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Abstract

We study integral inequalities for the Hardy operator Hf of the formR∞
0

Φ[Hfp] dµ ≤ c0
R∞
0

Φ[c1f
p] dµ, where Φ is convex, µ is a measure

on R+, 1 ≤ p < ∞, and f is non-increasing. The results we obtain are
extensions of the classical Bp− weight theory [1, 5].

1 Introduction.

Let for f : R+ → R+,

Hf(x) =
1
x

∫ x

0

f(t) dt

be the Hardy operator. In this paper we will examine Orlicz - type inequalities∫ ∞
0

Φ[Hf(x)p] dµ ≤ c0
∫ ∞

0

Φ[c1f(x)p] dµ, (1)

where 1 ≤ p < ∞ and where µ is a Borel measure on R+ finite on compact
sets. We also restrict ourselves to the important special case of f ∈ D, where
D is the collection of all f : R+ → R+ non-increasing.

If in (1), Φ(u) = u, then the study of (1) reduces to the classicalBp−theory:
(1) holds with dµ = w(x)dx if and only if w ∈ Bp, that is∫ ∞

r

(r/x)pw(x) dx ≤ c
∫ r

0

w(x) dx, (2)
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where c is independent of 0 < r <∞ [1, 5]. The reason why (1) is important
for f ∈ D is that many operators Tf satisfy (Tf)∗(t) ≤ cH(f∗)(t), where
g∗(t) = inf{y : |{x : |g(x)| > y}| ≤ t}, the non-increasing rearrangement of
g on R+ [2]. Further, the Bp-condition (2) also arises in the study of the
question when Lorentz spaces are Banach spaces [3].

A natural conjecture for (1) to hold for f ∈ D is∫ ∞
r

Φ[(r/x)p] dµ ≤ c
∫ r

0

dµ.

The restriction on Φ : R+ → R+ is that Φ is convex and Φ(0) = 0. However,
we shall see that an additional hypothesis on Φ′ is needed. This led us to the
notion of an index k of Φ. The results that we obtain are then generalizations
of the classical Bp−case and reduce to it when k = 1. This will be taken up in
the first 6 sections, and additional background and examples will be discussed
in section 7.

We will use standard notation. An exception is χr(x) = χ[0,r](x), χr(x) =
χ[r,∞)(x). The letter c stands for a constant that may change from line to line
but is always independent of f ∈ D.

2 Weighted Inequalities.

Let Φ : R+ → R+ be convex, Φ(0) = 0, and there exist constants 0 < γ <
∞, 0 < a ≤ 1 such that Φ′(u) ≥ γuk−1, 0 ≤ u ≤ a for some k ≥ 1. We
call k an index of Φ. By rescaling - Φ(u)→ Φ(au)/Φ(a) -we may assume that
Φ(1) = 1 and a = 1. We list now some properties we shall use frequently.

(i) Φ(u) ≤ Φ(1)u, 0 ≤ u ≤ 1 from which Φ′(1) ≥ Φ(1).
(ii) For c ≥ 1 we have Φ(cu) ≥ cΦ(u). This follows from

Φ(cu) =
∫ cu

0

Φ′(t) dt = c

∫ u

0

Φ′(cτ) dτ ≥ c
∫ u

0

Φ′(τ) dτ = cΦ(u),

since Φ′ is non-decreasing.
(iii) Φ(cu) ≤ cΦ(u) if 0 ≤ c ≤ 1.
(iv) If 0 ≤ a ≤ b < ∞, then Φ(b) − Φ(a) ≥ Φ(b − a). This can be seen by

writing

Φ(b)−Φ(a) =
∫ b

a

Φ′(t) dt =
∫ b−a

0

Φ′(τ+a) dτ ≥
∫ b−a

0

Φ′(τ) dτ = Φ(b−a).

We consider the following classes of Borel measures µ on R+ finite on compact
sets:

BΦ,p =
{
µ :
∫ ∞
r

Φ[(r/x)p] dµ ≤ c
∫ r

0

dµ

}
,
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where the constant c is independent of 0 < r <∞. The other class is

TΦ,p =
{
µ :
∫ ∞

0

Φ[Hfp] dµ ≤ c0
∫ ∞

0

Φ[c1fp] dµ, f ∈ D
}
,

where the constants c0, c1 are independent of f .

Theorem 1. If Φ is as above with index k ≥ 1, then

BΦ,p ⊂ TΦ,kp ⊂ BΦ,kp.

Remark. If k = 1 we have an equivalence of the above classes, and this
happens if Φ(u) = u the classical Bp-case, or Φ(u) = ueu,Φ(u) = eu − 1.

Proof. The last implication follows by taking f = χr(x). Then Φ[c1fkp(x)] =
Φ(c1)χr(x) and since Hf(x)kp = χr(x) + (r/x)kpχr(x), µ ∈ BΦ,kp.

As noted above, we may assume that Φ(1) = 1 and a = 1. Let now r = r(y)
be in D and let ρ(y) = r[Φ−1(y)]. Then ρ(y) ∈ D. Since µ ∈ BΦ,p we get

L ≡
∫ ∞

0

∫ ∞
ρ(y)

Φ[(ρ(y)/x)p] dµ dy ≤ c
∫ ∞

0

∫ ρ(y)

0

dµ dy ≡ R.

We interchange the order of integration and see that

R = c

∫ ∞
0

∫ ρ−1(x)

0

dy dµ(x) = c

∫ ∞
0

ρ−1(x) dµ(x).

The left integral L becomes

L =
∫ ∞

0

∫ ∞
ρ−1(x)

Φ[(ρ(y)/x)p] dy dµ(x).

By either using integration by parts or comparing areas under the curve t =
Φ[(ρ(y)/x)p], the inner integral equals

I(x) =
∫ 1

0

ρ−1[xΦ−1(t)1/p] dt− Φ(1)ρ−1(x)

=
∫ 1

0

ρ−1(xu)Φ′(up)pup−1du− Φ(1)ρ−1(x)

=
∫ 1

0

Φ[r−1(xu)]Φ′(up)pup−1du− ρ−1(x),
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since Φ(1) = 1. Since the measure dν = Φ′(up)pup−1du has the property
ν([0, 1]) = Φ(1) = 1, we can use Jensen’s inequality and get

I(x) ≥ Φ
{∫ 1

0

r−1(xu)Φ′(up)pup−1du

}
− ρ−1(x).

From the assumption that Φ′(u) ≥ γuk−1, 0 ≤ u ≤ 1, we see that

I(x) ≥ Φ
{∫ 1

0

r−1(xu)γupk−1du

}
− ρ−1(x).

We choose now r−1(t) = Hf(t)pk−1f(t). Then

pγr−1(xu)upk−1 =
pγ

pk

1
xpk

d

du

(∫ xu

0

f(t) dt
)pk

.

Therefore
I(x) ≥ Φ[γ0Hf(x)pk]− ρ−1(x),

where γ0 = γ/k.
Since ρ−1(x) = Φr−1(x) = Φ[Hf(x)pk−1f(x)], we get from the BΦ,p-

condition ∫ ∞
0

Φ[γ0Hf(x)pk] dµ ≤ c∗
∫ ∞

0

Φ[Hf(x)pk−1f(x)] dµ.

We may assume that p∗ ≡ pk > 1. Young’s inequality gives us

Hfp∗−1f =
Hfp∗−1

N
Nf ≤ Hfp∗

p′∗N
p′∗

+
Np∗fp∗

p∗
=

γ0Hf
p∗

γ0p′∗N
p′∗

+
Np∗fp∗α

p∗α
,

where α is chosen so that
1

γ0p′∗N
p′∗

+
1
p∗α

= 1.

Since Φ is convex we get ∫ ∞
0

Φ[γ0Hf(x)p∗ ] dµ ≤

c∗

{
1

γ0p′∗N
p′∗

∫ ∞
0

Φ[γ0Hf(x)p∗ ] dµ+
1
p∗α

∫ ∞
0

Φ[αNp∗f(x)p∗ ] dµ
}
.

We choose now N so large that c∗/(γ0p
′
∗N

p′∗) < 1. Then∫ ∞
0

Φ[γ0Hf(x)p∗ ] dµ ≤ c0
∫ ∞

0

Φ[cf(x)p∗ ] dµ.

Finally the substitution γ
1/p∗
0 f → f shows that µ ∈ TΦ,kp.
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Corollary. Assume Φ : R+ → R+ is convex with index k ≥ 1. If Φk(u) =
Φ(u1/k) is also convex, then

BΦk,p = TΦk,p.

Proof. This follows from Theorem 1 since the index of Φk is 1.

There is a converse to the first inclusion of Theorem 1 which we state next.

Theorem 2. Assume Φ : R+ → R+ is convex, Φ(0) = 0, and Φ does not have
a finite index. Let k > 1. Then there exists µ ∈ BΦ,1 such that µ /∈ TΦ,k.

Proof. We assume that for u ≥ 1 the function Φ is linear, i.e.,Φ(u) =
Φ′(1)(u− 1) + Φ(1). There exists αn →∞ such that Φ′(1/2n) ≤ (1/2n)αn−1.
Let s > k − 1.

We claim that xsdx ∈ BΦ,1.∫ ∞
r

Φ(r/x)xs dx = rs+1

∫ 1

0

Φ(t)
dt

ts+2
= rs+1

∑
n≥0

∫ 1/2n

1/2n+1
Φ(t)

dt

ts+2

≤ crs+1
∑ 2(n+1)(s+1)

2nαn
= c

∫ r

0

xs dx,

where the ≤ follows since Φ′ is non-decreasing. We show now that xsdx /∈ TΦ,k.
Let fm = mχ1/m,m ≥ 1. Then

Hfm(x) = mχ1/m(x) + (1/x)χ1/m(x).

Hence∫ ∞
0

Φ[Hfm(x)k]xs dx ≥
∫ ∞

1/m

Φ(1/xk)xs dx =
1
k

∫ mk

0

Φ(t)
dt

t1+1/k+s/k

≥ 1
k

∫ 1

0

Φ(t)
dt

t1+1/k+s/k
> 0.

However, since Φ is linear for t ≥ 1,∫ 1/m

0

Φ(c1mk)xs dx = cΦ(c1mk)/ms+1 → 0,

as m→∞, since s > k − 1.

We give now an application of Theorem 1 which gives an extension of the
integral inequalities of the classical Bp-case.
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Theorem 3. Let w(x) ∈ Bp for some p > 1 and let 0 < q < ∞. Then there
exists 0 < a < 1 such that∫ ∞

0

Hf(x)p logq(1/Hf(x))w(x) dx ≤ c0
∫ ∞

0

(c1f(x))p logq(1/c1f(x))w(x) dx,

for all f ∈ D with f(0+) ≤ a.

Proof. Since w ∈ Bp we know that w ∈ Bp′ for some 1 < p′ < p [5]. Choose
now 1 < s <∞ such that s2p′ = p. Since w ∈ Bsp′ we have for the (j + 1)-st
iterated Hardy operator Hj+1f the inequality∫ ∞

0

Hj+1f(x)sp
′
w(x) dx ≤ cj

∫ ∞
0

f(x)sp
′
w(x) dx, f ∈ D.

If we let f = χr and note that

Hj+1f(x) = χr(x) +
r

x
φj(x/r)χr(x),

where φj(y) =
j∑
0

logi y
i!

, then

∫ ∞
r

(r/x)sp
′
logj(x/r)w(x) dx ≤ cj

∫ r

0

w(x) dx.

If now j < q ≤ j + 1, the exponent j above can be replaced by q.
The function g(u) = us logq(1/u) is convex on some interval [0, a], with

0 < a < 1. We define

Φ(u) =

{
g(u), 0 ≤ u ≤ a
g′(a)(u− a) + g(a).

Then Φ : R+ → R+ is convex with index s. We claim now that

L ≡
∫ ∞
r

Φ[(r/x)p
′
]w(x) dx ≤ c

∫ r

0

w(x) dx.

We break up L =
∫ r/a

r

+
∫ ∞
r/a

= I1 + I2. The integral

I2 =
∫ ∞
r/a

c(r/x)sp
′
logq(x/r)w(x) dx ≤ c

∫ r

0

w(x) dx
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and since for r ≤ x ≤ r/a, Φ[(r/x)p
′ ≤ c(r/x)p

′
the integral I1 ≤ c

∫ r

0

w(x) dx.

Since Φ has index s, by Theorem 1∫ ∞
0

Φ[Hfsp
′
]w ≤ c0

∫ ∞
0

Φ(c1fsp
′
)w.

If f ∈ D and f(0+) ≤ a we get our conclusion since s2p′ = p.

Remark. If w ∈ Bp, 1 ≤ p <∞, and q > 0, then∫ ∞
0

Hfp

logq(1/Hf)
w ≤ c0

∫ ∞
0

c1f
p

logq(1/c1f)
w,

for all f ∈ D and f(0+) ≤ a. The proof is the same as before depending upon
the convexity of g(u) = u/ logq(1/u), 0 ≤ u ≤ 1/e.

3 Iterated Hardy Operator.

Let Φ : R+ → R+ be convex with index k and Φ(0) = 0. We will examine the
following classes of Borel measures µ finite on compact sets. Below p ≥ 1.

Tj,Φ,p =
{
µ :
∫ ∞

0

Φ[Hj+1f
p] dµ ≤ c0

∫ ∞
0

Φ[c1Hjf
p] dµ, f ∈ D

}
,

where Hjf is the j−times iterated Hardy operator.

Wj,p =

{
µ :
∫ ∞
N

(
logj−1 x

x

)p
dµ =∞

}
for every N <∞.

Theorem 4.
BΦ,p ∪Wj,k2p ⊂ Tj,Φ,kp ⊂ BΦ,kp ∪Wj,kp.

Proof. Since Φ has index k, Φ′(u) ≥ γuk−1, 0 ≤ u ≤ a, and hence Φ(1)u ≥
Φ(u) ≥ γ

ku
k, 0 ≤ u ≤ a.

If µ ∈ BΦ,p, then Theorem 1 shows that µ ∈ Tj,Φ,kp since Hjf ∈ D if
f ∈ D. Assume now that µ ∈ Wj,k2p. Since Hjf(x) ≥ c(logj−1 x)/x, x ≥ 1,
we see that∫ ∞

0

Φ[c1Hjf
kp] dµ ≥

∫ ∞
N

Φ[c1ckp
(

logj−1 x

x

)kp
] dµ

≥
∫ ∞
N

ck1c
k2p

(
logj−1 x

x

)k2p

dµ =∞,
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if N is chosen so large that c1ckp((logj−1 x)/x)kp ≤ a, x ≥ N .
For the second implication we need to show that

Tj,Φ,p ⊂ BΦ,p ∪Wj,p.

Let µ ∈ Tj,Φ,p, and choose k∗ ≥ 1 such that

φj(y)p − c1c0φj−1(y)p ≥ 1, y ≥ k∗,

where as before φj(y) =
j∑
0

logi y
i!

and c0, c1 are the constants of µ in Tj,Φ,p.

Let f = k∗χr. Then

Hjf(x) = k∗χr(x) +
k∗r

x
φj−1(x/r)χr(x).

Suppose there exists 0 < r0 <∞ such that∫ ∞
r0

Φ[c1(k∗r0/x)pφj−1(x/r0)p] dµ =∞.

Since µ is finite on compact sets, for every N <∞∫ ∞
N

Φ[c1(k∗r0/x)pφj−1(x/r0)p] dµ =∞.

Since Φ(1)u ≥ Φ(u), 0 ≤ u ≤ 1, we get∫ ∞
N

1
xp
φj−1(x/r0)p dµ =∞,

if N is chosen so large that the integrand is ≤ 1. Since logj−1 x is the dominant
term in φj−1(x) and since log(x/r0) ≤ c log x we get

∫ ∞
N

(
logj−1 x

x

)p
dµ =∞

and hence µ ∈Wj,p.
Hence we may assume that∫ ∞

r

Φ[c1(k∗r/x)pφj−1(x/r)p] dµ <∞,



Weighted Integral Inequalities for the Hardy Operator 503

for every 0 < r <∞. Since µ ∈ Tj,Φ,p and f = k∗χr, we see that

Φ(kp∗)
∫ r

0

dµ+
∫ ∞
r

Φ[(k∗r/x)pφj(x/r)p] dµ ≤

c0

{∫ r

0

Φ(c1kp∗) dµ+
∫ ∞
r

Φ[c1(k∗r/x)pφj−1(x/r)p] dµ
}
.

Since the integrals involved are finite∫ ∞
r

{Φ[kp∗(r/x)pφj(x/r)p]− c0Φ[c1kp∗(r/x)pφj−1(x/r)p]} dµ ≤ c
∫ r

0

dµ.

Denote by Lr the left side of the above inequality. Since we may take c0 ≥ 1,
and since Φ(c0u) ≥ c0Φ(u), the expression Lr decreases if we put c0 inside Φ.
For b > a ≥ 0, Φ(b)− Φ(a) ≥ Φ(b− a) and thus

Lr ≥
∫ ∞
r

Φ[(k∗r/x)p{φj(x/r)p − c0c1φj−1(x/r)p] dµ.

By the choice of k∗

Lr ≥
∫ ∞
r

Φ[(k∗r/x)p] dµ ≥
∫ ∞
k∗r

Φ[(k∗r/x)p] dµ.

Hence ∫ ∞
k∗r

Φ[(k∗r/x)p] dµ ≤ c
∫ k∗r

0

dµ,

and µ ∈ BΦ,p.

4 From p→ p− ε.

In this section we will examine the analogue to the well-known and important
property: w ∈ Bp implies w ∈ Bp−ε for some ε > 0. This is no longer the case
in our more general setting. An example will be given in section 7. However, a
slightly stronger hypothesis will give us this implication. Below Φ : R+ → R+

is convex, Φ(0) = 0, and Φ(u) = Φ′(1)(u − 1) + Φ(1), u ≥ 1. Then Φ(cj) ≤
Φ′(1)cj , c ≥ 1. This follows from: since Φ′(1) ≥ Φ(1), Φ(u) ≤ Φ′(1)u, u ≥ 1.

Theorem 5. . Let µ ∈ TΦ,p for some 1 ≤ p < ∞. Then there exists ε > 0
such that µ ∈ BΦ,p−ε.



504 C. J. Neugebauer

Proof. Since µ ∈ TΦ,p we get by a repeated application of the integral in-
equality ∫ ∞

0

Φ[Hjf
p] dµ ≤ cj0

∫ ∞
o

Φ[cj1f
p] dµ, f ∈ D.

Let now f = χr. Then

Hjf(x)p = χr(x) + (r/x)pφj−1(x/r)pχr(x),

where φk(y) =
k∑
0

logi y
i!

. Thus

∫ ∞
r

Φ[(r/x)pφj−1(x/r)p] dµ ≤ cj0
∫ r

0

Φ(cj1) dµ ≤ cj
∫ r

0

dµ.

Since φj−1(x/r) ≥ 1, x ≥ r, φj−1(x/r)p ≥ φj−1(x/r) ≥ (logj−1(x/r))/(j − 1)!
and thus the left side Lr above is

Lr ≥
∫ ∞
r

Φ[(r/x)p
logj−1(x/r)

(j − 1)!
] dµ.

Let now s > c. Then∫ ∞
r

∞∑
1

1
sj−1

Φ[(r/x)p
logj−1(x/r)

(j − 1)!
] dµ ≤ C

∫ r

0

dµ.

Let S =
∑
j≥1(1/sj−1) = s/(s − 1). Since Φ is convex, we get with uj−1 =

(r/x)p
logj−1(x/r)

(j − 1)!
,

∑
j≥1

1
sj−1

Φ(uj−1) =
1
S

∑
j≥1

S

sj−1
Φ(uj−1) ≥ 1

S
Φ[
∑

S
uj−1

sj−1
] =

1
S

Φ[S(r/x)p−1/s].

Since S ≥ 1, Φ(Su) ≥ SΦ(u) and thus

Lr ≥
∫ ∞
r

Φ[(r/x)p−1/s] dµ.

This shows that µ ∈ BΦ,p−1/s.
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5 Concave Functions and Reverse Inequalities.

We wish to examine reverse inequalities of the form∫ ∞
0

Ψ(fp) dµ ≤ c0
∫ ∞

0

Ψ[c1Hfp] dµ, f ∈ D,

where 0 < c0 < 1 is given. The functions Ψ : R+ → R+ that suggest them-
selves are concave and non-decreasing. Analogous to the convex case, we
assume that Ψ : R+ → R+ is concave, Ψ(0) = 0, and there exist 0 < γ <
∞, 0 < a ≤ 1 such that

Ψ′(u) ≤ γus−1, 0 < u ≤ a,

for some 0 < s ≤ 1. If we vary s slightly we may assume that γ = s. By
rescaling - Ψ(u) → Ψ(au)/Ψ(a)- we may assume in addition that Ψ(1) =
1, a = 1. For 0 < p <∞ and 0 < c0 < 1 we introduce the following classes of
measures µ on R+ finite on compact sets:

CΨ,p =
{
µ :
∫ r

0

dµ ≤ c0
1− c0

∫ ∞
r

Ψ[(r/x)p] dµ
}

and

SΨ,p =
{
µ :
∫ ∞

0

Ψ(fp) dµ ≤ c0
∫ ∞

0

Ψ[Hfp] dµ, f ∈ D
}
.

Theorem 6.
CΨ,p ⊂ SΨ,sp ⊂ CΨ,sp.

Proof. For the first inclusion let r = r(y) ∈ D and ρ(y) = rΨ−1(y). Then∫ ∞
0

∫ ρ(y)

0

dµ dy ≤ C0

∫ ∞
0

∫ ∞
ρ(y)

Ψ[(ρ(y)/x)p] dµ.

We interchange the order of integration and then the left side becomes

L =
∫ ∞

0

ρ−1(x) dµ,

and the right side is

R = C0

∫ ∞
0

∫ ∞
ρ(y)

Ψ[(ρ(y)/x)p] dy dµ
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By integration by parts or comparing areas under the curve t = Ψ[(ρ(y)/x)p]
the inner integral I(x) of R is - recall that Ψ(1) = 1 -

I(x) =
∫ 1

0

ρ−1[xΨ−1(t)1/p] dt− ρ−1(x).

The substitution t = Ψ(up) gives

I(x) =
∫ 1

0

ρ−1(xu)Ψ′(up)pup−1du− ρ−1(x).

Since the measure dν = Ψ(up)pup−1du satisfies ν([0, 1]) = 1 and since ρ−1(xu) =
Ψr−1(xu), Jensen’s inequality gives

I(x) ≤ Ψ
{∫ 1

0

r−1(xu)Ψ′(up)pup−1du

}
− ρ−1(x).

By hypothesis, Ψ′(up) ≤ sup(s−1), 0 < u ≤ 1 and thus

I(x) ≤ Ψ
{∫ 1

0

r−1(xu)psups−1du

}
− ρ−1(x).

We choose now r−1(t) = Hf(t)ps−1f(t) and then we see that

r−1(xu)psups−1 =
d

du

(∫ xu

0

f(t) dt
)ps 1

xps
.

Thus
I(x) ≤ Ψ[Hf(x)ps]− ρ−1(x).

The CΨ,p− condition implies that∫ ∞
0

ρ−1(x) dµ ≤ C0

∫ ∞
0

{
Ψ[Hf(x)ps]− ρ−1(x)

}
dµ.

Since ρ−1(x) = Ψr−1(x) = Ψ[Hf(x)ps−1f(x)] ≥ Ψ[f(x)ps] we get

(1 + C0)
∫ ∞

0

Ψ[f(x)ps] dµ ≤ C0

∫ ∞
0

Ψ[c1Hf(x)ps] dµ.

This gives us the SΨ,p−condition .
To show that SΨ,p ⊂ CΨ,p let f = χr. Since Ψ(1) = 1 we get∫ r

0

dµ ≤ c0
(∫ r

0

dµ+
∫ ∞
r

Ψ[(r/x)p] dµ
)
.

This is the CΨ,p−condition.
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6 Changing µ, Φ.

In this section we examine when the following inequalities hold:∫ ∞
0

Φ[Hf(x)q] dµ ≤ c0
∫ ∞

0

Φ[c1f(x)q]dν, f ∈ D, (3)

and ∫ ∞
0

Φ[Hf(x)q] dµ ≤ c′
∫ ∞

0

Ψ[c′′f(x)q] dµ, f ∈ D. (4)

For (3) we need the simple fact that the following statements below are equiv-
alent: ∫ ∞

0

g dµ ≤ c
∫ ∞

0

gdν, g ∈ D. (5)∫ r

0

dµ ≤ c
∫ r

0

dν, 0 ≤ r <∞. (6)

Proof. The substitution g = χr in (5) proves (6), and for the implication
(6)→ (5) simply note that for g ∈ D∫ ∞

0

g dµ =
∫ ∞

0

µ{g > t} dt ≤ c
∫ ∞

0

ν{g > t} dt = c

∫ ∞
0

gdν.

Theorem 7. Let Φ : R+ → R+ be convex, Φ(0) = 0, and index k ≥ 1. If
µ ∈ BΦ,p or ν ∈ BΦ,p, then the following statements are equivalent:∫ ∞

0

Φ[Hf(x)kp] dµ ≤ c0
∫ ∞

0

Φ[c1f(x)kp]dν, f ∈ D (7)∫ r

0

dµ ≤ c
∫ r

0

dν, 0 ≤ r <∞. (6)

Proof. Let f = χr to obtain (7)→(6). For the reverse implication we have
two cases.

Case 1. µ ∈ BΦ,p.
By Theorem 1 for f ∈ D∫ ∞

0

Φ[Hfkp] dµ ≤ c0
∫ ∞

0

Φ[c1fkp] dµ,

and (5) completes the proof.
Case 2. ν ∈ BΦ,p.
Since for f ∈ D we have Hf ∈ D we get from (5) and Theorem 1∫ ∞

0

Φ[Hfkp] dµ ≤ c
∫ ∞

0

Φ[Hfkp]dν ≤ c′
∫ ∞

0

Φ[c′′fkp]dν.
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Theorem 8. Let Φ : R+ → R+ be convex, Φ(0) = 0, with index k ≥ 1, and
let Ψ : R+ → R+. Then the following statements are equivalent for 1 ≤ p <∞
and µ ∈ BΦ,p:∫ ∞

0

Φ[Hf(x)kp] dµ ≤ c0
∫ ∞

0

Ψ[c1f(x)kp] dµ, f ∈ D. (8)

Φ(u) ≤ c′Ψ(c′′u), 0 ≤ u <∞. (9)

Proof. (8)→(9). Fix 0 ≤ u <∞ and let f = u1/kpχr. Then by (8)

Φ(u)
∫ r

0

dµ ≤ c0Ψ(c1u)
∫ r

0

dµ

and (9) follows.
(9)→(8). By Theorem 1 we know that∫ ∞

0

Φ[Hfkp] dµ ≤ c0
∫ ∞

0

Φ[c1fkp] dµ

and (9) gives us Φ[c1f(x)kp] ≤ c′Ψ[c′′f(x)kp].

7 Remarks and Examples.

This section is subdivided into subsections numbered 2 through 6 correspond-
ing to the main sections 2 through 6 and contains comments, remarks, and
examples illustrating the results.

2.

(i) We allow measures µ even singular with respect to dx. This is different
from the weighted version of the Hardy-Littlewood maximal operator: The
inequality ∫

Rn

Mfp dµ ≤ c
∫

Rn

|f |p dµ, 1 < p <∞,

holds iff dµ = w(x) dx and w ∈ Ap ([4, p. 255]).
(ii) As an example let µ = δ0, the Dirac-delta at x = 0. Then µ is in any

BΦ,p (the left side is 0) and we have the obvious Φ[Hf(0+)] ≤ c0Φ[c1f(0+)].
(iii) As for the Corollary, there exist convex functions Φ whose only index

is any k > 1 such that Φk(u) = Φ(u1/k) is not convex. Let

Φ(u) =

{
u

log(1/u) , 0 ≤ u ≤ 1/e

Φ′(1/e)(u− 1/e) + 1/e, u > 1/e.
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Then Φ is convex with index any k > 1, but not k = 1. However

Φk(u) =
ku1/k

log(1/u)
, 0 ≤ u ≤ 1/e,

is no longer convex, since Φ′k(u)→∞ as u→ 0.

3.

Theorem 4 seems to be new even in the classical Bp-case. If k = 1 is an index
of Φ we get a characterization of Tj,Φ,p.

4.

It is well-known that the property p → p − ε is connected with the behavior
of the iterated Hardy operator. This is the approach for Bp in [5] and for the
maximal operator in [7].

In our general setting, µ ∈ BΦ,p may not imply µ ∈ BΦ,p−ε for any ε > 0.
As an example let

Φ(u) =

{
u

log2(2/u)
, 0 ≤ u ≤ 2/e

Φ′(2/e)(u− 2/e) + Φ(2/e), u > 2/e.

Then any k > 1 is an index for Φ. Let dµ = xdx. We claim that µ ∈ BΦ,2.
Write ∫ ∞

r

Φ[(r/x)2]x dx =
∫ er/2

r

+
∫ ∞
er/2

= I1 + I2.

Then I1 =
∫ er/2

r

(m[(r/x)− a] + b)x dx ≤ cr2 and

I2 = c

∫ ∞
er/2

(r/x)2 x

log2(cx/r)
dx ≤ cr2.

Next, µ /∈ BΦ,2−ε. The integral I2 above is now

I2 =
∫ ∞
er/2

(r/x)2−ε x

log2(cx/r)
dx = r2−ε

∫ ∞
er/2

xε dx

x log2(cx/r)
=∞.

5.

A reverse inequality in the classical Bp−case can be found in [5].
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6.

Integral inequalities of the form
∫

Rn Φ[Tf ] dx ≤ c0
∫

Rn Ψ[c2f ] dx have been
studied for various operators T [6].
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