C. J. Neugebauer, Department of Mathematics, Purdue University, Lafayette, Indiana 47907-1395. email: neug@math.purdue.edu

WEIGHTED ORLICZ-TYPE INTEGRAL INEQUALITIES FOR THE HARDY OPERATOR

Dedicated to the memory of Casper Goffman

Abstract

We study integral inequalities for the Hardy operator Hf of the form $\int_0^\infty \Phi[Hf^p] d\mu \le c_0 \int_0^\infty \Phi[c_1f^p] d\mu$, where Φ is convex, μ is a measure on \mathbb{R}_+ , $1 \le p < \infty$, and f is non-increasing. The results we obtain are extensions of the classical B_p — weight theory [1, 5].

1 Introduction.

Let for $f: \mathbb{R}_+ \to \mathbb{R}_+$,

$$Hf(x) = \frac{1}{x} \int_0^x f(t) dt$$

be the Hardy operator. In this paper we will examine Orlicz - type inequalities

$$\int_0^\infty \Phi[Hf(x)^p] d\mu \le c_0 \int_0^\infty \Phi[c_1 f(x)^p] d\mu, \tag{1}$$

where $1 \leq p < \infty$ and where μ is a Borel measure on \mathbb{R}_+ finite on compact sets. We also restrict ourselves to the important special case of $f \in \mathcal{D}$, where \mathcal{D} is the collection of all $f : \mathbb{R}_+ \to \mathbb{R}_+$ non-increasing.

If in (1), $\Phi(u) = u$, then the study of (1) reduces to the classical B_p —theory: (1) holds with $d\mu = w(x)dx$ if and only if $w \in B_p$, that is

$$\int_{r}^{\infty} (r/x)^{p} w(x) dx \le c \int_{0}^{r} w(x) dx, \tag{2}$$

Key Words: weights, Hardy operator

Mathematical Reviews subject classification: 42B25, 42B35

Received by the editors January 22, 2007

Communicated by: Clifford E. Weil

where c is independent of $0 < r < \infty$ [1, 5]. The reason why (1) is important for $f \in \mathcal{D}$ is that many operators Tf satisfy $(Tf)^*(t) \le cH(f^*)(t)$, where $g^*(t) = \inf\{y : |\{x : |g(x)| > y\}| \le t\}$, the non-increasing rearrangement of g on \mathbb{R}_+ [2]. Further, the B_p -condition (2) also arises in the study of the question when Lorentz spaces are Banach spaces [3].

A natural conjecture for (1) to hold for $f \in \mathcal{D}$ is

$$\int_{r}^{\infty} \Phi[(r/x)^{p}] d\mu \le c \int_{0}^{r} d\mu.$$

The restriction on $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ is that Φ is convex and $\Phi(0) = 0$. However, we shall see that an additional hypothesis on Φ' is needed. This led us to the notion of an index k of Φ . The results that we obtain are then generalizations of the classical B_p —case and reduce to it when k = 1. This will be taken up in the first 6 sections, and additional background and examples will be discussed in section 7.

We will use standard notation. An exception is $\chi_r(x) = \chi_{[0,r]}(x), \chi^r(x) = \chi_{[r,\infty)}(x)$. The letter c stands for a constant that may change from line to line but is always independent of $f \in \mathcal{D}$.

2 Weighted Inequalities.

Let $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ be convex, $\Phi(0) = 0$, and there exist constants $0 < \gamma < \infty, 0 < a \le 1$ such that $\Phi'(u) \ge \gamma u^{k-1}$, $0 \le u \le a$ for some $k \ge 1$. We call k an index of Φ . By rescaling - $\Phi(u) \to \Phi(au)/\Phi(a)$ -we may assume that $\Phi(1) = 1$ and a = 1. We list now some properties we shall use frequently.

- (i) $\Phi(u) \leq \Phi(1)u, 0 \leq u \leq 1$ from which $\Phi'(1) \geq \Phi(1)$.
- (ii) For $c \ge 1$ we have $\Phi(cu) \ge c\Phi(u)$. This follows from

$$\Phi(cu) = \int_0^{cu} \Phi'(t) dt = c \int_0^u \Phi'(c\tau) d\tau \ge c \int_0^u \Phi'(\tau) d\tau = c\Phi(u),$$

since Φ' is non-decreasing.

- (iii) $\Phi(cu) \le c\Phi(u)$ if $0 \le c \le 1$.
- (iv) If $0 \le a \le b < \infty$, then $\Phi(b) \Phi(a) \ge \Phi(b-a)$. This can be seen by writing

$$\Phi(b) - \Phi(a) = \int_a^b \Phi'(t) \, dt = \int_0^{b-a} \Phi'(\tau + a) \, d\tau \ge \int_0^{b-a} \Phi'(\tau) \, d\tau = \Phi(b-a).$$

We consider the following classes of Borel measures μ on \mathbb{R}_+ finite on compact sets:

$$B_{\Phi,p} = \left\{ \mu : \int_r^\infty \Phi[(r/x)^p] \, d\mu \le c \int_0^r \, d\mu \right\},\,$$

where the constant c is independent of $0 < r < \infty$. The other class is

$$T_{\Phi,p} = \left\{ \mu : \int_0^\infty \Phi[Hf^p] \, d\mu \le c_0 \int_0^\infty \Phi[c_1 f^p] \, d\mu, f \in \mathcal{D} \right\},$$

where the constants c_0, c_1 are independent of f.

Theorem 1. If Φ is as above with index $k \geq 1$, then

$$B_{\Phi,p} \subset T_{\Phi,kp} \subset B_{\Phi,kp}$$
.

Remark. If k = 1 we have an equivalence of the above classes, and this happens if $\Phi(u) = u$ the classical B_p -case, or $\Phi(u) = ue^u$, $\Phi(u) = e^u - 1$.

PROOF. The last implication follows by taking $f = \chi_r(x)$. Then $\Phi[c_1 f^{kp}(x)] = \Phi(c_1)\chi_r(x)$ and since $Hf(x)^{kp} = \chi_r(x) + (r/x)^{kp}\chi^r(x)$, $\mu \in B_{\Phi,kp}$.

As noted above, we may assume that $\Phi(1) = 1$ and a = 1. Let now r = r(y) be in \mathcal{D} and let $\rho(y) = r[\Phi^{-1}(y)]$. Then $\rho(y) \in \mathcal{D}$. Since $\mu \in B_{\Phi,p}$ we get

$$L \equiv \int_0^\infty \int_{\rho(y)}^\infty \Phi[(\rho(y)/x)^p] \, d\mu \, dy \le c \int_0^\infty \int_0^{\rho(y)} \, d\mu \, dy \equiv R.$$

We interchange the order of integration and see that

$$R = c \int_0^\infty \int_0^{\rho^{-1}(x)} dy \, d\mu(x) = c \int_0^\infty \rho^{-1}(x) \, d\mu(x).$$

The left integral L becomes

$$L = \int_0^\infty \int_{\rho^{-1}(x)}^\infty \Phi[(\rho(y)/x)^p] \, dy \, d\mu(x).$$

By either using integration by parts or comparing areas under the curve $t = \Phi[(\rho(y)/x)^p]$, the inner integral equals

$$I(x) = \int_0^1 \rho^{-1} [x \Phi^{-1}(t)^{1/p}] dt - \Phi(1) \rho^{-1}(x)$$

$$= \int_0^1 \rho^{-1} (xu) \Phi'(u^p) p u^{p-1} du - \Phi(1) \rho^{-1}(x)$$

$$= \int_0^1 \Phi[r^{-1}(xu)] \Phi'(u^p) p u^{p-1} du - \rho^{-1}(x),$$

since $\Phi(1) = 1$. Since the measure $d\nu = \Phi'(u^p)pu^{p-1}du$ has the property $\nu([0,1]) = \Phi(1) = 1$, we can use Jensen's inequality and get

$$I(x) \ge \Phi \left\{ \int_0^1 r^{-1}(xu)\Phi'(u^p)pu^{p-1}du \right\} - \rho^{-1}(x).$$

From the assumption that $\Phi'(u) \geq \gamma u^{k-1}, 0 \leq u \leq 1$, we see that

$$I(x) \ge \Phi \left\{ \int_0^1 r^{-1}(xu)\gamma u^{pk-1}du \right\} - \rho^{-1}(x).$$

We choose now $r^{-1}(t) = Hf(t)^{pk-1}f(t)$. Then

$$p\gamma r^{-1}(xu)u^{pk-1} = \frac{p\gamma}{pk} \frac{1}{x^{pk}} \frac{d}{du} \left(\int_0^{xu} f(t) dt \right)^{pk}.$$

Therefore

$$I(x) \ge \Phi[\gamma_0 H f(x)^{pk}] - \rho^{-1}(x),$$

where $\gamma_0 = \gamma/k$.

Since $\rho^{-1}(x) = \Phi r^{-1}(x) = \Phi[Hf(x)^{pk-1}f(x)]$, we get from the $B_{\Phi,p}$ -condition

$$\int_0^\infty \Phi[\gamma_0 H f(x)^{pk}] d\mu \le c_* \int_0^\infty \Phi[H f(x)^{pk-1} f(x)] d\mu.$$

We may assume that $p_* \equiv pk > 1$. Young's inequality gives us

$$Hf^{p_*-1}f = \frac{Hf^{p_*-1}}{N}Nf \leq \frac{Hf^{p_*}}{p_*'N^{p_*'}} + \frac{N^{p_*}f^{p_*}}{p_*} = \frac{\gamma_0 Hf^{p_*}}{\gamma_0 p_*'N^{p_*'}} + \frac{N^{p_*}f^{p_*}\alpha}{p_*\alpha},$$

where α is chosen so that

$$\frac{1}{\gamma_0 p_*' N^{p_*'}} + \frac{1}{p_* \alpha} = 1.$$

Since Φ is convex we get

$$\int_{0}^{\infty} \Phi[\gamma_{0} H f(x)^{p_{*}}] d\mu \leq c_{*} \left\{ \frac{1}{\gamma_{0} p_{*}' N^{p_{*}'}} \int_{0}^{\infty} \Phi[\gamma_{0} H f(x)^{p_{*}}] d\mu + \frac{1}{p_{*} \alpha} \int_{0}^{\infty} \Phi[\alpha N^{p_{*}} f(x)^{p_{*}}] d\mu \right\}.$$

We choose now N so large that $c_*/(\gamma_0 p_*' N^{p_*'}) < 1$. Then

$$\int_0^\infty \Phi[\gamma_0 H f(x)^{p_*}] d\mu \le c_0 \int_0^\infty \Phi[c f(x)^{p_*}] d\mu.$$

Finally the substitution $\gamma_0^{1/p_*} f \to f$ shows that $\mu \in T_{\Phi,kp}$.

Corollary. Assume $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ is convex with index $k \geq 1$. If $\Phi_k(u) = \Phi(u^{1/k})$ is also convex, then

$$B_{\Phi_k,p} = T_{\Phi_k,p}$$
.

PROOF. This follows from Theorem 1 since the index of Φ_k is 1.

There is a converse to the first inclusion of Theorem 1 which we state next.

Theorem 2. Assume $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ is convex, $\Phi(0) = 0$, and Φ does not have a finite index. Let k > 1. Then there exists $\mu \in B_{\Phi,1}$ such that $\mu \notin T_{\Phi,k}$.

PROOF. We assume that for $u \geq 1$ the function Φ is linear, i.e., $\Phi(u) = \Phi'(1)(u-1) + \Phi(1)$. There exists $\alpha_n \to \infty$ such that $\Phi'(1/2^n) \leq (1/2^n)^{\alpha_n - 1}$. Let s > k - 1.

We claim that $x^s dx \in B_{\Phi,1}$.

$$\begin{split} \int_{r}^{\infty} \Phi(r/x) x^{s} \, dx &= r^{s+1} \int_{0}^{1} \Phi(t) \frac{dt}{t^{s+2}} = r^{s+1} \sum_{n \geq 0} \int_{1/2^{n+1}}^{1/2^{n}} \Phi(t) \frac{dt}{t^{s+2}} \\ &\leq c r^{s+1} \sum \frac{2^{(n+1)(s+1)}}{2^{n\alpha_{n}}} = c \int_{0}^{r} x^{s} \, dx, \end{split}$$

where the \leq follows since Φ' is non-decreasing. We show now that $x^s dx \notin T_{\Phi,k}$. Let $f_m = m\chi_{1/m}, m \geq 1$. Then

$$Hf_m(x) = m\chi_{1/m}(x) + (1/x)\chi^{1/m}(x).$$

Hence

$$\int_0^\infty \Phi[Hf_m(x)^k] x^s \, dx \ge \int_{1/m}^\infty \Phi(1/x^k) x^s \, dx = \frac{1}{k} \int_0^{m^k} \Phi(t) \frac{dt}{t^{1+1/k+s/k}}$$
$$\ge \frac{1}{k} \int_0^1 \Phi(t) \frac{dt}{t^{1+1/k+s/k}} > 0.$$

However, since Φ is linear for $t \geq 1$,

$$\int_0^{1/m} \Phi(c_1 m^k) x^s \, dx = c \Phi(c_1 m^k) / m^{s+1} \to 0,$$

as $m \to \infty$, since s > k - 1.

We give now an application of Theorem 1 which gives an extension of the integral inequalities of the classical B_p -case.

Theorem 3. Let $w(x) \in B_p$ for some p > 1 and let $0 < q < \infty$. Then there exists 0 < a < 1 such that

$$\int_0^\infty Hf(x)^p \log^q(1/Hf(x)) w(x) \, dx \le c_0 \int_0^\infty (c_1 f(x))^p \log^q(1/c_1 f(x)) w(x) \, dx,$$

for all $f \in \mathcal{D}$ with $f(0+) \leq a$.

PROOF. Since $w \in B_p$ we know that $w \in B_{p'}$ for some 1 < p' < p [5]. Choose now $1 < s < \infty$ such that $s^2p' = p$. Since $w \in B_{sp'}$ we have for the (j+1)-st iterated Hardy operator $H_{j+1}f$ the inequality

$$\int_0^\infty H_{j+1}f(x)^{sp'}w(x)\,dx \le c_j \int_0^\infty f(x)^{sp'}w(x)\,dx, f \in \mathcal{D}.$$

If we let $f = \chi_r$ and note that

$$H_{j+1}f(x) = \chi_r(x) + \frac{r}{x}\phi_j(x/r)\chi^r(x),$$

where
$$\phi_j(y) = \sum_{i=0}^{j} \frac{\log^i y}{i!}$$
, then

$$\int_{r}^{\infty} (r/x)^{sp'} \log^{j}(x/r) w(x) dx \le c_{j} \int_{0}^{r} w(x) dx.$$

If now $j < q \le j + 1$, the exponent j above can be replaced by q.

The function $g(u) = u^s \log^q(1/u)$ is convex on some interval [0, a], with 0 < a < 1. We define

$$\Phi(u) = \begin{cases} g(u), 0 \le u \le a \\ g'(a)(u-a) + g(a). \end{cases}$$

Then $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ is convex with index s. We claim now that

$$L \equiv \int_{r}^{\infty} \Phi[(r/x)^{p'}] w(x) dx \le c \int_{0}^{r} w(x) dx.$$

We break up
$$L = \int_{r}^{r/a} + \int_{r/a}^{\infty} = I_1 + I_2$$
. The integral

$$I_2 = \int_{r/a}^{\infty} c(r/x)^{sp'} \log^q(x/r) w(x) \, dx \le c \int_0^r w(x) \, dx$$

and since for $r \leq x \leq r/a$, $\Phi[(r/x)^{p'} \leq c(r/x)^{p'}$ the integral $I_1 \leq c \int_0^r w(x) dx$. Since Φ has index s, by Theorem 1

$$\int_0^\infty \Phi[Hf^{sp'}]w \le c_0 \int_0^\infty \Phi(c_1 f^{sp'})w.$$

If $f \in \mathcal{D}$ and $f(0+) \leq a$ we get our conclusion since $s^2p' = p$.

Remark. If $w \in B_p$, $1 \le p < \infty$, and q > 0, then

$$\int_0^\infty \frac{Hf^p}{\log^q(1/Hf)} w \le c_0 \int_0^\infty \frac{c_1 f^p}{\log^q(1/c_1 f)} w,$$

for all $f \in \mathcal{D}$ and $f(0+) \leq a$. The proof is the same as before depending upon the convexity of $g(u) = u/\log^q(1/u), 0 \leq u \leq 1/e$.

3 Iterated Hardy Operator.

Let $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ be convex with index k and $\Phi(0) = 0$. We will examine the following classes of Borel measures μ finite on compact sets. Below $p \geq 1$.

$$T_{j,\Phi,p} = \left\{ \mu : \int_0^\infty \Phi[H_{j+1} f^p] \, d\mu \le c_0 \int_0^\infty \Phi[c_1 H_j f^p] \, d\mu, f \in \mathcal{D} \right\},\,$$

where $H_j f$ is the j-times iterated Hardy operator.

$$W_{j,p} = \left\{ \mu : \int_{N}^{\infty} \left(\frac{\log^{j-1} x}{x} \right)^{p} d\mu = \infty \right\}$$

for every $N < \infty$.

Theorem 4.

$$B_{\Phi,p} \cup W_{j,k^2p} \subset T_{j,\Phi,kp} \subset B_{\Phi,kp} \cup W_{j,kp}$$
.

PROOF. Since Φ has index k, $\Phi'(u) \geq \gamma u^{k-1}$, $0 \leq u \leq a$, and hence $\Phi(1)u \geq \Phi(u) \geq \frac{\gamma}{k} u^k$, $0 \leq u \leq a$.

If $\mu \in B_{\Phi,p}$, then Theorem 1 shows that $\mu \in T_{j,\Phi,kp}$ since $H_j f \in \mathcal{D}$ if $f \in \mathcal{D}$. Assume now that $\mu \in W_{j,k^2p}$. Since $H_j f(x) \geq c(\log^{j-1} x)/x, x \geq 1$, we see that

$$\int_0^\infty \Phi[c_1 H_j f^{kp}] d\mu \ge \int_N^\infty \Phi[c_1 c^{kp} \left(\frac{\log^{j-1} x}{x}\right)^{kp}] d\mu$$

$$\ge \int_N^\infty c_1^k c^{k^2 p} \left(\frac{\log^{j-1} x}{x}\right)^{k^2 p} d\mu = \infty,$$

if N is chosen so large that $c_1 c^{kp} ((\log^{j-1} x)/x)^{kp} \le a, x \ge N$. For the second implication we need to show that

$$T_{j,\Phi,p} \subset B_{\Phi,p} \cup W_{j,p}$$
.

Let $\mu \in T_{j,\Phi,p}$, and choose $k_* \geq 1$ such that

$$\phi_j(y)^p - c_1 c_0 \phi_{j-1}(y)^p \ge 1, y \ge k_*,$$

where as before $\phi_j(y) = \sum_{i=0}^{j} \frac{\log^i y}{i!}$ and c_0, c_1 are the constants of μ in $T_{j,\Phi,p}$. Let f = k . Then

$$H_j f(x) = k_* \chi_r(x) + \frac{k_* r}{x} \phi_{j-1}(x/r) \chi^r(x).$$

Suppose there exists $0 < r_0 < \infty$ such that

$$\int_{r_0}^{\infty} \Phi[c_1(k_*r_0/x)^p \phi_{j-1}(x/r_0)^p] d\mu = \infty.$$

Since μ is finite on compact sets, for every $N < \infty$

$$\int_{N}^{\infty} \Phi[c_1(k_*r_0/x)^p \phi_{j-1}(x/r_0)^p] d\mu = \infty.$$

Since $\Phi(1)u \ge \Phi(u), 0 \le u \le 1$, we get

$$\int_{N}^{\infty} \frac{1}{x^p} \phi_{j-1} (x/r_0)^p d\mu = \infty,$$

if N is chosen so large that the integrand is ≤ 1 . Since $\log^{j-1} x$ is the dominant term in $\phi_{j-1}(x)$ and since $\log(x/r_0) \leq c \log x$ we get

$$\int_{N}^{\infty} \left(\frac{\log^{j-1} x}{x} \right)^{p} d\mu = \infty$$

and hence $\mu \in W_{j,p}$.

Hence we may assume that

$$\int_{r}^{\infty} \Phi[c_1(k_*r/x)^p \phi_{j-1}(x/r)^p] d\mu < \infty,$$

for every $0 < r < \infty$. Since $\mu \in T_{j,\Phi,p}$ and $f = k_* \chi_r$, we see that

$$\Phi(k_*^p) \int_0^r d\mu + \int_r^\infty \Phi[(k_*r/x)^p \phi_j(x/r)^p] d\mu \le c_0 \left\{ \int_0^r \Phi(c_1k_*^p) d\mu + \int_r^\infty \Phi[c_1(k_*r/x)^p \phi_{j-1}(x/r)^p] d\mu \right\}.$$

Since the integrals involved are finite

$$\int_{r}^{\infty} \left\{ \Phi[k_*^p(r/x)^p \phi_j(x/r)^p] - c_0 \Phi[c_1 k_*^p(r/x)^p \phi_{j-1}(x/r)^p] \right\} d\mu \le c \int_{0}^{r} d\mu.$$

Denote by L_r the left side of the above inequality. Since we may take $c_0 \ge 1$, and since $\Phi(c_0 u) \ge c_0 \Phi(u)$, the expression L_r decreases if we put c_0 inside Φ . For $b > a \ge 0$, $\Phi(b) - \Phi(a) \ge \Phi(b-a)$ and thus

$$L_r \ge \int_r^\infty \Phi[(k_*r/x)^p \{\phi_j(x/r)^p - c_0c_1\phi_{j-1}(x/r)^p] d\mu.$$

By the choice of k_*

$$L_r \ge \int_r^\infty \Phi[(k_*r/x)^p] d\mu \ge \int_{k_*r}^\infty \Phi[(k_*r/x)^p] d\mu.$$

Hence

$$\int_{k_* r}^{\infty} \Phi[(k_* r/x)^p] \, d\mu \le c \int_0^{k_* r} \, d\mu,$$

and $\mu \in B_{\Phi,p}$.

4 From $p \rightarrow p - \epsilon$.

In this section we will examine the analogue to the well-known and important property: $w \in B_p$ implies $w \in B_{p-\epsilon}$ for some $\epsilon > 0$. This is no longer the case in our more general setting. An example will be given in section 7. However, a slightly stronger hypothesis will give us this implication. Below $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ is convex, $\Phi(0) = 0$, and $\Phi(u) = \Phi'(1)(u-1) + \Phi(1), u \geq 1$. Then $\Phi(c^j) \leq \Phi'(1)c^j, c \geq 1$. This follows from: since $\Phi'(1) \geq \Phi(1), \Phi(u) \leq \Phi'(1)u, u \geq 1$.

Theorem 5. . Let $\mu \in T_{\Phi,p}$ for some $1 \le p < \infty$. Then there exists $\epsilon > 0$ such that $\mu \in B_{\Phi,p-\epsilon}$.

PROOF. Since $\mu \in T_{\Phi,p}$ we get by a repeated application of the integral inequality

$$\int_0^\infty \Phi[H_j f^p] \, d\mu \le c_0^j \int_o^\infty \Phi[c_1^j f^p] \, d\mu, f \in \mathcal{D}.$$

Let now $f = \chi_r$. Then

$$H_j f(x)^p = \chi_r(x) + (r/x)^p \phi_{j-1}(x/r)^p \chi_r(x),$$

where $\phi_k(y) = \sum_{i=0}^{k} \frac{\log^i y}{i!}$. Thus

$$\int_{r}^{\infty} \Phi[(r/x)^{p} \phi_{j-1}(x/r)^{p}] d\mu \leq c_{0}^{j} \int_{0}^{r} \Phi(c_{1}^{j}) d\mu \leq c^{j} \int_{0}^{r} d\mu.$$

Since $\phi_{j-1}(x/r) \ge 1, x \ge r$, $\phi_{j-1}(x/r)^p \ge \phi_{j-1}(x/r) \ge (\log^{j-1}(x/r))/(j-1)!$ and thus the left side L_r above is

$$L_r \ge \int_r^{\infty} \Phi[(r/x)^p \frac{\log^{j-1}(x/r)}{(j-1)!}] d\mu.$$

Let now s > c. Then

$$\int_{r}^{\infty} \sum_{1}^{\infty} \frac{1}{s^{j-1}} \Phi[(r/x)^{p} \frac{\log^{j-1}(x/r)}{(j-1)!}] d\mu \le C \int_{0}^{r} d\mu.$$

Let $S = \sum_{j \ge 1} (1/s^{j-1}) = s/(s-1)$. Since Φ is convex, we get with $u_{j-1} = (r/x)^p \frac{\log^{j-1}(x/r)}{(j-1)!}$,

$$\sum_{j\geq 1} \frac{1}{s^{j-1}} \Phi(u_{j-1}) = \frac{1}{S} \sum_{j\geq 1} \frac{S}{s^{j-1}} \Phi(u_{j-1}) \geq \frac{1}{S} \Phi[\sum_{j\leq 1} S \frac{u_{j-1}}{s_{j-1}}] = \frac{1}{S} \Phi[S(r/x)^{p-1/s}].$$

Since $S \geq 1$, $\Phi(Su) \geq S\Phi(u)$ and thus

$$L_r \ge \int_r^\infty \Phi[(r/x)^{p-1/s}] d\mu.$$

This shows that $\mu \in B_{\Phi,p-1/s}$.

5 Concave Functions and Reverse Inequalities.

We wish to examine reverse inequalities of the form

$$\int_0^\infty \Psi(f^p) \, d\mu \le c_0 \int_0^\infty \Psi[c_1 H f^p] \, d\mu, f \in \mathcal{D},$$

where $0 < c_0 < 1$ is given. The functions $\Psi : \mathbb{R}_+ \to \mathbb{R}_+$ that suggest themselves are concave and non-decreasing. Analogous to the convex case, we assume that $\Psi : \mathbb{R}_+ \to \mathbb{R}_+$ is concave, $\Psi(0) = 0$, and there exist $0 < \gamma < \infty, 0 < a \le 1$ such that

$$\Psi'(u) \le \gamma u^{s-1}, 0 < u \le a,$$

for some $0 < s \le 1$. If we vary s slightly we may assume that $\gamma = s$. By rescaling - $\Psi(u) \to \Psi(au)/\Psi(a)$ - we may assume in addition that $\Psi(1) = 1, a = 1$. For $0 and <math>0 < c_0 < 1$ we introduce the following classes of measures μ on \mathbb{R}_+ finite on compact sets:

$$C_{\Psi,p} = \left\{ \mu : \int_0^r d\mu \le \frac{c_0}{1 - c_0} \int_r^\infty \Psi[(r/x)^p] d\mu \right\}$$

and

$$S_{\Psi,p} = \left\{ \mu : \int_0^\infty \Psi(f^p) \, d\mu \le c_0 \int_0^\infty \Psi[Hf^p] \, d\mu, f \in \mathcal{D} \right\}.$$

Theorem 6.

$$C_{\Psi,p} \subset S_{\Psi,sp} \subset C_{\Psi,sp}$$
.

PROOF. For the first inclusion let $r = r(y) \in \mathcal{D}$ and $\rho(y) = r\Psi^{-1}(y)$. Then

$$\int_0^{\infty} \int_0^{\rho(y)} d\mu \, dy \le C_0 \int_0^{\infty} \int_{\rho(y)}^{\infty} \Psi[(\rho(y)/x)^p] \, d\mu.$$

We interchange the order of integration and then the left side becomes

$$L = \int_0^\infty \rho^{-1}(x) \, d\mu,$$

and the right side is

$$R = C_0 \int_0^\infty \int_{\rho(y)}^\infty \Psi[(\rho(y)/x)^p] \, dy \, d\mu$$

By integration by parts or comparing areas under the curve $t = \Psi[(\rho(y)/x)^p]$ the inner integral I(x) of R is - recall that $\Psi(1) = 1$ -

$$I(x) = \int_0^1 \rho^{-1} [x \Psi^{-1}(t)^{1/p}] dt - \rho^{-1}(x).$$

The substitution $t = \Psi(u^p)$ gives

$$I(x) = \int_0^1 \rho^{-1}(xu)\Psi'(u^p)pu^{p-1}du - \rho^{-1}(x).$$

Since the measure $d\nu = \Psi(u^p)pu^{p-1}du$ satisfies $\nu([0,1]) = 1$ and since $\rho^{-1}(xu) = \Psi r^{-1}(xu)$, Jensen's inequality gives

$$I(x) \le \Psi \left\{ \int_0^1 r^{-1}(xu)\Psi'(u^p)pu^{p-1}du \right\} - \rho^{-1}(x).$$

By hypothesis, $\Psi'(u^p) \leq su^{p(s-1)}, 0 < u \leq 1$ and thus

$$I(x) \le \Psi \left\{ \int_0^1 r^{-1}(xu)psu^{ps-1}du \right\} - \rho^{-1}(x).$$

We choose now $r^{-1}(t) = Hf(t)^{ps-1}f(t)$ and then we see that

$$r^{-1}(xu)psu^{ps-1} = \frac{d}{du} \left(\int_0^{xu} f(t) \, dt \right)^{ps} \frac{1}{x^{ps}}.$$

Thus

$$I(x) \le \Psi[Hf(x)^{ps}] - \rho^{-1}(x).$$

The $C_{\Psi,p}-$ condition implies that

$$\int_0^\infty \rho^{-1}(x) \, d\mu \le C_0 \int_0^\infty \left\{ \Psi[Hf(x)^{ps}] - \rho^{-1}(x) \right\} \, d\mu.$$

Since $\rho^{-1}(x) = \Psi r^{-1}(x) = \Psi[Hf(x)^{ps-1}f(x)] \ge \Psi[f(x)^{ps}]$ we get

$$(1 + C_0) \int_0^\infty \Psi[f(x)^{ps}] d\mu \le C_0 \int_0^\infty \Psi[c_1 H f(x)^{ps}] d\mu.$$

This gives us the $S_{\Psi,p}$ -condition.

To show that $S_{\Psi,p} \subset C_{\Psi,p}$ let $f = \chi_r$. Since $\Psi(1) = 1$ we get

$$\int_0^r d\mu \le c_0 \left(\int_0^r d\mu + \int_r^\infty \Psi[(r/x)^p] d\mu \right).$$

This is the $C_{\Psi,p}$ -condition.

6 Changing μ , Φ .

In this section we examine when the following inequalities hold:

$$\int_0^\infty \Phi[Hf(x)^q] d\mu \le c_0 \int_0^\infty \Phi[c_1 f(x)^q] d\nu, f \in \mathcal{D}, \tag{3}$$

and

$$\int_0^\infty \Phi[Hf(x)^q] d\mu \le c' \int_0^\infty \Psi[c''f(x)^q] d\mu, f \in \mathcal{D}. \tag{4}$$

For (3) we need the simple fact that the following statements below are equivalent:

$$\int_{0}^{\infty} g \, d\mu \le c \int_{0}^{\infty} g d\nu, g \in \mathcal{D}. \tag{5}$$

$$\int_0^r d\mu \le c \int_0^r d\nu, 0 \le r < \infty. \tag{6}$$

PROOF. The substitution $g = \chi_r$ in (5) proves (6), and for the implication (6) \rightarrow (5) simply note that for $g \in \mathcal{D}$

$$\int_0^\infty g \, d\mu = \int_0^\infty \mu\{g > t\} \, dt \le c \int_0^\infty \nu\{g > t\} \, dt = c \int_0^\infty g d\nu. \qquad \Box$$

Theorem 7. Let $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ be convex, $\Phi(0) = 0$, and index $k \geq 1$. If $\mu \in B_{\Phi,p}$ or $\nu \in B_{\Phi,p}$, then the following statements are equivalent:

$$\int_0^\infty \Phi[Hf(x)^{kp}] d\mu \le c_0 \int_0^\infty \Phi[c_1 f(x)^{kp}] d\nu, f \in \mathcal{D}$$
 (7)

$$\int_0^r d\mu \le c \int_0^r d\nu, 0 \le r < \infty. \tag{6}$$

PROOF. Let $f = \chi_r$ to obtain (7) \rightarrow (6). For the reverse implication we have two cases.

Case 1. $\mu \in B_{\Phi,p}$.

By Theorem 1 for $f \in \mathcal{D}$

$$\int_0^\infty \Phi[Hf^{kp}] d\mu \le c_0 \int_0^\infty \Phi[c_1 f^{kp}] d\mu,$$

and (5) completes the proof.

Case 2. $\nu \in B_{\Phi,p}$.

Since for $f \in \mathcal{D}$ we have $Hf \in \mathcal{D}$ we get from (5) and Theorem 1

$$\int_0^\infty \Phi[Hf^{kp}] d\mu \le c \int_0^\infty \Phi[Hf^{kp}] d\nu \le c' \int_0^\infty \Phi[c''f^{kp}] d\nu. \qquad \Box$$

Theorem 8. Let $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ be convex, $\Phi(0) = 0$, with index $k \geq 1$, and let $\Psi : \mathbb{R}_+ \to \mathbb{R}_+$. Then the following statements are equivalent for $1 \leq p < \infty$ and $\mu \in B_{\Phi,p}$:

$$\int_0^\infty \Phi[Hf(x)^{kp}] d\mu \le c_0 \int_0^\infty \Psi[c_1 f(x)^{kp}] d\mu, f \in \mathcal{D}.$$
 (8)

$$\Phi(u) \le c' \Psi(c''u), 0 \le u < \infty. \tag{9}$$

PROOF. (8) \rightarrow (9). Fix $0 \le u < \infty$ and let $f = u^{1/kp}\chi_r$. Then by (8)

$$\Phi(u) \int_0^r d\mu \le c_0 \Psi(c_1 u) \int_0^r d\mu$$

and (9) follows.

 $(9)\rightarrow(8)$. By Theorem 1 we know that

$$\int_0^\infty \Phi[Hf^{kp}] d\mu \le c_0 \int_0^\infty \Phi[c_1 f^{kp}] d\mu$$

and (9) gives us $\Phi[c_1 f(x)^{kp}] \leq c' \Psi[c'' f(x)^{kp}]$.

7 Remarks and Examples.

This section is subdivided into subsections numbered 2 through 6 corresponding to the main sections 2 through 6 and contains comments, remarks, and examples illustrating the results.

2.

(i) We allow measures μ even singular with respect to dx. This is different from the weighted version of the Hardy-Littlewood maximal operator: The inequality

$$\int_{\mathbb{R}^n} Mf^p \, d\mu \le c \int_{\mathbb{R}^n} |f|^p \, d\mu, 1$$

holds iff $d\mu = w(x) dx$ and $w \in A_p$ ([4, p. 255]).

- (ii) As an example let $\mu = \delta_0$, the Dirac-delta at x = 0. Then μ is in any $B_{\Phi,p}$ (the left side is 0) and we have the obvious $\Phi[Hf(0+)] \leq c_0 \Phi[c_1 f(0+)]$.
- (iii) As for the Corollary, there exist convex functions Φ whose only index is any k > 1 such that $\Phi_k(u) = \Phi(u^{1/k})$ is not convex. Let

$$\Phi(u) = \begin{cases} \frac{u}{\log(1/u)}, & 0 \le u \le 1/e \\ \Phi'(1/e)(u - 1/e) + 1/e, & u > 1/e. \end{cases}$$

Then Φ is convex with index any k > 1, but not k = 1. However

$$\Phi_k(u) = \frac{ku^{1/k}}{\log(1/u)}, 0 \le u \le 1/e,$$

is no longer convex, since $\Phi'_k(u) \to \infty$ as $u \to 0$.

3.

Theorem 4 seems to be new even in the classical B_p -case. If k=1 is an index of Φ we get a characterization of $T_{j,\Phi,p}$.

4

It is well-known that the property $p \to p - \epsilon$ is connected with the behavior of the iterated Hardy operator. This is the approach for B_p in [5] and for the maximal operator in [7].

In our general setting, $\mu \in B_{\Phi,p}$ may not imply $\mu \in B_{\Phi,p-\epsilon}$ for any $\epsilon > 0$. As an example let

$$\Phi(u) = \begin{cases} \frac{u}{\log^2(2/u)}, & 0 \le u \le 2/e \\ \Phi'(2/e)(u - 2/e) + \Phi(2/e), & u > 2/e. \end{cases}$$

Then any k > 1 is an index for Φ . Let $d\mu = xdx$. We claim that $\mu \in B_{\Phi,2}$. Write

$$\int_{r}^{\infty} \Phi[(r/x)^{2}] x \, dx = \int_{r}^{er/2} + \int_{er/2}^{\infty} = I_{1} + I_{2}.$$

Then
$$I_1 = \int_r^{er/2} (m[(r/x) - a] + b) x dx \le cr^2$$
 and

$$I_2 = c \int_{er/2}^{\infty} (r/x)^2 \frac{x}{\log^2(cx/r)} dx \le cr^2.$$

Next, $\mu \notin B_{\Phi,2-\epsilon}$. The integral I_2 above is now

$$I_2 = \int_{er/2}^{\infty} (r/x)^{2-\epsilon} \frac{x}{\log^2(cx/r)} dx = r^{2-\epsilon} \int_{er/2}^{\infty} \frac{x^{\epsilon} dx}{x \log^2(cx/r)} = \infty.$$

5.

A reverse inequality in the classical B_p -case can be found in [5].

6.

Integral inequalities of the form $\int_{\mathbb{R}^n} \Phi[Tf] dx \leq c_0 \int_{\mathbb{R}^n} \Psi[c_2 f] dx$ have been studied for various operators T [6].

References

- [1] M. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for non-increasing functions, Trans. Amer. Math. Soc., **320** (1990), 727–735.
- [2] C. Bennett and R. C. Sharpley, *Interpolation of operators*, Academic Press, **129**, 1988.
- [3] M. Čwikel, A. Kamińska, L. Miligranda, and L. Pick, Are generalized Lorentz "spaces" really spaces?, Proc. Amer. Math. Soc, 132 (2004), 3615–3625.
- [4] J. B. Garnett, Bounded analytic functions, Academic Press, 96, 1981.
- [5] C. J. Neugebauer, Weighted norm inequalities for averaging operators on monotone functions, Publ. Mat., **35** (1991), 429–447.
- [6] C. J. Neugebauer, Orlicz-type integral inequalities for operators, Journal of the Korean Math. Soc., **38** (2001), 163–176.
- [7] M. A. Leckband and C. J. Neugebauer, Weighted iterates and variants of the Hardy-Littlewood maximal operator, Trans. Amer. Math. Soc., 279 (1982), 51–61.