log(z/ro) < clogz we get

% [1oei~1 p
/ <ng> d = o0
N xT
and hence p € W .

Hence we may assume that

| et/ /e dn < o,
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for every 0 < r < co. Since p € T 3, and f = k. X, we see that

kp/ du+/ [(har /)5 (2 /r)P) dp <
of [ otcirydns [ alesthura s, o/l an.

Since the integrals involved are finite

/ O/ 275 (/1)) — cole k(e fa) 0y (@)} dys < c/or -

Denote by L, the left side of the above inequality. Since we may take ¢ > 1,
and since ®(cou) > co®(u), the expression L, decreases if we put ¢y inside ®.
For b >a >0, ®(b) — ®(a) > ®(b — a) and thus

L, 2/ O[(kur/x)P{oj(x/r)P — cocrpj_1(x/r)P] dp.
By the choice of k.

Loz [ ooyl dn > / " @ ((hr /)] di

«T

[e%) k.r
| elter/ayidnse [ du,
kyr 0

and p € By p. O

Hence

4 Fromp—p—e.

In this section we will examine the analogue to the well-known and important
property: w € B, implies w € B,,_, for some € > 0. This is no longer the case
in our more general setting. An example will be given in section 7. However, a
slightly stronger hypothesis will give us this implication. Below & : R, — R
is convex, ®(0) = 0, and ®(u) = ®'(1)(u — 1) + ®(1),u > 1. Then ®(¢’) <
®’(1)c’, ¢ > 1. This follows from: since ®'(1) > ®(1), ®(u) < ®'(1)u,u > 1.

Theorem 5. . Let p € Ty for some 1 < p < oco. Then there exists € > 0
such that (1 € By p—e.
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PRrOOF. Since p1 € Ty, we get by a repeated application of the integral in-
equality

| etian<d [ ol s e .
0 o
Let now f = X,.. Then

Hjf(2)? =X (2) + (r/2)Pdj 1 (x/r)"X; (),

& .
1 2

where ¢, (y) = E Oi Y Thus
5 !

T

| aleraroeiasd [ oo [ an

Since ¢;1(2/7) = L& > 1, ¢51(2/1)? > dj1(a/r) = (og?~ (a/r)/(j — 1)}
and thus the left side L, above is

log’ " (a/r)

be = /OO R ]

| du.

Let now s > ¢. Then

co 1 IOgj_l(fE/T) /T
—@[(r/z)P————=]du < C du.
/T El -1 2lr/z) G- Jdp | dn
Let S = § j>1(1/s771) = s/(s — 1). Since ® is convex, we get with u;_; =
log’ " (z/r)
p06 /T
(rfap eI,

Z Sj%@(uj,l) = %Z%@(uj,l) > %@[Z Sujil] = %@[S(r/m)p_l/s]

Si_
i>1 j>1 i-1

Since S > 1, ®(Su) > SP(u) and thus

b= /°° O[(r/ax)P~1*] dp.

This shows that u € Bg ,_1/- O
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5 Concave Functions and Reverse Inequalities.

We wish to examine reverse inequalities of the form

| euman<a [t e,
0 0

where 0 < ¢y < 1 is given. The functions ¥ : Ry — Ry that suggest them-
selves are concave and non-decreasing. Analogous to the convex case, we
assume that ¥ : Ry — R, is concave, ¥(0) = 0, and there exist 0 < vy <
00,0 < a <1 such that

U(u) < yu'~ 10 <u<a,
for some 0 < s < 1. If we vary s slightly we may assume that v = s. By
rescaling - ¥(u) — U(au)/¥(a)- we may assume in addition that ¥(1) =

l,a=1. For 0 < p < oo and 0 < ¢y < 1 we introduce the following classes of
measures p on R finite on compact sets:

Cup={us [ w12 [T wlijor)an)

Sq,,p:{u:/OOO\I/(fp)dugco/ooo\II[pr]d,u,fED}.

and

Theorem 6.
Cq/m C S\p,sp C C\p,sp.

PROOF. For the first inclusion let r» = r(y) € D and p(y) = r¥~!(y). Then

/ N / " gy < o / ) / :) Wl(p(y)/2)?) di.

We interchange the order of integration and then the left side becomes

L= / p () dp,
0

and the right side is

R=C / h / :) W[(ply)/2)?) dy dp
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By integration by parts or comparing areas under the curve t = ¥[(p(y)/xz)?]
the inner integral I(x) of R is - recall that ¥(1) =1 -

1
Ia)= [ o e ) de— 7 o)
0
The substitution ¢ = ¥(uP) gives
1
1) = [ o7 @)W @ )purtdu 5 o),
0

Since the measure dv = ¥ (uP)puP~ du satisfies v([0, 1]) = 1 and since p~ ! (zu) =
Ur—1(zu), Jensen’s inequality gives

1
I(z) <V {/ r_l(xu)\Il’(up)pup_ldu} —p Hx).
0
By hypothesis, ¥ (u?) < suP*~1,0 < u < 1 and thus

I(x) <V {/01 r_l(:vu)psups_ldu} —p Hx).

We choose now 7~ 1(t) = Hf(t)P*~1 f(t) and then we see that
d Tu ps 1
s = ( /0 0 dt> .

I(z) < U[Hf(2)"] - p~' ().
The Cy ,— condition implies that

Thus

| @< co [T (ut s - 7 @} dn

0 0

Since p~! () = Wr~(z) = W[H f(2)P*~f(x)] > W[f()P"] we get
(1 + Co) /0 W[ (2)"*) du < Co /O Wley H f (2)7] dp.

This gives us the Sy ,—condition .
To show that Sy, C Cyp let f = X,. Since U(1) =1 we get

/OT du < co (/0 du+/:o\1'[(r/x)p]du>.

This is the Cy ,—condition. O
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6 Changing pu, .

In this section we examine when the following inequalities hold:

| et s <o [ wensteyln g e, (3)
0 0
and - ~
/ Mﬂﬂm%msd/ e f(2)7) dp, f € D. (4)
0 0

For (3) we need the simple fact that the following statements below are equiv-
alent:

/ gdﬂﬁc/ gdv,g € D. (5)
0 0

/dugc/ dv,0 <r < oo. (6)
0 0

PROOF. The substitution g = X,. in (5) proves (6), and for the implication
(6) — (5) simply note that for g € D

/gdu:/ ,u{g>t}dt§c/ V{g>t}dt:c/ gdv. O
0 0 0 0

Theorem 7. Let ® : Ry — Ry be convex, ®(0) = 0, and index k > 1. If
i € By or v € By p, then the following statements are equivalent:

Awﬂﬂﬂ@”MMSmAwéhﬂ@”M%feD )

/dugc/ dv,0 <r < oo. (6)
0 0

PROOF. Let f = X, to obtain (7)—(6). For the reverse implication we have
two cases.

CASE 1. p € By p.

By Theorem 1 for f € D

| et au s [T el an
0 0

and (5) completes the proof.
CASE 2. v € Bg. -
Since for f € D we have H f € D we get from (5) and Theorem 1

/Om@[kaP]dugc/Ooo [H f*P)dv /Ooocb [ f*P)dv O
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Theorem 8. Let & : Ry — R be convex, ®(0) = 0, with index k > 1, and
let U : Ry — Ry. Then the following statements are equivalent for 1 < p < co
and p € By p:

[ alr@u < eo [ Wiens@)du. g €. ®)
0 0

O (u) < U("u),0 <u < oo. (9)

PROOF. (8)—(9). Fix 0 < u < 0o and let f = u'/*?X,.. Then by (8)

B(u) /O dp < coW(cru) /0 du

and (9) follows.
(9)—(8). By Theorem 1 we know that

[ etpan s [~ ot an
0 0
and (9) gives us ®[cy f(x)*P] < V[ f(x)*P]. -

7 Remarks and Examples.

This section is subdivided into subsections numbered 2 through 6 correspond-
ing to the main sections 2 through 6 and contains comments, remarks, and
examples illustrating the results.

2.

(i) We allow measures p even singular with respect to dr. This is different
from the weighted version of the Hardy-Littlewood maximal operator: The
inequality

MfP dy < c/ P du,1 < p < oo,
R» R»

holds iff dp = w(z) dz and w € A, ([4, p. 255]).
(ii) As an example let p = dp, the Dirac-delta at « = 0. Then p is in any
Bg ;, (the left side is 0) and we have the obvious ®[H f(0+)] < ¢o®[c1 f(0+)].
(iii) As for the Corollary, there exist convex functions ® whose only index
is any k > 1 such that ®;(u) = ®(u'/*) is not convex. Let

() = { BB 0<u<l/e
d'(1/e)(u—1/e)+1/e, u>1/e.
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Then & is convex with index any k& > 1, but not kK = 1. However

P = 7t 0 1
- o<u<
k(u) og(1/u)’ u /e,

is no longer convex, since ® (u) — oo as u — 0.

3.

Theorem 4 seems to be new even in the classical B,-case. If k =1 is an index
of ® we get a characterization of T} ¢ .

4.

It is well-known that the property p — p — € is connected with the behavior
of the iterated Hardy operator. This is the approach for B, in [5] and for the
maximal operator in [7].

In our general setting, u € Bg , may not imply p € Bg p— for any € > 0.
As an example let

B(u) = { PECT 0<u<2/e
' (2/e)(u - 2/e) + B(2/e), u>2e.

Then any k& > 1 is an index for ®. Let dyu = xdx. We claim that 1 € Bg .
Write
S er/2 0o
/ @[(r/x)2]xdm:/ —|—/ =0 + I
r r er/2

er/2
Then I = / (m[(r/z) — a] + b) x dx < cr® and
T

i T
I, =c r/z)? ————dzx < er?.
: /er/z( P o (e ™ =

Next, p ¢ Bp,2—.. The integral I above is now

o0 o0 ed
I, = / (r/z)*  —— * dzx = r2_€/ 7302 * =00
er)2 log*(cz/r) er/2 xlog”(cz/r)

5.

A reverse inequality in the classical B,—case can be found in [5].
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6.

Integral inequalities of the form [,, ®[Tf]dx < co [, ¥[caf] dr have been
studied for various operators 1" [6].
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