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THRESHOLD AND HAUSDORFF
SPECTRUM OF DISCONTINUOUS

MEASURES

Abstract

Let m be a finite Borel measure on [0, 1]d. Consider the Lq-spectrum
of m: τm(q) = lim infn→∞−n−1 logb

P
Q∈Gn, m(Q)6=0m(Q)q, where Gn

is the set of b-adic cubes of generation n. Let qτ = inf{q : τm(q) = 0}
and Hτ = τ ′m(q−τ ). When m is a mono-dimensional continuous measure
of information dimension D, (qτ , Hτ ) = (1, D). When m is purely dis-
continuous, its information dimension is D = 0, but the non-trivial pair
(qτ , Hτ ) may contain relevant information on the distribution of m. The
connection between (qτ , Hτ ) and the large deviation spectrum of m is
studied in a companion paper. This paper shows that when a discontinu-
ous measure m possesses self-similarity properties, the pair (qτ , Hτ ) may
store the main multifractal properties of m, in particular the Hausdorff
spectrum. This is observed thanks to a threshold performed on m.

1 Introduction and Statements of Results.

In a companion paper [5], we introduced new information parameters associ-
ated with any positive Borel measure m on [0, 1]d. Let us recall their defini-
tions. Let b ≥ 2 be an integer and let Gn be the partition of [0, 1]d into b-adic
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boxes
∏d
i=1[b−nki, b−n(ki + 1)) with (k1, . . . , kd) ∈ {0, 1, . . . , bn − 1}d. The

Lq-spectrum of m is the mapping defined for any q ∈ R by

τm(q) = lim inf
n→∞

− 1
n

logb sn(q) where sn(q) =
∑
Q∈Gn
m(Q)6=0

m(Q)q.

It is easy to see that the restriction to R+ of τm does not depend on b. Two
parameters are naturally associated with the measure m:

qτ (m) = inf{q ∈ R : τm(q) = 0} and Hτ (m) = τ ′m(qτ (m)−).

The motivation of the introduction of these parameters was the following.
For purely discontinuous measures, the classical measure dimensions vanish
[25, 11, 16, 18, 7]. Nevertheless, these measures may have very interesting
multifractal spectra [15, 1, 9, 14, 6, 24, 2, 4], and there is a need for other rele-
vant parameters. The study of the pair (qτ (m), Hτ (m)) and their relationships
with the so-called large deviation spectrum is achieved in [5] and recalled be-
low in Section 2. As we wished, these parameters are very pertinent for purely
discontinuous measures m, i.e. measures constituted only by positive Dirac
masses of the form

m =
∑
k≥1

Mk · δXk , (1)

with M̃ = (Mk)k≥1 ∈ (R+)N∗ ,
∑
kMk < ∞ and X̃ = (Xk)k≥1 ∈ ([0, 1]d)N∗

such that the Xk’s are pairwise distinct. This paper aims at showing that for
certain classes of purely discontinuous measures denoted ν in the following,
these parameters not only store information about the large deviation spec-
trum of ν, but also store essential information about the multifractal Haus-
dorff spectrum of ν. To achieve this, we apply a threshold procedure to such
measures ν by keeping only the Dirac masses naturally associated with the
information parameters introduced in [5]. We prove that the obtained mea-
sure, denoted by νeε, has the same multifractal behavior as ν itself. Since the
threshold procedure puts to zero the largest part of the Dirac masses of ν, it
is thus very interesting to understand why the multifractal properties of ν are
essentially the same as those of νeε.

From now on we shall work in the one-dimensional context. Extensions
to higher dimensions are immediate, though more technical. Let us recall the
definition of the Hausdorff spectrum of any measure m. First, for x ∈ Supp(m)
(the support of m), the pointwise Hölder exponent of m at x is defined by

hm(x) = lim inf
r→0+

logm(B(x, r))
log r

.
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Then, for every h ≥ 0, one defines the level sets of the pointwise Hölder
exponent of m and the multifractal Hausdorff spectrum of m as

Emh = {x ∈ Supp(m) : hm(x) = h} and dm : h ≥ 0 7→ dimEmh

where dim stands for the Hausdorff dimension. This spectrum is used to
describe the geometrical properties of measures at small scales. Recall that if
g is a function from R to R ∪ {−∞}, its Legendre transform is the mapping
g∗ : h 7→ infq∈R(hq − g(q)) ∈ R ∪ {−∞}. For every h ≥ 0, we always have
dm(h) ≤ τ∗m(h) (see [8]), and the multifractal formalism is said to hold at h
when the equality holds; i.e., when dm(h) = τ∗m(h).

The measures ν we consider are introduced in [2]. The scheme of their
construction is the following. Let µ be a Borel probability measure on [0, 1]
and let

ν =
∑
j≥1

∑
0≤k≤bj−1
k 6≡0 mod b

νj,kδkb−j , with νj,k =
1
j2
µ([kb−j , (k + 1)b−j)). (2)

The jump points are located at the b-adic points, and an heterogeneity in the
Dirac masses distribution is created by the measure µ. It turns out that when
µ is a Gibbs measure, this class of measures (2) (which is included in the class
of purely discontinuous measures of the form (1)) has a fruitful multifractal
structure, studied in details in [4, 2].

Theorem 1.1. Let µ be a Gibbs measure as defined in Section 3.2. The
measure ν defined by (2) obeys the multifractal formalism at every h > 0 such
that τ∗ν (h) > 0, as well as at 0. More precisely, Hτ (ν) = Hτ (µ) and

τν(q) =

{
τµ(q) if τν(q) < 0,
0 otherwise,

and dν(h) =

{
h if 0 ≤ h ≤ Hτ (ν),
dµ(h) otherwise.

Let us describe the thresholding procedure applied to ν. Let ε̃ = (εj)j≥0

be a non-increasing positive sequence converging to 0. Consider the atomic
measure ν of (2) and let

νeε =
∑
j≥1

∑
0≤k≤bj−1: k 6≡0 mod b

tj,k νj,k δkb−j (3)

with ∀ j ≥ 1, ∀ k, tj,k = 1[Hτ (ν)−εj ,Hτ (ν)+εj ]

( log νj,k
log b−j

)
. (4)

Heuristically, the measure νeε contains only the Dirac masses νj,kδkb−j such
that νj,k is approximately equal to b−jHτ (ν). A more complete explanation of
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such a formula comes from the companion paper [5], and is detailed in Section
2.

We obtain the following remarkable result which illustrates the amount of
information potentially stored in the pair (qτ (ν), Hτ (ν)).

Theorem 1.2. Let µ be a Gibbs measure as in Section 3.2. Consider the
thresholded measure νeε (3). There exists a non-increasing positive sequence ε̃
converging to 0 such that dν eε(h) = dν(h) for every h > 0 such that τ∗ν (h) > 0.
Moreover νeε obeys the multifractal formalism at 0 and at every h > 0 such
that τ∗ν (h) > 0. Finally, the Lq-spectra of ν and νeε coincide (τν = τν eε).

Actually, a slightly more general result will be proved (Theorem 2.2).
Theorem 1.2 shows the role played by the information parameters qτ (ν)

and Hτ (ν) for discontinuous measures having a nice structure close to statis-
tical self-similarity. There is no doubt about the fact that Theorem 1.2 can
be extended to other nice families of measures, such as the inverse of Gibbs
measures on cookie-cutters [21] and the self-similar sums of Dirac masses intro-
duced in [24]. These measures will be studied in a forthcoming paper. However
it seems difficult to get similar results for measures without any structure.

It will be justified in the next section that at each generation j, approxi-
mately bjHτ (ν) Dirac masses among bj are kept after threshold. Since gener-
ally Hτ (ν) equals Hτ (µ) and is strictly lower than 1 when µ is non trivial, the
threshold we realize is very severe. The situation Hτ (ν) = 1 corresponds for
instance to the choice µ = ` (the Lebesgue measure). It is a typical example
of a homogeneous sum of Dirac masses ν`, for which there exists a positive
sequence ε̃ going to 0 at ∞ such that νeε

` = ν`.

2 Detailed Exposition of the Result.

2.1 More on the Information Parameters.

The connection between (qτ (m), Hτ (m)) and the more usual Hausdorff, pack-
ing or entropy dimensions of m is the following. When qτ (m) = 1 and
Hτ (m) = τ ′m(1) exists, then Hτ (m) defines without ambiguity the dimension
of the measure m [25, 16, 18, 11, 7].

The pair (qτ (m), Hτ (m)) is also connected to the large deviation spectrum
fm of m. This spectrum describes the statistical distribution of m at small
scales in the following sense. This spectrum fm of m is defined as

h ≥ 0 7→ fm(h) = lim
ε→0+

lim sup
n→∞

1
n

logb #Smn (h, ε),
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where for ε > 0, h ≥ 0 and n ∈ N,

Smn (h, ε) =
{
Q ∈ Gn : b−n(h+ε) ≤ m(Q) ≤ b−n(h−ε)

}
.

Very classical considerations [12, 8, 22, 17, 5] show that ∀h ≥ 0, dm(h) ≤
fm(h) ≤ τ∗m(h). Hence when the multifractal formalism holds at h, we also
have dm(h) = fm(h).

As a consequence of the fact that fm(α) = τ∗m(α) for all α of the form
τ ′m(q−) (see [23]), Hτ (m) = max{h ≥ 0 : fm(h) = qτ (m)h} when qτ (m) > 0.
For a discontinuous measure m =

∑
k≥1Mk δXk on [0, 1]d, the relationships

between the large deviation spectrum fm restricted to [0, Hτ (m)] and the
pair (qτ (m), Hτ (m)) are investigated in [5]. Under a weak assumption on
the distribution of the masses, it is shown that there exists a real number
Hg(m) ∈ (0, Hτ (m)] depending on the sequences (M̃, X̃) (used in (1)) such
that fm(h) = qτ (m)h over [0, Hg(m)]. In addition, Hg(m) is equal to Hτ (m)
if qτ (m) ∈ (0, 1), but it may differ from Hτ (m) if qτ (m) = 1.

We do not go into much details on Hg(m). (This was the purpose of [5].)
This linear increasing part in the large deviation spectrum confirms the ob-
servations made on special classes of homogeneous and heterogeneous sums of
Dirac masses studied in the last fifteen years [1, 15, 9, 23, 2, 4]. Moreover, the
elements of these classes of measures (which contain the measures (2) and (6))
verify that Hg(m) = Hτ (m) even when qτ (m) = 1. This is always assumed
hereafter.

The starting point of the threshold performed in this article is provided by
two important remarks made in [5] (Proposition 3.3, [5]):

• For every n ≥ 1, most of the cubes in Smn (Hτ (m), ε) contain a point Xk

such that b−n(Hτ (m)+ε) ≤Mk ≤ b−n(Hτ (m)−ε). (Recall that Smn (Hτ (m), ε)
is the set of b-adic cubes Q of generation n such that b−n(Hτ (m)+ε) ≤
m(Q) ≤ b−n(Hτ (m)−ε).) Hence, the m-mass of these cubes is approxi-
mately due to the presence of a single Dirac mass.

• The b-adic cubes which contain such a point Xk are responsible for the
linear shape of fm on [0, Hτ (m)].

Consequently, a certain amount of information is contained in the set of pairs
(Xk,Mk) defined for any ε > 0 by

P(Hτ (m), ε) =

{
(Mk, Xk) :

{
∃n ≥ 1, ∃ Q ∈ Smn (Hτ (m), ε),
Xk ∈ Q, b−n(Hτ (m)+ε) ≤Mk ≤ b−n(Hτ (m)−ε)

}
.
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A natural way to study this set of pairs (Xk,Mk) is to consider the measure

mε =
∑
k≥1

1P(Hτ (m),ε)((Mk, Xk))Mk δXk . (5)

This measure shall be viewed as a thresholded version of the initial measure m
(1). It can be deduced from [5] that the measure has the same large deviation
spectrum as m over [0, Hτ (m)].

This raises the following question. Do the measures mε still contain enough
Dirac masses to have the same Hausdorff spectrum as m? This is the question
investigated below.

2.2 The Measures νγ,σ and a More General Result.

Let µ be a Borel probability measure on [0, 1], γ ≥ 0 and σ ≥ 1, and

νγ,σ =
∑
j≥1

∑
0≤k≤bj−1
k 6≡0 mod b

νj,k δkb−j , with νj,k =
b−jγ

j2
µ([kb−j , (k + 1)b−j))σ. (6)

The condition k 6≡ 0 mod b in the definition (2) of νγ,σ is not required in [2].
This is unessential, since the two measures (with or without the condition) are
equivalent, and thus have the same multifractal nature.

Theorem 2.1. [2] Let µ be a Gibbs measure as in Section 3.2, γ ≥ 0 and
σ ≥ 1. The measure νγ,σ given by formula (6) obeys the multifractal formalism
at every h > 0 such that τ∗νγ,σ (h) > 0, as well as at 0. Moreover, we have

τνγ,σ (q) =

{
γq + τµ(σq) if τνγ,σ (q) < 0,
0 otherwise.

These measures νγ,σ are generalized versions of the measures ν considered
by Theorem 1.2. (Indeed, ν0,1 is the measure ν of the introduction.) Main
Theorem 2.2 deals with νγ,σ, and is thus more general than Theorem 1.2.

For j ≥ 1 and k ∈ [0, . . . , bj − 1], we set Ij,k = [kb−j , (k + 1)b−j). The
measure νγ,σ is of the form (1) if we take for the points Xk the b-adic numbers
lb−j with l 6≡ 0 mod b and for the corresponding Mk the mass Mj,l = νj,l. It
is then easily seen that there exists a universal constant K such that Mj,l ≤
νγ,σ(Ij,l) ≤ KMj,l.

Consequently, in this case, requiring that Ij,l ∈ S
νγ,σ
j (Hτ , ε) is equivalent

to requiring that b−j(Hτ+ε) ≤Mj,l ≤ b−j(Hτ−ε).
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We apply the threshold procedure (3-4) to the class of measures νγ,σ defined
by (6). This procedure is finer than (5). Recall that, if ε̃ = (εj)j≥0 is a positive
sequence converging to 0, then we set

νeε
γ,σ =

∑
j≥1

∑
0≤k≤bj−1: k 6≡0 mod b

tj,k νj,k δkb−j (7)

with

tj,k = 1[Hτ (νγ,σ)−εj ,Hτ (νγ,σ)+εj ]

(
log νj,k
log b−j

)
defined as in (4.) (νγ,σ is used in the definition of tj,k instead of simply ν.)

Theorem 2.2. Let µ be a Gibbs measure as in Section 3.2, γ ≥ 0 and σ ≥ 1.
Consider νeε

γ,σ defined by (7). There exists a non-increasing positive sequence
ε̃ converging to 0 such that:

1. (qτ (νeε
γ,σ), Hτ (νeε

γ,σ)) = (qτ (νγ,σ), Hτ (νγ,σ)).
2. For every 0 ≤ h ≤ Hτ (νγ,σ), dν eε

γ,σ
(h) = dνγ,σ (h) and νeε

γ,σ obeys the
multifractal formalism at h.

3. If γ = 0 and σ = 1, then the claims above reduce to Theorem 1.2.

When qτ (ν) < 1, the Hausdorff spectrum of νeε
γ,σ may differ from dνγ,σ

on (Hτ (νγ,σ),∞). To see this heuristically, notice that the total mass con-
served at each scale in νeε

γ,σ is negligible with respect to the total mass of νγ,σ,
since approximatively there are at most 2jqτHτ (ν) terms weighted by 2−jHτ (ν).
Hence the amount of lost “information” is large. Nevertheless, it is remark-
able that the Dirac masses we keep are enough to recover the spectrum on
[0, Hτ (νγ,σ)].

Sections 3 gives some background necessary to establish Theorem 2.2, while
Sections 4 is devoted to the proof of Theorem 2.2.

3 Scaling Properties of Gibbs Measures.

For x ∈ (0, 1), Ij(x) is the unique b-adic interval of scale j ≥ 1, semi-open to
the right, containing x, and for every ε ∈ {−1, 0, 1}, I(ε)

j (x) = Ij(x) + εb−j . In
the following, |B| always denotes the diameter of the set B. Eventually, for
the rest of the paper, the convention log(0) = −∞ is adopted.

3.1 Some Dimension and Large Deviation Bounds.

Definition 3.1. Let µ be a positive Borel measure on [0, 1]. For x ∈ (0, 1),
recall the definition (1) of the Hölder exponent of µ at x and of the level sets



462 Julien Barral and Stéphane Seuret

Eµα defined for every α ≥ 0 by Eµα = {x : hµ(x) = α}.
For ξ̃ = (ξj)j≥1 a positive non-increasing sequence converging to zero, we set

Ẽµ
α,eξ =

{
x :

{
there is a scale Jx such that for every j ≥ Jx,
∀ε ∈ {−1, 0, 1}, b−j(α+ξj) ≤ µ(I(ε)

j (x)) ≤ b−j(α−ξj)

}
.

For any ξ̃, it is obvious that Ẽµ
α,eξ ⊂ Eµα. The level sets Ẽµ

α,eξ contain points
around which the local µ-behavior can be very precisely controlled.

As a simple consequence of [8, 17], we get the following.

Proposition 3.2. Let µ be a positive Borel measure on [0, 1], and let (hmin, hmax)
be the maximal open interval on which τ∗µ > 0.

1. For every α ≥ 0 such that τ∗µ(α) ≥ 0 and for any non-increasing sequence
ξ̃ converging to zero, dim Ẽµ

α,eξ ≤ dµ(α) ≤ fµ(α) ≤ τ∗µ(α).

2. If µ obeys the multifractal formalism at every α ∈ (hmin, τ
′
µ(0+)], then

for every α ∈ (hmin, τ
′
µ(0+)], dim

(⋃
α′≤αE

µ
α′

)
= dimEµα.

3. If µ obeys the multifractal formalism at every α ∈ [τ ′µ(0+), hmax), then
for every α ∈ [τ ′µ(0+), hmax), dim

(⋃
α′≥αE

µ
α′

)
= dimEµα.

Definition 3.3. Let λ be a positive Borel measure on R. Let us define,
∀α ≥ 0, J ≥ 0 and K ∈ {0, . . . , bJ − 1}, η > 0, j ≥ J + 1,

NJ,K(λ, j, η, α)=#

{
k 6≡ 0 mod b :

{
Ij,k ⊂ IJ,K ,
b−(j−J)(α+η) ≤ λ(Ij,k)

λ(IJ,K) ≤ b
−(j−J)(α−η)

}
.

Heuristically, NJ,K(λ, j, η, α) is the number of intervals Ij,k ⊂ IJ,K such
that, when forgetting what happens before j, the rescaled λ-measure of Ij,k,
λ(Ij,k)
λ(IJ,K) , is approximately equal to b−(j−J)α =

(
|Ij,k|
|IJ,K |

)α
.

3.2 Gibbs Measures and Their Multifractal Properties.

Here are defined the Gibbs measures used in Theorems 2.1 and 2.2. We sum-
marize some of their scaling and multifractal properties.

3.2.1 Definition.

Let c be an integer greater than 2 and let ` stand for the Lebesgue measure on
[0, 1]. Let φ be a 1-periodic Hölder continuous function on R and ω = (ωn)n≥0

be a sequence of independent random phases uniformly distributed in [0, 1].
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Let T be the shift transformation on [0, 1): T (t) = ct mod 1. For n ≥ 1 and
t ∈ [0, 1) let us consider the Birkhoff sums

Sn(φ)(t) =
n−1∑
k=0

φ(T kt) and Sn(φ, ω)(t) =
n−1∑
k=0

φ(T kt+ ωk).

Also let

Qn(t) =
exp

(
Sn(φ)(t)

)∫
[0,1]

exp
(
Sn(φ)(u)

)
du

and Qn(t, ω) =
exp

(
Sn(φ, ω)(t)

)∫
[0,1]

exp
(
Sn(φ, ω)(u)

)
du
.

It follows from the thermodynamic formalism [19, 13] that µn = Qn(·) · `
(resp. µωn = Qn(·, ω) · `) converges (resp. almost surely), as n → ∞, to a
deterministic Gibbs (resp. random Gibbs) measure denoted µ (resp. µω).

The multifractal analysis of µ and µω is performed for instance in [8, 20,
10, 13]. With φ and ω are associated the analytic functions

P : q 7→ log(c) + lim
n→∞

n−1 log
∫

[0,1)

exp(qSn(φ(t))) dt

and P̃ : q 7→ log(c) + lim
n→∞

n−1E log
∫

[0,1)

exp(qSn(φ(t, ω))) dt,

which respectively are the topological pressures of φ relative to T and T̃ :
(t, ω) 7→

(
T (t), θ(ω)

)
, where θ(ω) = (ωn+1)n≥0. We have τµ(q) = qP (1)−P (q)

log(c) ,

and a.s. τµω (q) = q eP (1)− eP (q)
log(c) .

Gibbs measures considered here obey the multifractal formalism. In par-
ticular, for every h ≥ 0, dµ(h) = τ∗µ(h) as soon as τ∗µ(h) > 0. Actually,
Theorems 1.1, 1.2, 2.1 and 2.2 hold for the elements of a larger class of mea-
sures described in [3], which also contains the multinomial measures and their
random counterpart.

3.2.2 Properties of Gibbs Measures.

In this section, we fix a Gibbs measure µ as defined above. In the random case,
µ is a realization of µω and the following results hold almost surely. We fix
another integer b ≥ 2 in order to consider the b-adic grid defined in Section 1.

Fine properties on the measure µ are required to prove Theorem 2.2. Let
(hmin, hmax) be defined as in Proposition 3.2.
• Property P1 (lower and upper bound for the scaling properties):

We have hmin > 0 and hmax < +∞. The measure µ obeys the multifractal
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formalism at any h ∈ (hmin, hmax). For j large enough, for every 0 ≤ k ≤ bj−1,
b−2hmaxj ≤ µ(Ij,k) ≤ b−hminj/2.
• Property P2 (Gibbs states as analyzing measures):

Let L be a compact subset of (hmin, hmax). There is a sequence ξ̃ = (ξj)j
such that for every α ∈ L, one can find a Borel measure mα on [0, 1] such that
mα(Ẽµ

α,eξ) > 0 and mα(E) = 0 for every Borel set E ⊂ [0, 1] such that dimE <

τ∗µ(α). (This yields dim Ẽα,eξ = dimEµα = τ∗µ(α).) Let qα be the unique q ∈ R
such that α = τ ′µ(q). A possible choice for mα is the Gibbs measure µqα
constructed as µ with the potential qαφ. We have τ∗µ(α) = τ ′µqα (1).
• Property P3 (Heterogeneous ubiquity): It follows from [2].

For ρ ≥ 1, α > 0 and for a positive sequence ξ̃ = (ξ̃j)j≥1 define the limsup set

Sµ(ρ, α, ξ̃) =
⋂
J≥0

⋃
j≥J

⋃
k∈{0,...,bj−1}: k 6≡0 mod b

b−j(α+ξj)≤µ(Ij,k)≤b−j(α−ξj)

[kb−j , kb−j + b−jρ]. (8)

Let L be a compact subset of (hmin, hmax). There exists a positive sequence ξ̃
converging to 0 such that for every ρ ≥ 1 and α ∈ L, one can find a positive
Borel measure mα,ρ such that:
- mα,ρ(E) = 0 for every Borel set E such that dimE < τ∗µ(α)/ρ ,
- mα,ρ

(
Sµ(ρ, α, ξ̃)

)
> 0.

In particular, dim Sµ(ρ, α, ξ̃) ≥ τ∗µ(α)/ρ.
• Property P4 (Uniform renewal speed of large deviations spec-

trum): This property is proved in [3].
Let L be a compact subinterval of (hmin, hmax). Let η > 0, and let us

consider the sequence defined for j ≥ 1 by

γj :=

√
log(j)1+η

j1/4
. (9)

There exists a constant M > 0 and a scale J0 ≥ 1 such that for every J ≥ J0

and K ∈ {0, . . . , bJ − 1}, for every integer j ≥ J + [exp(
√

(1 + η) log(J))] and
α ∈ L, we have

b(j−J)(τ∗µ(α)−Mγj−J ) ≤ NJ,K(µ, j, γj−J , α) ≤ b(j−J)(τ∗µ(α)+Mγj−J ). (10)

Remark 3.4. Properties P1 and P2 are well known for Gibbs measures
associated with a smooth enough potential (among many references, see [8,
10, 20]). Properties P3 and P4 rely on finer properties without the restriction
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k 6≡ 0 mod b, but simple verifications show that the results also hold with
this restriction.

It is important for the sequel to make it precise that in Properties P2 and
P3, ξ̃ can be taken equal to the sequence (γj)j≥1 of P4.

4 Proof of Theorem 2.2.

4.1 Proof of item 3. of Theorem 2.2.

We begin by the last assertion. In this section, γ = 0 and σ = 1; thus ν0,1 is
simply denoted ν. A b-adic number kb−j is said to be irreducible if the fraction
k/bj is irreducible. Let γ̃ = (γj)j≥1 be the sequence defined by (9). For j ≥ 1,
define

εj = 2γ[ j
log j ] + 6

hmax

log j
. (11)

Due to the last remark of Section 3.2.2, Properties P2 and P3 hold true with
ξ̃ := ε̃/2.

For simplicity of notation, we consider the measure νt := νeε = νeε
0,1 (3)

associated with the sequence ε̃ = (εj)j . We also denote tj,kνj,k by νtj,k. We
deduce from Theorem 2.1 that Hτ := Hτ (ν) = τ ′µ(1), and thus by construction
τ∗µ(Hτ ) = Hτ . We are going to show that dνt(h) = dν(h)(= τ∗ν (h)) for all
h ∈ [0, hmax). Since τν ≤ τνt , we have τ∗ν = τ∗νt on R+ and thus τν = τνt
(remember that τν and τνt are non-decreasing).

4.1.1 First Results on the Local Regularity of νt.

It is easy to verify that for every x ∈ [0, 1],

hν(x) ≤ hνt(x) and hν(x) ≤ hµ(x). (12)

The first inequality is due to the fact that by construction, for any Borel set
B ⊂ [0, 1], νt(B) ≤ ν(B). The second one follows from the fact that for any
b-adic interval Ij,k, ν(Ij,k) ≥ j−2µ(Ij,k).

Proposition 4.1. For every ε > 0, there is an integer Jε such that for any β ∈
[hmin/2, 2hmax], ∀ J ≥ Jε, for every integer K such that Kb−J is irreducible,

µ(IJ,K) = b−Jβ ⇒ b−J(β+ε) ≤ νt(IJ,K) ≤ b−J(β−ε).

Proof. Let ε > 0. Let J1 be large enough so that j ≥ J1 implies 0 <
max(γj , εj) ≤ ε/2 and b−2jhmax ≤ µ(Ij,k) ≤ b−jhmin/2 for all 0 ≤ k ≤ bj − 1.
Let Kb−J be an irreducible b-adic number such that J ≥ J1, and let β be
defined by µ(IJ,K) = b−Jβ .
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• Let us first notice that (recall the definition (2) of the measure ν)

ν(IJ,K) =
1
J2
µ(IJ,K) +

∑
j≥J+1

1
j2

∑
k=0,...,bj−1:

k 6≡0 mod b, kb−j∈IJ,K

µ([kb−j , (k + 1)b−j))

≤ 1
J2
µ(IJ,K) +

∑
j≥J+1

1
j2
µ(IJ,K).

If J is greater than some fixed integer J2 large enough, then ν(IJ,K) ≤
µ(IJ,K)bJε/2 ≤ b−J(β−ε/2). Now it is obvious that by construction, for any
subset B of [0, 1], νt(B) ≤ ν(B). Hence we get the first inequality µ(IJ,K) =
b−Jβ ⇒ νt(IJ,K) ≤ b−J(β−ε) for any J ≥ max(J1, J2).

• The converse inequality is more difficult to obtain. Let us show that
νt(IJ,K) ≥ b−J(β+ε). By definition, we have

νt(IJ,K) = νtJ,K +
∑

j≥J+1

∑
k=0,...,bj−1:

k 6≡0 mod b, kb−j∈IJ,K

νtj,kδkb−j . (13)

1. If β = Hτ : By construction, for J large enough, we have νtJ,K =
J−2µ(IJ,K), and νt(IJ,K) ≥ νtJ,K ≥ b−J(β+ε).

2. If β > Hτ : Let us recall (13). To find a lower bound for νt(IJ,K), we
must look for non-zero Dirac masses (after threshold) in the sum (13).

Let us use Property P4 applied with α = Hτ . Let η > 0. There exists
a constant M > 0 and a scale J0 ≥ 1 such that for every J ≥ J0 and K ∈
{0, . . . , bJ−1}, for every j ≥ J+exp(

√
(1 + η) log(J)), (10) holds with α = Hτ .

In particular, for every j ≥ J + exp(
√

(1 + η) log(J)), we get

NJ,K(µ, j, γj−J , Hτ ) ≥ b(j−J)(Hτ−Mγj−J ). (14)

Let Ij,k be any of the intervals such that Ij,k ⊂ IJ,K , k 6≡ 0 mod b, and

µ(IJ,K)b−(j−J)(Hτ+γj−J ) ≤ µ(Ij,k) ≤ µ(IJ,K)b−(j−J)(Hτ−γj−J ).

We have b−jα
1
j,J ≤ µ(Ij,k) ≤ b−jα

2
j,J with

α1
j,J = Hτ + γj−J −

J

j
(Hτ − β + γj−J),

and α2
j,J = Hτ − γj−J −

J

j
(Hτ − β − γj−J).
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In order to ensure that νtj,k 6= 0, it is sufficient to have

[α2
j,J , α

1
j,J ] ⊂ [Hτ − εj + logb(j

2)/j,Hτ + εj + logb(j
2)/j].

This is achieved as follows.
Let θ > 0. There exists a scale J3 such that for every J ≥ J3 , for every

j ≥ J + J1+θ,

j

log j
≤ j − J and

6hmax

log j
≥ J

j
(2hmax +Hτ + γj−J) +

logb(j2)
j

.

Let J4 = max(J1, J2, J3) (J4 is independent of β). Then by (11), for every
J ≥ J4, as soon as j ≥ J + J1+θ, we obtain

Hτ − εj + logb(j
2)/j ≤ α2

j,J ≤ α1
j,J ≤ Hτ + εj + logb(j

2)/j.

Hence those intervals Ij,k ⊂ IJ,K (with j ≥ J + J1+θ) such that k 6≡ 0 mod b

and b−jα
1
j,J ≤ µ(Ij,k) ≤ b−jα

2
j,J give rise to non-zero masses in the sum (13).

Using (13) and (14), we obtain that for every J ≥ J4, for every K such
that Kb−J is irreducible, for every j0 = J + J1+θ,

νt(IJ,K) ≥
∑

k=0,...,bj0−1:
k 6≡0 mod b, kb−j0∈IJ,K

νtj0,k ≥
1
j20
NJ,K(µ, j0, γj0−J , Hτ )b−j0α

1
j0,J

≥ 1
j20
b(j0−J)(Hτ−Mγj0−J )b−j0(Hτ+γj0−J−

J
j0

(Hτ−β+γj0−J )).

Hence νt(IJ,K) ≥ b−Jβ b
(j0−J)(M+1)γj0−J

j20
. Since γj =

√
log(j)1+η

j1/4
, we deduce

that

(j0 − J)(M + 1)γj0−J = J1+θ(M + 1)γJ1+θ = (M + 1)J1+θ

√
log(J1+θ)1+η

J (1+θ)/4

= (M + 1)(1 + θ)(1+η)/2J7(1+θ)/8 log(J)(1+η)/2.

Choosing θ ∈ (0, 1/7), there is a scale J5 (independent of β) such that for
every J ≥ J5, we have (j0 − J)(M + 1)γj0−J ≤ εJ . It is also obvious that
1
j20
≥ b−εJ for J large enough. Finally, for J large enough, we obtain

νt(IJ,K) ≥ b−J(β+2ε).

3. If β < Hτ : The same arguments as above yield the same result.
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We emphasize that the order of magnitude of the sequence γj plays a
crucial role in the previous computation.

Proposition 4.2. For every ε > 0, there is an integer Jε such that for any
β ∈ [hmin/2, 2hmax], for every J ≥ Jε, for every integer K such that Kb−J is
irreducible,

µ(IJ,K) = b−Jβ ⇒ b−J(β+ε) ≤ νt(IJ,K) ≤ ν(IJ,K).

Proof. The right inequality is immediate, and the left one is a consequence
of Proposition 4.1.

Using Propositions 4.1 and 4.2, we can specify (12) and assert that,

for every x ∈ [0, 1], hν(x) ≤ hνt(x) ≤ hµ(x). (15)

Proposition 4.3. Let ρ ≥ 1. Consider the limsup set Sµ(ρ,Hτ , ε̃/2) defined
in (8). For every x ∈ Sµ(ρ,Hτ , ε̃/2), hνt(x) ≤ Hτ/ρ.

Proof. By definition of Sµ(ρ,Hτ , ε̃/2), for every x ∈ Sµ(ρ,Hτ , ε̃/2), there is
an infinite number of scales jn such that for some kn ∈ {0, . . . , bjn − 1} with
knb
−jn irreducible, |x− knb−jn | ≤ b−jnρ and simultaneously b−jn(Hτ+εjn/2) ≤

µ(Ijn,kn)) ≤ b−jn(Hτ−εjn/2). This implies that

νt(B(x, b−jnρ)) ≥ 1
j2n
µ(Ijn,kn)) ≥ b−jn(Hτ+εjn ) = b−jnρ

(
Hτ+εjn

ρ

)
.

Hence log νt(B(x,b−jnρ))
log b−jnρ ≤ Hτ+εjn

ρ . Since εj → 0, by letting jn go to +∞, we
obtain that hνt(x) ≤ Hτ/ρ.

4.1.2 Upper Bound for the Multifractal Spectrum of dνt .

Proposition 4.4. For every h ∈ [0, τ ′µ(0)], dνt(h) ≤ dν(h) = τ∗µ(h).

Proof. We use (15). For every x ∈ [0, 1], hνt(x) ≥ hν(x). This implies
that for every h ∈ [0, τ ′µ(0)], Eν

t

h ⊂
⋃
h′≤hE

ν
h′ . By Proposition 3.2 and The-

orem 2.1, for every h ∈ [0, τ ′µ(0)], we obtain that dim
⋃
h′≤hE

ν
h′ ≤ dimEνh =

dν(h); hence the result.

Proposition 4.5. For every h ∈ (τ ′µ(0), hmax], dνt(h) ≤ dν(h) = τ∗µ(h).

Proof. Let h ∈ (τ ′µ(0), hmax]. By (15), Eν
t

h ⊂
⋃
h′≥hE

µ
h . By Proposition 3.2,

dνt(h) = dimEν
t

h ≤ dim
⋃
h′≥hE

µ
h ≤ τ∗µ(h).
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4.1.3 Lower Bound for the Multifractal Spectrum of dνt .

Proposition 4.6. For every h ∈ [0, Hτ ], dνt(h) ≥ dν(h) = h.

Proof. We first apply property P3. Let h ∈ (0, Hτ ], and consider ρ =
Hτ/h and α = Hτ . Property P3 provides us with a measure mα,ρ and the
set S = Sµ(ρ, α, ε̃/2). By Proposition 4.3, every x ∈ S satisfies hνt(x) ≤
Hτ/ρ = h. Hence S ⊂

⋃
h′≤hE

νt

h′ . By Proposition 3.2, for all i ≥ 1,
dim

⋃
h′≤h−1/iE

νt

h′ ≤ τ∗νt(h − 1/i). Moreover, τνt ≥ τν so τ∗νt(h − 1/i) ≤
τ∗ν (h − 1/i) < τ∗ν (h) = Hτ/ρ. Hence mα,ρ(

⋃
i≥1

⋃
h′≤h−1/iE

νt

h′ ) = 0. We

deduce that S\
⋃
i≥1

⋃
h′≤h−1/iE

νt

h′ ⊂ Eν
t

h . Since εj ≥ ξj , by construc-

tion mα,ρ(S) > 0, and mα,ρ(S\
⋃
i≥1

⋃
h′≤h−1/iE

νt

h′ ) > 0. As a conclusion,

dimEν
t

h ≥ h.

Proposition 4.7. For every h ∈ (Hτ , hmax), dνt(h) ≥ dν(h).

Proof. We need a lemma extracted from the proof of Proposition 8 in [2].

Lemma 4.8. Let h ∈ [Hτ , hmax). Let mh be a measure as in P2. Then there
exists a subset S of Ẽµ

h,eξ such that mh(S) > 0 and S ⊂ Eνh.

Let h ∈ (Hτ , hmax). Consider a set S and a measure mh as in Lemma 4.8.
Let x ∈ S ⊂ Ẽµ

h,eξ ∩ Eνh . Note that at every scale j, at least one of I(−1)
j (x),

I0
j (x), I(+1)

j (x), is irreducible. Hence, for this irreducible b-adic interval I,
by Proposition 4.1 we have νt(I) ≥ µ(I)b−jε ≥ b−j(h+ξj+ε). This holds for
every j large enough, and then for every ε small enough. Hence hνt(x) ≤ h.
But hνt(x) is always larger than hν(x), which equals h since S ⊂ Eνh . Hence
hνt(x) = h, and S ⊂ Eν

t

h . As a consequence, mh(Eν
t

h ) ≥ mh(S) > 0, and
dimEν

t

h ≥ dν(h).

4.2 Proof of Item 2. of Theorem 2.2.

We come back to the general measures νγ,σ and to the general form of their
thresholded versions νeε

γ,σ. Let ξ̃ be a sequence such that P3 holds with α =
τ ′µ(σqτ (ν)), and let ε̃ = (εj)j≥1 be defined by εj = σξ̃j + 2 logb(j)/j.

Let µσqτ be the Gibbs measure constructed as µ, but with the potential
σqτ (ν)φ. We deduce from Theorem 2.1 that qτ (νγ,σ)Hτ (νγ,σ) = τ∗µ(σqτ (νγ,σ)).
Then, the same arguments as those used in the proof of Proposition 4.3 show
that for ρ ≥ 1, if x ∈ Sµ(ρ, τ ′µ(σqτ (νγ,σ)), ξ̃), then hν eε

γ,σ
(x) ≤ Hτ (νγ,σ)/ρ.
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Since by construction τν eε
γ,σ
≥ τνγ,σ , for every h ∈ [0, Hτ (νγ,σ)] we have

dim
⋃
h′≤hE

ν eε
γ,σ

h′ ≤ τ∗νγ,σ (h) = qτ (νγ,σ)h. This is enough to conclude as in the
proof of Proposition 4.6.

4.3 Proof of Item 1. of Theorem 2.2.

It follows from the item 2 . of Theorem 2.2 that

dν eε
γ,σ

(Hτ (νγ,σ)) = qτ (νγ,σ)Hτ (νγ,σ).

Moreover, due to the threshold operation, we have τν eε
γ,σ
≥ τνγ,σ on R+, so

that qτ (νeε
γ,σ) ≤ qτ (νγ,σ).

On the other hand, dν eε
γ,σ

(Hτ (νγ,σ)) ≤ τ∗
ν eε
γ,σ

(Hτ (νγ,σ)) ≤ qτ (νeε
γ,σ)Hτ (νγ,σ).

This yields qτ (νHτ (ν),eεγ,σ ) = qτ (νγ,σ) and then Hτ (νeε
γ,σ) ≤ Hτ (νγ,σ) again be-

cause τν eε
γ,σ
≥ τνγ,σ and these functions are concave.

Coming back to dν eε
γ,σ

(Hτ (νγ,σ)) = qτ (νγ,σ)Hτ (νγ,σ) and the fact that for
any positive Borel measure m on [0, 1], we have dm(h) ≤ τ∗m(h) < qτ (m)h if
h > Hτ (m), we finally obtain Hτ (νeε

γ,σ) = Hτ (νγ,σ).
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