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Abstract

Let A be a subset of a Banach space X and f a Fréchet differen-
tiable function on A (with respect to A). We give a simple proof of
the connectedness of the graph of f ′ in X × X∗ under relatively weak
conditions on A. In particular, we simplify a proof by J. Malý of the
connectedness of the range of f ′ for some convex sets A. At the same
time, we extend an older result of C. E. Weil on the connectedness of
the range of f ′ for some non-convex sets A ⊂ Rn.

1 Introduction.

Throughout the entire article, X will always be a real Banach space. J. Malý
[Ma, Theorem 1.4] proved that the Fréchet derivative of a differentiable func-
tion on a convex subset of X with nonempty interior has connected range in
its dual space X∗ endowed with its dual norm. Refining the proof of J. Malý,
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C. Weil observed that the same conclusion holds also for some non-convex
subsets of Rn (unpublished).

More recently, T. Mátrai used the result of J. Malý to get a Darboux
property of the Gâteaux derivative of locally Lipschitz functions on separable
Banach spaces, (see [Má]). His procedure uses explicitly that the Gâteaux
derivative of a Lipschitz function is of the first Baire class as a function from a
separable Banach space X to its dual X∗ endowed with the weak-star topology
w∗. His conclusion is that not only the range of the Gâteaux derivative but
even its graph is a connected subset of X × (X∗, w∗).

The aim of our note is twofold.
a) Using some of Mátrai’s ideas and an easy lemma on porosity (Lemma 2),

we simplify the proof of J. Malý and we get the connectedness even of the graph
of the Fréchet derivative as a subset of X × X∗ endowed with the product
topology corresponding to the norm on X and to its dual norm on X∗.

b) We extend the older unpublished results of Weil on the range of the
Fréchet derivative on non-convex sets to infinite-dimensional Banach spaces in
Theorem 1, which provides a generalization of Malý’s result.

To formulate our main result, we recall the notions of a relative derivative
and of porosity.

Definition 1. Let B ⊂ X be non-empty without isolated points. Let f : B →
R be given. We say that g : B → X∗ is a (relative) Fréchet derivative of f on
B if, for each a ∈ B,

lim
x→a
x∈B

|f(x)− f(a)− g(a)(x− a)|
‖x− a‖

= 0.

Of course, g is not always uniquely determined, but we will use the notion
of the relative derivative only under assumptions, which imply the uniqueness
(see Remark 1).

Definition 2. A set E ⊂ X is (upper) porous at a ∈ X if there are c > 0
and xn ∈ X, xn 6= a with xn → a such that B(xn, c‖xn − a‖) ∩ E = ∅, where
B(x, r) denotes the open ball in X with radius r > 0 which is centered at
x ∈ X.

Further, the dual space X∗ of X is endowed with the corresponding dual
norm.

Our main result reads as follows.

Theorem 1. Let ∅ 6= B be a subset of a Banach space X such that intB is
connected, and X\ intB is porous at every x ∈ B ∩ ∂B. Let g : B → X∗ be
a (relative) Fréchet derivative of a function f : B → R on B. Then the graph
of g is a connected subset of X ×X∗. In particular, g(B) is connected in X∗.



The Darboux Property of Fréchet Derivatives 491

This theorem is an almost immediate consequence of Proposition 1 and
Lemma 1 below. (See the proof at the end of this paper.) As an immediate
corollary we obtain the (slightly generalized) result due to Malý.

Corollary 1. Let B ⊂ X be a convex set with intB 6= ∅. Let g : B → X∗

be the (relative) Fréchet derivative of a function f : B → R on B. Then the
graph of g is a connected subset of X ×X∗. In particular, g(B) is connected
in X∗.

Proof. Let x ∈ ∂B be given. Choose a ball B(z, r) ⊂ intB. Denote by C
the convex hull of {x} ∪ B(z, r), and observe that X\C is clearly porous at
x.

Remark. 1. It is not difficult to observe that, under the assumptions of The-
orem 1, g is uniquely determined.

2. It is not sufficient to assume in Theorem 1 that B is connected (instead
of the stronger assumption that intB is connected). If G⊂R2 is defined by
G = G1 ∪G2, where G1 = {(x, y) ∈ R2 : x < 0} and G2 = {(x, y) ∈ R2 : x >
0 and y ∈ (−x2, x2)}, f(x, y) = 0 for (x, y) ∈ G1 ∪ {(0, 0)}, and f(x, y) = y
on G2, then the Fréchet derivative g of f on B = G∪ {(0, 0)}⊂ clG = cl intB
exists, but g(B) = {(0, 0), (0, 1)}⊂(R2)∗ is not connected. Moreover, it can
be shown that f can be extended to a differentiable function f̃ on R2. Then
(f̃)′(B) = g(B) is not connected.

2 A Lemma on Derivatives at Boundary Points.

The proof of the following lemma, which is an easy consequence of the Ekeland
principle, is essentially contained in the proof of [HMWZ, Theorem 5].

Lemma 1. Let X be a Banach space, G⊂X open, a ∈ ∂G, and let X\G be
porous at a. Let M := G ∪ {a} and suppose that g : M → X∗ is a (relative)
Fréchet derivative of a function f : M → R on M . Then (a, g(a)) belongs to
the closure of the graph of g|G in X ×X∗. In particular, g(a) ∈ cl g(G).

Proof. There exists a c > 0 and a sequence xn ∈ G tending to a such that
the open balls B(xn, c‖xn − a‖) are subsets of G. We may and do suppose
that g(a) = 0 ∈ X∗. Let us fix an arbitrary ω > 0. It is sufficient to find
z ∈ G such that

‖z − a‖ < ω and ‖g(z)‖ < ω. (1)

To this end choose η > 0 so small that 4η(1 + c)ω−1 < c. Since g(a) = 0
and ‖xn − a‖ tends to zero, we can choose n ∈ N so large that, for each
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z ∈ B(xn, c‖xn − a‖),
‖z − a‖ < ω, and (2)

|f(z)| < η‖z − a‖ ≤ η(‖z − xn‖+ ‖xn − a‖) ≤ η(1 + c)‖xn − a‖. (3)

Using the Ekeland principle (namely, we may apply [Ph, Lemma 3.13] with
E := X, f defined/redefined by f(x) = ∞ for x ∈ X\ clB(xn, c‖xn − a‖),
ε := 2η(1 + c)‖xn − a‖, λ := ω/2, and x0 := xn due to (3)), we obtain a point
z ∈ clB(xn, c‖xn − a‖) such that

f(x)− f(z)
‖x− z‖

> −ω
2

for each x ∈ clB(xn, c‖xn − a‖)\{z}, (4)

and

‖z − xn‖ ≤
2η(1 + c)‖xn − a‖

ω/2
< c‖xn − a‖.

Consequently, z ∈ B(xn, c‖xn− a‖), and so ‖z− a‖ < ω by (2), and (4) easily
implies that ‖g(z)‖ = ‖f ′(z)‖ < ω. Thus, (1) holds.

3 Darboux Property on Open Sets.

We will need the following lemma which is an easy modification of the well-
known Proposition 2.24 of [Za].

Lemma 2. Let (Y, ρ) be a metric space such that every open ball B(z, r),
with z ∈ Y and r > 0, is connected and let H⊂Y be open. Then the set
P = {x ∈ ∂H : Y \H is porous at x} is a residual set in ∂H.

Proof. For each n ∈ N, let Pn be the set of all x ∈ ∂H, for which there exists a
ball B(z, r) ⊂ H such that r < 1/n and x ∈ B(z, 2r). It is easy to see that each
Pn is open in ∂H and

⋂
{Pn : n ∈ N} ⊂ P . So, it suffices to prove that each

Pn is dense in ∂H. To this end, consider an arbitrary y ∈ ∂H and 0 < ε < 1/n.
Choose z ∈ H∩B(y, ε) and put r := (3/4) dist (z, ∂H). Since B(z, r)∩∂H = ∅,
z ∈ H, and B(z, r) is connected, we get B(z, r)⊂H. It is obvious that there
is an x ∈ B(z, 2r) ∩ ∂H. Since dist (z, ∂H) ≤ ‖z − y‖ < ε < 1/n, we have
x ∈ Pn. Moreover, ‖x−y‖ ≤ ‖x−z‖+‖z−y‖ < 2r+‖z−y‖ ≤ 3‖z−y‖ < 3ε.
As ε ∈ (0, 1/n) was arbitrary, this shows that Pn is dense in ∂H.

We also need the following lemma which generalizes the classical result on
derivatives of real functions of a real variable and which can be essentially
found in [MS]. Let us point out that an analogous result [Má, Lemma 2.4] was
crucial for the main result of [Má]. We recall that by mappings of the first
Baire class we mean pointwise limits of sequences of continuous mappings,
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and by mappings of the first Borel class, the mappings whose inverse images
of open sets are Fσ.

Lemma 3. Let G be an open subset of a Banach space X. Let f : G → R
have Fréchet derivative f ′(x) ∈ X∗ at every point of G. Then the mapping
ϕ : x 7→ (x, f ′(x)) is of the first Borel class from G to X ×X∗.

Proof. The Fréchet derivative f ′ : G→ X∗ is Baire one by [MS, Theorem 1].
It follows in a straightforward fashion that the mapping x 7→ (x, f ′(x)) of G
to X × X∗ is Baire one as well and so it is of the first Borel class (see, e.g.,
[K, §31, VIII]).

We now present our simplified proof of (a slightly improved version of)
Malý’s result for open sets.

Proposition 1. Let X be a Banach space, let Ω⊂X be a connected open set,
and let f : Ω → R be Fréchet differentiable. Then the graph graph g of the
Fréchet derivative g of f is a connected subset of X ×X∗. In particular, g(Ω)
is connected.

Proof. Let us suppose, to the contrary, that graph g is not connected. Then
there are nonempty disjoint sets Ã, B̃ which are clopen in graph g and Ã∪B̃ =
graph g. It easily follows from Lemma 3 that their projections to X, A :=
πX(Ã) = ϕ−1(Ã) and B := πX(B̃) = ϕ−1(B̃) are Fσ. Clearly A 6= ∅, B 6= ∅,
Ω = A ∪ B, and A ∩ B = ∅. Since Ω is connected, the set F := ∂ΩA = ∂ΩB
is nonempty. Using the Baire category theorem in F (which is topologically
complete as a Gδ subset of X, cf. [K, §33, VI]) we obtain that one of its Fσ
subsets F ∩ A, F ∩ B (say F ∩ A) has nonempty interior in F . Consider a
convex open set Ω∗ ⊂ Ω such that ∅ 6= F ∗ := Ω∗∩F ⊂ A and set B∗ := B∩Ω∗.
Since clearly B∗ ∩ ∂B∗ = B∗ ∩ ∂ΩB = B ∩ Ω∗ ∩ F⊂B ∩ A = ∅, the set B∗ is
open. Lemma 2 (we may apply it to Y := Ω∗ and H := B∗ since every ball in
Ω∗ is connected due to its convexity), and the Baire category theorem used in
F ∗ = ∂Ω∗B∗, give the existence of a ∈ F ∗ ⊂ A such that Ω∗\B∗ is porous at
a in Ω∗. Since Ω∗ is open, X\B∗ is porous at a in X as well. Lemma 1 (with
G := B∗) implies (a, g(a)) ∈ cl graph g|B∗ . So (a, g(a)) ∈ B̃, since B̃ is closed
in graph g and graph g|B∗ ⊂ B̃. We obtain a contradiction, since a ∈ A, and
so (a, g(a)) ∈ Ã.

Proof of Theorem 1. Let G := intB. We denote the graph of g by Γ
and the graph of g|G by Γ0. Proposition 1 implies that Γ0 is connected and
Lemma 1 easily implies Γ0 ⊂ Γ ⊂ cl Γ0. Therefore, Γ is connected as well.
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