RESEARCH

Julien Barral, Projet SOSSO2, INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France. email: Julien.Barral@inria.fr

Stéphane Seuret, Laboratoire d'Analyse et de Mathématiques Appliquées, Université Paris 12, UFR Sciences et Technologie, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France. email: seuret@univ-paris12.fr

THRESHOLD AND HAUSDORFF SPECTRUM OF DISCONTINUOUS MEASURES

Abstract

Let *m* be a finite Borel measure on $[0, 1]^d$. Consider the L^q -spectrum of *m*: $\tau_m(q) = \liminf_{n\to\infty} -n^{-1}\log_b \sum_{Q\in\mathcal{G}_n, \ m(Q)\neq 0} m(Q)^q$, where \mathcal{G}_n is the set of *b*-adic cubes of generation *n*. Let $q_{\tau} = \inf\{q : \tau_m(q) = 0\}$ and $H_{\tau} = \tau'_m(q_{\tau}^-)$. When *m* is a mono-dimensional continuous measure of information dimension *D*, $(q_{\tau}, H_{\tau}) = (1, D)$. When *m* is purely discontinuous, its information dimension is D = 0, but the non-trivial pair (q_{τ}, H_{τ}) may contain relevant information on the distribution of *m*. The connection between (q_{τ}, H_{τ}) and the large deviation spectrum of *m* is studied in a companion paper. This paper shows that when a discontinuous measure *m* possesses self-similarity properties, the pair (q_{τ}, H_{τ}) may store the main multifractal properties of *m*, in particular the Hausdorff spectrum. This is observed thanks to a threshold performed on *m*.

1 Introduction and Statements of Results.

In a companion paper [5], we introduced new information parameters associated with any positive Borel measure m on $[0,1]^d$. Let us recall their definitions. Let $b \geq 2$ be an integer and let \mathcal{G}_n be the partition of $[0,1]^d$ into b-adic

Key Words: Large deviations, fractals

Mathematical Reviews subject classification: 60F10, 28A80

Received by the editors July 6, 2006 Communicated by: Zoltán Buczolich

⁴⁵⁵

boxes $\prod_{i=1}^{d} [b^{-n}k_i, b^{-n}(k_i+1))$ with $(k_1, \ldots, k_d) \in \{0, 1, \ldots, b^n - 1\}^d$. The L^q -spectrum of m is the mapping defined for any $q \in \mathbb{R}$ by

$$\tau_m(q) = \liminf_{n \to \infty} -\frac{1}{n} \log_b s_n(q) \text{ where } s_n(q) = \sum_{\substack{Q \in \mathcal{G}_n \\ m(Q) \neq 0}} m(Q)^q.$$

It is easy to see that the restriction to \mathbb{R}_+ of τ_m does not depend on b. Two parameters are naturally associated with the measure m:

$$q_{\tau}(m) = \inf\{q \in \mathbb{R} : \tau_m(q) = 0\}$$
 and $H_{\tau}(m) = \tau'_m(q_{\tau}(m)^-).$

The motivation of the introduction of these parameters was the following. For purely discontinuous measures, the classical measure dimensions vanish [25, 11, 16, 18, 7]. Nevertheless, these measures may have very interesting multifractal spectra [15, 1, 9, 14, 6, 24, 2, 4], and there is a need for other relevant parameters. The study of the pair $(q_{\tau}(m), H_{\tau}(m))$ and their relationships with the so-called large deviation spectrum is achieved in [5] and recalled below in Section 2. As we wished, these parameters are very pertinent for purely discontinuous measures m, i.e. measures constituted only by positive Dirac masses of the form

$$m = \sum_{k \ge 1} M_k \cdot \delta_{X_k},\tag{1}$$

with $\widetilde{M} = (M_k)_{k\geq 1} \in (\mathbb{R}^+)^{\mathbb{N}^*}$, $\sum_k M_k < \infty$ and $\widetilde{X} = (X_k)_{k\geq 1} \in ([0,1]^d)^{\mathbb{N}^*}$ such that the X_k 's are pairwise distinct. This paper aims at showing that for certain classes of purely discontinuous measures denoted ν in the following, these parameters not only store information about the large deviation spectrum of ν , but also store essential information about the multifractal Hausdorff spectrum of ν . To achieve this, we apply a threshold procedure to such measures ν by keeping only the Dirac masses naturally associated with the information parameters introduced in [5]. We prove that the obtained measure, denoted by $\nu^{\widetilde{e}}$, has the same multifractal behavior as ν itself. Since the threshold procedure puts to zero the largest part of the Dirac masses of ν , it is thus very interesting to understand why the multifractal properties of ν are essentially the same as those of $\nu^{\widetilde{e}}$.

From now on we shall work in the one-dimensional context. Extensions to higher dimensions are immediate, though more technical. Let us recall the definition of the Hausdorff spectrum of any measure m. First, for $x \in \text{Supp}(m)$ (the support of m), the pointwise Hölder exponent of m at x is defined by

$$h_m(x) = \liminf_{r \to 0^+} \frac{\log m(B(x, r))}{\log r}.$$

Then, for every $h \ge 0$, one defines the level sets of the pointwise Hölder exponent of m and the multifractal Hausdorff spectrum of m as

$$E_h^m = \{x \in \operatorname{Supp}(m) : h_m(x) = h\}$$
 and $d_m : h \ge 0 \mapsto \dim E_h^m$

where dim stands for the Hausdorff dimension. This spectrum is used to describe the geometrical properties of measures at small scales. Recall that if g is a function from \mathbb{R} to $\mathbb{R} \cup \{-\infty\}$, its Legendre transform is the mapping $g^* : h \mapsto \inf_{q \in \mathbb{R}} (hq - g(q)) \in \mathbb{R} \cup \{-\infty\}$. For every $h \ge 0$, we always have $d_m(h) \le \tau_m^*(h)$ (see [8]), and the multifractal formalism is said to hold at h when the equality holds; i.e., when $d_m(h) = \tau_m^*(h)$.

The measures ν we consider are introduced in [2]. The scheme of their construction is the following. Let μ be a Borel probability measure on [0, 1] and let

$$\nu = \sum_{j \ge 1} \sum_{\substack{0 \le k \le b^j - 1\\ k \not\equiv 0 \mod b}} \nu_{j,k} \delta_{kb^{-j}} , \text{ with } \nu_{j,k} = \frac{1}{j^2} \mu([kb^{-j}, (k+1)b^{-j})).$$
(2)

The jump points are located at the *b*-adic points, and an heterogeneity in the Dirac masses distribution is created by the measure μ . It turns out that when μ is a Gibbs measure, this class of measures (2) (which is included in the class of purely discontinuous measures of the form (1)) has a fruitful multifractal structure, studied in details in [4, 2].

Theorem 1.1. Let μ be a Gibbs measure as defined in Section 3.2. The measure ν defined by (2) obeys the multifractal formalism at every h > 0 such that $\tau_{\nu}^*(h) > 0$, as well as at 0. More precisely, $H_{\tau}(\nu) = H_{\tau}(\mu)$ and

$$\tau_{\nu}(q) = \begin{cases} \tau_{\mu}(q) & \text{if } \tau_{\nu}(q) < 0, \\ 0 & \text{otherwise,} \end{cases} \quad and \quad d_{\nu}(h) = \begin{cases} h & \text{if } 0 \le h \le H_{\tau}(\nu), \\ d_{\mu}(h) & \text{otherwise.} \end{cases}$$

Let us describe the thresholding procedure applied to ν . Let $\tilde{\varepsilon} = (\varepsilon_j)_{j\geq 0}$ be a non-increasing positive sequence converging to 0. Consider the atomic measure ν of (2) and let

$$\nu^{\tilde{\varepsilon}} = \sum_{j \ge 1} \sum_{0 \le k \le b^j - 1: \ k \not\equiv 0 \mod b} t_{j,k} \nu_{j,k} \ \delta_{kb^{-j}} \tag{3}$$

with
$$\forall j \ge 1$$
, $\forall k$, $t_{j,k} = \mathbf{1}_{[H_{\tau}(\nu) - \varepsilon_j, H_{\tau}(\nu) + \varepsilon_j]} \left(\frac{\log \nu_{j,k}}{\log b^{-j}} \right)$. (4)

Heuristically, the measure $\nu^{\tilde{\varepsilon}}$ contains only the Dirac masses $\nu_{j,k}\delta_{kb^{-j}}$ such that $\nu_{j,k}$ is approximately equal to $b^{-jH_{\tau}(\nu)}$. A more complete explanation of

such a formula comes from the companion paper [5], and is detailed in Section 2.

We obtain the following remarkable result which illustrates the amount of information potentially stored in the pair $(q_{\tau}(\nu), H_{\tau}(\nu))$.

Theorem 1.2. Let μ be a Gibbs measure as in Section 3.2. Consider the thresholded measure $\nu^{\tilde{\varepsilon}}$ (3). There exists a non-increasing positive sequence $\tilde{\varepsilon}$ converging to 0 such that $d_{\nu\tilde{\varepsilon}}(h) = d_{\nu}(h)$ for every h > 0 such that $\tau^*_{\nu}(h) > 0$. Moreover $\nu^{\tilde{\varepsilon}}$ obeys the multifractal formalism at 0 and at every h > 0 such that $\tau^*_{\nu}(h) > 0$. Since that $\tau^*_{\nu}(h) > 0$. Finally, the L^q -spectra of ν and $\nu^{\tilde{\varepsilon}}$ coincide ($\tau_{\nu} = \tau_{\nu^{\tilde{\varepsilon}}}$).

Actually, a slightly more general result will be proved (Theorem 2.2).

Theorem 1.2 shows the role played by the information parameters $q_{\tau}(\nu)$ and $H_{\tau}(\nu)$ for discontinuous measures having a nice structure close to statistical self-similarity. There is no doubt about the fact that Theorem 1.2 can be extended to other nice families of measures, such as the inverse of Gibbs measures on cookie-cutters [21] and the self-similar sums of Dirac masses introduced in [24]. These measures will be studied in a forthcoming paper. However it seems difficult to get similar results for measures without any structure.

It will be justified in the next section that at each generation j, approximately $b^{jH_{\tau}(\nu)}$ Dirac masses among b^j are kept after threshold. Since generally $H_{\tau}(\nu)$ equals $H_{\tau}(\mu)$ and is strictly lower than 1 when μ is non trivial, the threshold we realize is very severe. The situation $H_{\tau}(\nu) = 1$ corresponds for instance to the choice $\mu = \ell$ (the Lebesgue measure). It is a typical example of a homogeneous sum of Dirac masses ν_{ℓ} , for which there exists a positive sequence $\tilde{\varepsilon}$ going to 0 at ∞ such that $\nu_{\ell}^{\tilde{\varepsilon}} = \nu_{\ell}$.

2 Detailed Exposition of the Result.

2.1 More on the Information Parameters.

The connection between $(q_{\tau}(m), H_{\tau}(m))$ and the more usual Hausdorff, packing or entropy dimensions of m is the following. When $q_{\tau}(m) = 1$ and $H_{\tau}(m) = \tau'_m(1)$ exists, then $H_{\tau}(m)$ defines without ambiguity the dimension of the measure m [25, 16, 18, 11, 7].

The pair $(q_{\tau}(m), H_{\tau}(m))$ is also connected to the *large deviation spectrum* f_m of m. This spectrum describes the statistical distribution of m at small scales in the following sense. This spectrum f_m of m is defined as

$$h \ge 0 \mapsto f_m(h) = \lim_{\varepsilon \to 0^+} \limsup_{n \to \infty} \frac{1}{n} \log_b \# \mathcal{S}_n^m(h, \varepsilon),$$

where for $\varepsilon > 0$, $h \ge 0$ and $n \in \mathbb{N}$,

$$\mathcal{S}_n^m(h,\varepsilon) = \left\{ Q \in \mathcal{G}_n : b^{-n(h+\varepsilon)} \le m(Q) \le b^{-n(h-\varepsilon)} \right\}.$$

Very classical considerations [12, 8, 22, 17, 5] show that $\forall h \geq 0$, $d_m(h) \leq f_m(h) \leq \tau_m^*(h)$. Hence when the multifractal formalism holds at h, we also have $d_m(h) = f_m(h)$.

As a consequence of the fact that $f_m(\alpha) = \tau_m^*(\alpha)$ for all α of the form $\tau'_m(q^-)$ (see [23]), $H_\tau(m) = \max\{h \ge 0 : f_m(h) = q_\tau(m)h\}$ when $q_\tau(m) > 0$. For a discontinuous measure $m = \sum_{k\ge 1} M_k \,\delta_{X_k}$ on $[0,1]^d$, the relationships between the large deviation spectrum f_m restricted to $[0, H_\tau(m)]$ and the pair $(q_\tau(m), H_\tau(m))$ are investigated in [5]. Under a weak assumption on the distribution of the masses, it is shown that there exists a real number $H_g(m) \in (0, H_\tau(m)]$ depending on the sequences $(\widetilde{M}, \widetilde{X})$ (used in (1)) such that $f_m(h) = q_\tau(m)h$ over $[0, H_g(m)]$. In addition, $H_g(m)$ is equal to $H_\tau(m)$ if $q_\tau(m) \in (0, 1)$, but it may differ from $H_\tau(m)$ if $q_\tau(m) = 1$.

We do not go into much details on $H_g(m)$. (This was the purpose of [5].) This linear increasing part in the large deviation spectrum confirms the observations made on special classes of homogeneous and heterogeneous sums of Dirac masses studied in the last fifteen years [1, 15, 9, 23, 2, 4]. Moreover, the elements of these classes of measures (which contain the measures (2) and (6)) verify that $H_g(m) = H_\tau(m)$ even when $q_\tau(m) = 1$. This is always assumed hereafter.

The starting point of the threshold performed in this article is provided by two important remarks made in [5] (Proposition 3.3, [5]):

- For every $n \geq 1$, most of the cubes in $S_n^m(H_\tau(m), \varepsilon)$ contain a point X_k such that $b^{-n(H_\tau(m)+\varepsilon)} \leq M_k \leq b^{-n(H_\tau(m)-\varepsilon)}$. (Recall that $S_n^m(H_\tau(m), \varepsilon)$ is the set of b-adic cubes Q of generation n such that $b^{-n(H_\tau(m)+\varepsilon)} \leq m(Q) \leq b^{-n(H_\tau(m)-\varepsilon)}$.) Hence, the *m*-mass of these cubes is approximately due to the presence of a single Dirac mass.
- The b-adic cubes which contain such a point X_k are responsible for the linear shape of f_m on $[0, H_\tau(m)]$.

Consequently, a certain amount of information is contained in the set of pairs (X_k, M_k) defined for any $\varepsilon > 0$ by

$$\mathcal{P}(H_{\tau}(m),\varepsilon) = \left\{ (M_k, X_k) : \left\{ \begin{array}{l} \exists n \ge 1, \ \exists \ Q \in \mathcal{S}_n^m(H_{\tau}(m),\varepsilon), \\ X_k \in Q, \ b^{-n(H_{\tau}(m)+\varepsilon)} \le M_k \le b^{-n(H_{\tau}(m)-\varepsilon)} \end{array} \right\} \right\}.$$

A natural way to study this set of pairs (X_k, M_k) is to consider the measure

$$m^{\varepsilon} = \sum_{k \ge 1} \mathbf{1}_{\mathcal{P}(H_{\tau}(m),\varepsilon)}((M_k, X_k)) M_k \,\delta_{X_k}.$$
(5)

This measure shall be viewed as a thresholded version of the initial measure m (1). It can be deduced from [5] that the measure has the same large deviation spectrum as m over $[0, H_{\tau}(m)]$.

This raises the following question. Do the measures m^{ε} still contain enough Dirac masses to have the same Hausdorff spectrum as m? This is the question investigated below.

2.2 The Measures $\nu_{\gamma,\sigma}$ and a More General Result.

Let μ be a Borel probability measure on [0, 1], $\gamma \ge 0$ and $\sigma \ge 1$, and

$$\nu_{\gamma,\sigma} = \sum_{\substack{j \ge 1 \\ k \ne 0 \mod b}} \sum_{\substack{0 \le k \le b^j - 1 \\ mod \ b}} \nu_{j,k} \ \delta_{kb^{-j}}, \text{ with } \nu_{j,k} = \frac{b^{-j\gamma}}{j^2} \mu([kb^{-j}, (k+1)b^{-j}))^{\sigma}.$$
(6)

The condition $k \neq 0 \mod b$ in the definition (2) of $\nu_{\gamma,\sigma}$ is not required in [2]. This is unessential, since the two measures (with or without the condition) are equivalent, and thus have the same multifractal nature.

Theorem 2.1. [2] Let μ be a Gibbs measure as in Section 3.2, $\gamma \geq 0$ and $\sigma \geq 1$. The measure $\nu_{\gamma,\sigma}$ given by formula (6) obeys the multifractal formalism at every h > 0 such that $\tau^*_{\nu_{\gamma,\sigma}}(h) > 0$, as well as at 0. Moreover, we have

$$\tau_{\nu_{\gamma,\sigma}}(q) = \begin{cases} \gamma q + \tau_{\mu}(\sigma q) & \text{if } \tau_{\nu_{\gamma,\sigma}}(q) < 0, \\ 0 & \text{otherwise.} \end{cases}$$

These measures $\nu_{\gamma,\sigma}$ are generalized versions of the measures ν considered by Theorem 1.2. (Indeed, $\nu_{0,1}$ is the measure ν of the introduction.) Main Theorem 2.2 deals with $\nu_{\gamma,\sigma}$, and is thus more general than Theorem 1.2.

For $j \geq 1$ and $k \in [0, \ldots, b^j - 1]$, we set $I_{j,k} = [kb^{-j}, (k+1)b^{-j})$. The measure $\nu_{\gamma,\sigma}$ is of the form (1) if we take for the points X_k the *b*-adic numbers lb^{-j} with $l \not\equiv 0 \mod b$ and for the corresponding M_k the mass $M_{j,l} = \nu_{j,l}$. It is then easily seen that there exists a universal constant K such that $M_{j,l} \leq \nu_{\gamma,\sigma}(I_{j,l}) \leq KM_{j,l}$.

Consequently, in this case, requiring that $I_{j,l} \in \mathcal{S}_{j}^{\nu_{\gamma,\sigma}}(H_{\tau},\varepsilon)$ is equivalent to requiring that $b^{-j(H_{\tau}+\varepsilon)} \leq M_{j,l} \leq b^{-j(H_{\tau}-\varepsilon)}$.

We apply the threshold procedure (3-4) to the class of measures $\nu_{\gamma,\sigma}$ defined by (6). This procedure is finer than (5). Recall that, if $\tilde{\varepsilon} = (\varepsilon_j)_{j\geq 0}$ is a positive sequence converging to 0, then we set

$$\nu_{\gamma,\sigma}^{\widetilde{\varepsilon}} = \sum_{j\geq 1} \sum_{0\leq k\leq b^j-1: \ k\not\equiv 0 \mod b} t_{j,k} \nu_{j,k} \ \delta_{kb^{-j}} \tag{7}$$

with

$$t_{j,k} = \mathbf{1}_{[H_{\tau}(\nu_{\gamma,\sigma}) - \varepsilon_j, H_{\tau}(\nu_{\gamma,\sigma}) + \varepsilon_j]} \left(\frac{\log \nu_{j,k}}{\log b^{-j}}\right)$$

defined as in (4.) ($\nu_{\gamma,\sigma}$ is used in the definition of $t_{j,k}$ instead of simply ν .)

Theorem 2.2. Let μ be a Gibbs measure as in Section 3.2, $\gamma \geq 0$ and $\sigma \geq 1$. Consider $\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}$ defined by (7). There exists a non-increasing positive sequence $\tilde{\varepsilon}$ converging to 0 such that:

- 1. $(q_{\tau}(\nu_{\gamma,\sigma}^{\widetilde{\varepsilon}}), H_{\tau}(\nu_{\gamma,\sigma}^{\widetilde{\varepsilon}})) = (q_{\tau}(\nu_{\gamma,\sigma}), H_{\tau}(\nu_{\gamma,\sigma})).$
- 2. For every $0 \leq h \leq H_{\tau}(\nu_{\gamma,\sigma}), \ d_{\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}}(h) = d_{\nu_{\gamma,\sigma}}(h) \ and \ \nu_{\gamma,\sigma}^{\tilde{\varepsilon}}$ obeys the multifractal formalism at h.
- 3. If $\gamma = 0$ and $\sigma = 1$, then the claims above reduce to Theorem 1.2.

When $q_{\tau}(\nu) < 1$, the Hausdorff spectrum of $\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}$ may differ from $d_{\nu_{\gamma,\sigma}}$ on $(H_{\tau}(\nu_{\gamma,\sigma}),\infty)$. To see this heuristically, notice that the total mass conserved at each scale in $\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}$ is negligible with respect to the total mass of $\nu_{\gamma,\sigma}$, since approximatively there are at most $2^{jq_{\tau}H_{\tau}(\nu)}$ terms weighted by $2^{-jH_{\tau}(\nu)}$. Hence the amount of lost "information" is large. Nevertheless, it is remarkable that the Dirac masses we keep are enough to recover the spectrum on $[0, H_{\tau}(\nu_{\gamma,\sigma})]$.

Sections 3 gives some background necessary to establish Theorem 2.2, while Sections 4 is devoted to the proof of Theorem 2.2.

3 Scaling Properties of Gibbs Measures.

For $x \in (0,1)$, $I_j(x)$ is the unique *b*-adic interval of scale $j \ge 1$, semi-open to the right, containing x, and for every $\epsilon \in \{-1,0,1\}$, $I_j^{(\epsilon)}(x) = I_j(x) + \epsilon b^{-j}$. In the following, |B| always denotes the diameter of the set B. Eventually, for the rest of the paper, the convention $\log(0) = -\infty$ is adopted.

3.1 Some Dimension and Large Deviation Bounds.

Definition 3.1. Let μ be a positive Borel measure on [0, 1]. For $x \in (0, 1)$, recall the definition (1) of the Hölder exponent of μ at x and of the level sets

 E^{μ}_{α} defined for every $\alpha \geq 0$ by $E^{\mu}_{\alpha} = \{x : h_{\mu}(x) = \alpha\}.$

For $\xi = (\xi_j)_{j>1}$ a positive non-increasing sequence converging to zero, we set

$$\widetilde{E}^{\mu}_{\alpha,\widetilde{\xi}} = \left\{ x : \left\{ \begin{array}{l} \text{there is a scale } J_x \text{ such that for every } j \ge J_x, \\ \forall \epsilon \in \{-1,0,1\}, \ b^{-j(\alpha+\xi_j)} \le \mu(I_j^{(\epsilon)}(x)) \le b^{-j(\alpha-\xi_j)} \end{array} \right\} \right\}$$

For any $\tilde{\xi}$, it is obvious that $\widetilde{E}^{\mu}_{\alpha,\tilde{\xi}} \subset E^{\mu}_{\alpha}$. The level sets $\widetilde{E}^{\mu}_{\alpha,\tilde{\xi}}$ contain points around which the local μ -behavior can be very precisely controlled.

As a simple consequence of [8, 17], we get the following.

Proposition 3.2. Let μ be a positive Borel measure on [0, 1], and let (h_{\min}, h_{\max}) be the maximal open interval on which $\tau^*_{\mu} > 0$.

- 1. For every $\alpha \geq 0$ such that $\tau^*_{\mu}(\alpha) \geq 0$ and for any non-increasing sequence α $\widetilde{\xi}$ converging to zero, $\dim \widetilde{E}^{\mu}_{\alpha,\widetilde{\xi}} \leq d_{\mu}(\alpha) \leq f_{\mu}(\alpha) \leq \tau^{*}_{\mu}(\alpha)$.
- 2. If μ obeys the multifractal formalism at every $\alpha \in (h_{\min}, \tau'_{\mu}(0^+)]$, then
- for every $\alpha \in (h_{\min}, \tau'_{\mu}(0^+)]$, dim $\left(\bigcup_{\alpha' \leq \alpha} E^{\mu}_{\alpha'}\right) = \dim E^{\mu}_{\alpha}$. 3. If μ obeys the multifractal formalism at every $\alpha \in [\tau'_{\mu}(0^+), h_{\max})$, then for every $\alpha \in [\tau'_{\mu}(0^+), h_{\max})$, dim $(\bigcup_{\alpha' > \alpha} E^{\mu}_{\alpha'}) = \dim E^{\mu}_{\alpha}$.

Definition 3.3. Let λ be a positive Borel measure on \mathbb{R} . Let us define, $\forall \alpha \ge 0, J \ge 0 \text{ and } K \in \{0, \dots, b^J - 1\}, \eta > 0, j \ge J + 1,$

$$N_{J,K}(\lambda, j, \eta, \alpha) = \# \left\{ k \neq 0 \mod b : \begin{cases} I_{j,k} \subset I_{J,K}, \\ b^{-(j-J)(\alpha+\eta)} \leq \frac{\lambda(I_{j,k})}{\lambda(I_{J,K})} \leq b^{-(j-J)(\alpha-\eta)} \end{cases} \right\}.$$

Heuristically, $N_{J,K}(\lambda, j, \eta, \alpha)$ is the number of intervals $I_{j,k} \subset I_{J,K}$ such that, when forgetting what happens before j, the rescaled λ -measure of $I_{j,k}$, $\frac{\lambda(I_{j,k})}{\lambda(I_{J,K})}$, is approximately equal to $b^{-(j-J)\alpha} = \left(\frac{|I_{j,k}|}{|I_{J,K}|}\right)^{\alpha}$.

3.2Gibbs Measures and Their Multifractal Properties.

Here are defined the Gibbs measures used in Theorems 2.1 and 2.2. We summarize some of their scaling and multifractal properties.

3.2.1 Definition.

Let c be an integer greater than 2 and let ℓ stand for the Lebesgue measure on [0,1]. Let ϕ be a 1-periodic Hölder continuous function on \mathbb{R} and $\omega = (\omega_n)_{n\geq 0}$ be a sequence of independent random phases uniformly distributed in [0, 1].

Let T be the shift transformation on [0,1): $T(t) = ct \mod 1$. For $n \ge 1$ and $t \in [0,1)$ let us consider the Birkhoff sums

$$S_n(\phi)(t) = \sum_{k=0}^{n-1} \phi(T^k t) \text{ and } S_n(\phi, \omega)(t) = \sum_{k=0}^{n-1} \phi(T^k t + \omega_k).$$

Also let

$$Q_n(t) = \frac{\exp\left(S_n(\phi)(t)\right)}{\int_{[0,1]} \exp\left(S_n(\phi)(u)\right) du} \text{ and } Q_n(t,\omega) = \frac{\exp\left(S_n(\phi,\omega)(t)\right)}{\int_{[0,1]} \exp\left(S_n(\phi,\omega)(u)\right) du}.$$

It follows from the thermodynamic formalism [19, 13] that $\mu_n = Q_n(\cdot) \cdot \ell$ (resp. $\mu_n^{\omega} = Q_n(\cdot, \omega) \cdot \ell$) converges (resp. almost surely), as $n \to \infty$, to a deterministic Gibbs (resp. random Gibbs) measure denoted μ (resp. μ^{ω}).

The multifractal analysis of μ and μ^{ω} is performed for instance in [8, 20, 10, 13]. With ϕ and ω are associated the analytic functions

$$P: q \mapsto \log(c) + \lim_{n \to \infty} n^{-1} \log \int_{[0,1)} \exp(qS_n(\phi(t))) dt$$

and $\widetilde{P}: q \mapsto \log(c) + \lim_{n \to \infty} n^{-1} \mathbb{E} \log \int_{[0,1)} \exp(qS_n(\phi(t,\omega))) dt$

which respectively are the topological pressures of ϕ relative to T and \tilde{T} : $(t,\omega) \mapsto (T(t),\theta(\omega))$, where $\theta(\omega) = (\omega_{n+1})_{n\geq 0}$. We have $\tau_{\mu}(q) = \frac{qP(1)-P(q)}{\log(c)}$, and a.s. $\tau_{\mu\omega}(q) = \frac{q\tilde{P}(1)-\tilde{P}(q)}{\log(c)}$.

Gibbs measures considered here obey the multifractal formalism. In particular, for every $h \ge 0$, $d_{\mu}(h) = \tau^*_{\mu}(h)$ as soon as $\tau^*_{\mu}(h) > 0$. Actually, Theorems 1.1, 1.2, 2.1 and 2.2 hold for the elements of a larger class of measures described in [3], which also contains the multinomial measures and their random counterpart.

3.2.2 Properties of Gibbs Measures.

In this section, we fix a Gibbs measure μ as defined above. In the random case, μ is a realization of μ^{ω} and the following results hold almost surely. We fix another integer $b \geq 2$ in order to consider the *b*-adic grid defined in Section 1.

Fine properties on the measure μ are required to prove Theorem 2.2. Let (h_{\min}, h_{\max}) be defined as in Proposition 3.2.

• Property P1 (lower and upper bound for the scaling properties): We have $h_{\min} > 0$ and $h_{\max} < +\infty$. The measure μ obeys the multifractal formalism at any $h \in (h_{\min}, h_{\max})$. For j large enough, for every $0 \le k \le b^j - 1$, $b^{-2h_{\max}j} \le \mu(I_{j,k}) \le b^{-h_{\min}j/2}$.

• Property P2 (Gibbs states as analyzing measures):

Let \mathcal{L} be a compact subset of (h_{\min}, h_{\max}) . There is a sequence $\tilde{\xi} = (\xi_j)_j$ such that for every $\alpha \in \mathcal{L}$, one can find a Borel measure m_{α} on [0, 1] such that $m_{\alpha}(\tilde{E}^{\mu}_{\alpha,\tilde{\mathcal{E}}}) > 0$ and $m_{\alpha}(E) = 0$ for every Borel set $E \subset [0,1]$ such that dim E < 0 $\tau^*_{\mu}(\alpha)$. (This yields dim $\widetilde{E}_{\alpha,\widetilde{\xi}} = \dim E^{\mu}_{\alpha} = \tau^*_{\mu}(\alpha)$.) Let q_{α} be the unique $q \in \mathbb{R}$ such that $\alpha = \tau'_{\mu}(q)$. A possible choice for m_{α} is the Gibbs measure $\mu_{q_{\alpha}}$ constructed as μ with the potential $q_{\alpha}\phi$. We have $\tau^*_{\mu}(\alpha) = \tau'_{\mu_{q_{\alpha}}}(1)$.

• Property P3 (Heterogeneous ubiquity): It follows from [2]. For $\rho \geq 1$, $\alpha > 0$ and for a positive sequence $\xi = (\xi_j)_{j>1}$ define the limsup set

$$S_{\mu}(\rho,\alpha,\widetilde{\xi}) = \bigcap_{J \ge 0} \bigcup_{j \ge J} \bigcup_{\substack{k \in \{0,\dots,b^{j}-1\}: k \not\equiv 0 \mod b\\ b^{-j(\alpha+\xi_{j})} \le \mu(I_{j,k}) \le b^{-j(\alpha-\xi_{j})}}} [kb^{-j}, kb^{-j} + b^{-j\rho}].$$
(8)

Let \mathcal{L} be a compact subset of (h_{\min}, h_{\max}) . There exists a positive sequence ξ converging to 0 such that for every $\rho \geq 1$ and $\alpha \in \mathcal{L}$, one can find a positive Borel measure $m_{\alpha,\rho}$ such that:

- $m_{\alpha,\rho}(E) = 0$ for every Borel set E such that dim $E < \tau^*_{\mu}(\alpha)/\rho$, - $m_{\alpha,\rho}(S_{\mu}(\rho,\alpha,\widetilde{\xi})) > 0.$

In particular, dim $S_{\mu}(\rho, \alpha, \xi) \geq \tau_{\mu}^*(\alpha)/\rho$.

• Property P4 (Uniform renewal speed of large deviations spectrum): This property is proved in [3].

Let \mathcal{L} be a compact subinterval of (h_{\min}, h_{\max}) . Let $\eta > 0$, and let us consider the sequence defined for $j \ge 1$ by

$$\gamma_j := \sqrt{\frac{\log(j)^{1+\eta}}{j^{1/4}}}.$$
(9)

There exists a constant M > 0 and a scale $J_0 \ge 1$ such that for every $J \ge J_0$ and $K \in \{0, \ldots, b^J - 1\}$, for every integer $j \ge J + [\exp(\sqrt{(1+\eta)\log(J)})]$ and $\alpha \in \mathcal{L}$, we have

$$b^{(j-J)(\tau_{\mu}^{*}(\alpha)-M\gamma_{j-J})} \leq N_{J,K}(\mu, j, \gamma_{j-J}, \alpha) \leq b^{(j-J)(\tau_{\mu}^{*}(\alpha)+M\gamma_{j-J})}.$$
 (10)

Remark 3.4. Properties P1 and P2 are well known for Gibbs measures associated with a smooth enough potential (among many references, see [8, 10, 20]). Properties **P3** and **P4** rely on finer properties without the restriction

 $k\not\equiv 0\mod b,$ but simple verifications show that the results also hold with this restriction.

It is important for the sequel to make it precise that in Properties **P2** and **P3**, $\tilde{\xi}$ can be taken equal to the sequence $(\gamma_j)_{j\geq 1}$ of **P4**.

4 Proof of Theorem 2.2.

4.1 Proof of item 3. of Theorem 2.2.

We begin by the last assertion. In this section, $\gamma = 0$ and $\sigma = 1$; thus $\nu_{0,1}$ is simply denoted ν . A *b*-adic number kb^{-j} is said to be *irreducible* if the fraction k/b^j is irreducible. Let $\tilde{\gamma} = (\gamma_j)_{j\geq 1}$ be the sequence defined by (9). For $j \geq 1$, define

$$\varepsilon_j = 2\gamma_{\left[\frac{j}{\log j}\right]} + 6\frac{h_{\max}}{\log j}.$$
(11)

Due to the last remark of Section 3.2.2, Properties **P2** and **P3** hold true with $\tilde{\xi} := \tilde{\epsilon}/2$.

For simplicity of notation, we consider the measure $\nu^t := \nu^{\tilde{\varepsilon}} = \nu^{\tilde{\varepsilon}}_{0,1}$ (3) associated with the sequence $\tilde{\varepsilon} = (\varepsilon_j)_j$. We also denote $t_{j,k}\nu_{j,k}$ by $\nu^t_{j,k}$. We deduce from Theorem 2.1 that $H_{\tau} := H_{\tau}(\nu) = \tau'_{\mu}(1)$, and thus by construction $\tau^*_{\mu}(H_{\tau}) = H_{\tau}$. We are going to show that $d_{\nu^t}(h) = d_{\nu}(h)(=\tau^*_{\nu}(h))$ for all $h \in [0, h_{\max})$. Since $\tau_{\nu} \leq \tau_{\nu^t}$, we have $\tau^*_{\nu} = \tau^*_{\nu^t}$ on \mathbb{R}_+ and thus $\tau_{\nu} = \tau_{\nu^t}$ (remember that τ_{ν} and τ_{ν^t} are non-decreasing).

4.1.1 First Results on the Local Regularity of ν^t .

It is easy to verify that for every $x \in [0, 1]$,

$$h_{\nu}(x) \le h_{\nu^{t}}(x) \quad \text{and} \quad h_{\nu}(x) \le h_{\mu}(x).$$
 (12)

The first inequality is due to the fact that by construction, for any Borel set $B \subset [0,1], \nu^t(B) \leq \nu(B)$. The second one follows from the fact that for any *b*-adic interval $I_{j,k}, \nu(I_{j,k}) \geq j^{-2}\mu(I_{j,k})$.

Proposition 4.1. For every $\varepsilon > 0$, there is an integer J_{ε} such that for any $\beta \in [h_{\min}/2, 2h_{\max}], \forall J \ge J_{\varepsilon}$, for every integer K such that Kb^{-J} is irreducible,

$$\mu(I_{J,K}) = b^{-J\beta} \Rightarrow b^{-J(\beta+\varepsilon)} \le \nu^t(I_{J,K}) \le b^{-J(\beta-\varepsilon)}.$$

PROOF. Let $\varepsilon > 0$. Let J_1 be large enough so that $j \ge J_1$ implies $0 < \max(\gamma_j, \varepsilon_j) \le \varepsilon/2$ and $b^{-2jh_{\max}} \le \mu(I_{j,k}) \le b^{-jh_{\min}/2}$ for all $0 \le k \le b^j - 1$. Let Kb^{-J} be an irreducible *b*-adic number such that $J \ge J_1$, and let β be defined by $\mu(I_{J,K}) = b^{-J\beta}$. • Let us first notice that (recall the definition (2) of the measure ν)

$$\nu(I_{J,K}) = \frac{1}{J^2} \mu(I_{J,K}) + \sum_{j \ge J+1} \frac{1}{j^2} \sum_{\substack{k=0,\dots,b^j-1:\\ m \ne 0 \mod b, \ kb^{-j} \in I_{J,K}}} \mu([kb^{-j},(k+1)b^{-j}))$$
$$\leq \frac{1}{J^2} \mu(I_{J,K}) + \sum_{j \ge J+1} \frac{1}{j^2} \mu(I_{J,K}).$$

If J is greater than some fixed integer J_2 large enough, then $\nu(I_{J,K}) \leq \mu(I_{J,K})b^{J\varepsilon/2} \leq b^{-J(\beta-\varepsilon/2)}$. Now it is obvious that by construction, for any subset B of [0,1], $\nu^t(B) \leq \nu(B)$. Hence we get the first inequality $\mu(I_{J,K}) = b^{-J\beta} \Rightarrow \nu^t(I_{J,K}) \leq b^{-J(\beta-\varepsilon)}$ for any $J \geq \max(J_1, J_2)$.

• The converse inequality is more difficult to obtain. Let us show that $\nu^t(I_{J,K}) \geq b^{-J(\beta+\varepsilon)}$. By definition, we have

$$\nu^{t}(I_{J,K}) = \nu^{t}_{J,K} + \sum_{j \ge J+1} \sum_{\substack{k \ge 0, \dots, b^{j} - 1:\\ k \not\equiv 0 \mod b, \ kb^{-j} \in I_{J,K}}} \nu^{t}_{j,k} \delta_{kb^{-j}}.$$
(13)

1. If $\beta = H_{\tau}$: By construction, for J large enough, we have $\nu_{J,K}^t = J^{-2}\mu(I_{J,K})$, and $\nu^t(I_{J,K}) \ge \nu_{J,K}^t \ge b^{-J(\beta+\varepsilon)}$.

2. If $\beta > H_{\tau}$: Let us recall (13). To find a lower bound for $\nu^t(I_{J,K})$, we must look for non-zero Dirac masses (after threshold) in the sum (13).

Let us use Property **P4** applied with $\alpha = H_{\tau}$. Let $\eta > 0$. There exists a constant M > 0 and a scale $J_0 \ge 1$ such that for every $J \ge J_0$ and $K \in \{0, \ldots, b^J - 1\}$, for every $j \ge J + \exp(\sqrt{(1+\eta)\log(J)})$, (10) holds with $\alpha = H_{\tau}$. In particular, for every $j \ge J + \exp(\sqrt{(1+\eta)\log(J)})$, we get

$$N_{J,K}(\mu, j, \gamma_{j-J}, H_{\tau}) \ge b^{(j-J)(H_{\tau} - M\gamma_{j-J})}.$$
(14)

Let $I_{j,k}$ be any of the intervals such that $I_{j,k} \subset I_{J,K}$, $k \not\equiv 0 \mod b$, and

$$\mu(I_{J,K})b^{-(j-J)(H_{\tau}+\gamma_{j-J})} \leq \mu(I_{j,k}) \leq \mu(I_{J,K})b^{-(j-J)(H_{\tau}-\gamma_{j-J})}.$$

We have $b^{-j\alpha_{j,J}^1} \leq \mu(I_{j,k}) \leq b^{-j\alpha_{j,J}^2}$ with

$$\alpha_{j,J}^1 = H_\tau + \gamma_{j-J} - \frac{J}{j}(H_\tau - \beta + \gamma_{j-J}),$$

and
$$\alpha_{j,J}^2 = H_\tau - \gamma_{j-J} - \frac{J}{j}(H_\tau - \beta - \gamma_{j-J}).$$

In order to ensure that $\nu_{j,k}^t \neq 0$, it is sufficient to have

$$[\alpha_{j,J}^2, \alpha_{j,J}^1] \subset [H_\tau - \varepsilon_j + \log_b(j^2)/j, H_\tau + \varepsilon_j + \log_b(j^2)/j].$$

This is achieved as follows.

Let $\theta > 0$. There exists a scale J_3 such that for every $J \ge J_3$, for every $j \ge J + J^{1+\theta},$

$$\frac{j}{\log j} \le j - J \quad \text{and} \quad \frac{6h_{\max}}{\log j} \ge \frac{J}{j}(2h_{\max} + H_{\tau} + \gamma_{j-J}) + \frac{\log_b(j^2)}{j}.$$

Let $J_4 = \max(J_1, J_2, J_3)$ (J_4 is independent of β). Then by (11), for every $J \ge J_4$, as soon as $j \ge J + J^{1+\theta}$, we obtain

$$H_{\tau} - \varepsilon_j + \log_b(j^2)/j \le \alpha_{j,J}^2 \le \alpha_{j,J}^1 \le H_{\tau} + \varepsilon_j + \log_b(j^2)/j.$$

Hence those intervals $I_{j,k} \subset I_{J,K}$ (with $j \ge J + J^{1+\theta}$) such that $k \not\equiv 0 \mod b$

and $b^{-j\alpha_{j,J}^1} \leq \mu(I_{j,k}) \leq b^{-j\alpha_{j,J}^2}$ give rise to non-zero masses in the sum (13). Using (13) and (14), we obtain that for every $J \geq J_4$, for every K such that Kb^{-J} is irreducible, for every $j_0 = J + J^{1+\theta}$,

$$\nu^{t}(I_{J,K}) \geq \sum_{\substack{k=0,\dots,b^{j_{0}}-1:\\k \neq 0 \mod b, \ kb^{-j_{0}} \in I_{J,K}}} \nu^{t}_{j_{0},k} \geq \frac{1}{j_{0}^{2}} N_{J,K}(\mu, j_{0}, \gamma_{j_{0}-J}, H_{\tau}) b^{-j_{0}\alpha^{1}_{j_{0},J}}$$
$$\geq \frac{1}{j_{0}^{2}} b^{(j_{0}-J)(H_{\tau}-M\gamma_{j_{0}-J})} b^{-j_{0}(H_{\tau}+\gamma_{j_{0}-J}-\frac{J}{j_{0}}(H_{\tau}-\beta+\gamma_{j_{0}-J}))}.$$

Hence $\nu^t(I_{J,K}) \ge b^{-J\beta} \frac{b^{(j_0-J)(M+1)\gamma_{j_0-J}}}{j_0^2}$. Since $\gamma_j = \sqrt{\frac{\log(j)^{1+\eta}}{j^{1/4}}}$, we deduce that

$$(j_0 - J)(M+1)\gamma_{j_0 - J} = J^{1+\theta}(M+1)\gamma_{J^{1+\theta}} = (M+1)J^{1+\theta}\sqrt{\frac{\log(J^{1+\theta})^{1+\eta}}{J^{(1+\theta)/4}}}$$
$$= (M+1)(1+\theta)^{(1+\eta)/2}J^{7(1+\theta)/8}\log(J)^{(1+\eta)/2}.$$

Choosing $\theta \in (0, 1/7)$, there is a scale J_5 (independent of β) such that for every $J \geq J_5$, we have $(j_0 - J)(M + 1)\gamma_{j_0-J} \leq \varepsilon J$. It is also obvious that $\frac{1}{j_0^2} \geq b^{-\varepsilon J}$ for J large enough. Finally, for J large enough, we obtain

$$\nu^t(I_{J,K}) \ge b^{-J(\beta+2\varepsilon)}$$

3. If $\beta < H_{\tau}$: The same arguments as above yield the same result. We emphasize that the order of magnitude of the sequence γ_j plays a crucial role in the previous computation.

Proposition 4.2. For every $\varepsilon > 0$, there is an integer J_{ε} such that for any $\beta \in [h_{\min}/2, 2h_{\max}]$, for every $J \ge J_{\varepsilon}$, for every integer K such that Kb^{-J} is irreducible,

$$\mu(I_{J,K}) = b^{-J\beta} \Rightarrow b^{-J(\beta+\varepsilon)} \le \nu^t(I_{J,K}) \le \nu(I_{J,K}).$$

PROOF. The right inequality is immediate, and the left one is a consequence of Proposition 4.1. $\hfill \Box$

Using Propositions 4.1 and 4.2, we can specify (12) and assert that,

for every
$$x \in [0,1], \ h_{\nu}(x) \le h_{\nu^t}(x) \le h_{\mu}(x).$$
 (15)

Proposition 4.3. Let $\rho \geq 1$. Consider the limsup set $S_{\mu}(\rho, H_{\tau}, \tilde{\varepsilon}/2)$ defined in (8). For every $x \in S_{\mu}(\rho, H_{\tau}, \tilde{\varepsilon}/2)$, $h_{\nu^{t}}(x) \leq H_{\tau}/\rho$.

PROOF. By definition of $S_{\mu}(\rho, H_{\tau}, \tilde{\varepsilon}/2)$, for every $x \in S_{\mu}(\rho, H_{\tau}, \tilde{\varepsilon}/2)$, there is an infinite number of scales j_n such that for some $k_n \in \{0, \ldots, b^{j_n} - 1\}$ with $k_n b^{-j_n}$ irreducible, $|x - k_n b^{-j_n}| \leq b^{-j_n \rho}$ and simultaneously $b^{-j_n(H_{\tau} + \varepsilon_{j_n}/2)} \leq \mu(I_{j_n,k_n}) \leq b^{-j_n(H_{\tau} - \varepsilon_{j_n/2})}$. This implies that

$$\nu^t(B(x,b^{-j_n\rho})) \geq \frac{1}{j_n^2} \mu(I_{j_n,k_n})) \geq b^{-j_n(H_\tau + \varepsilon_{j_n})} = b^{-j_n\rho\left(\frac{H_\tau + \varepsilon_{j_n}}{\rho}\right)}.$$

Hence $\frac{\log \nu^t(B(x,b^{-j_n\rho}))}{\log b^{-j_n\rho}} \leq \frac{H_\tau + \varepsilon_{j_n}}{\rho}$. Since $\varepsilon_j \to 0$, by letting j_n go to $+\infty$, we obtain that $h_{\nu^t}(x) \leq H_\tau/\rho$.

4.1.2 Upper Bound for the Multifractal Spectrum of d_{ν^t} .

Proposition 4.4. For every $h \in [0, \tau'_{\mu}(0)], d_{\nu^{t}}(h) \leq d_{\nu}(h) = \tau^{*}_{\mu}(h)$.

PROOF. We use (15). For every $x \in [0,1]$, $h_{\nu^t}(x) \ge h_{\nu}(x)$. This implies that for every $h \in [0, \tau'_{\mu}(0)]$, $E_h^{\nu^t} \subset \bigcup_{h' \le h} E_{h'}^{\nu}$. By Proposition 3.2 and Theorem 2.1, for every $h \in [0, \tau'_{\mu}(0)]$, we obtain that $\dim \bigcup_{h' \le h} E_{h'}^{\nu} \le \dim E_h^{\nu} = d_{\nu}(h)$; hence the result.

Proposition 4.5. For every $h \in (\tau'_{\mu}(0), h_{\max}], d_{\nu^{t}}(h) \le d_{\nu}(h) = \tau^{*}_{\mu}(h).$

PROOF. Let $h \in (\tau'_{\mu}(0), h_{\max}]$. By (15), $E_h^{\nu^t} \subset \bigcup_{h' \ge h} E_h^{\mu}$. By Proposition 3.2, $d_{\nu^t}(h) = \dim E_h^{\nu^t} \le \dim \bigcup_{h' \ge h} E_h^{\mu} \le \tau^*_{\mu}(h)$.

4.1.3 Lower Bound for the Multifractal Spectrum of d_{ν^t} .

Proposition 4.6. For every $h \in [0, H_{\tau}], d_{\nu^t}(h) \ge d_{\nu}(h) = h$.

PROOF. We first apply property **P3**. Let $h \in (0, H_{\tau}]$, and consider $\rho = H_{\tau}/h$ and $\alpha = H_{\tau}$. Property **P3** provides us with a measure $m_{\alpha,\rho}$ and the set $S = S_{\mu}(\rho, \alpha, \tilde{\varepsilon}/2)$. By Proposition 4.3, every $x \in S$ satisfies $h_{\nu^{t}}(x) \leq H_{\tau}/\rho = h$. Hence $S \subset \bigcup_{h' \leq h} E_{h'}^{\nu^{t}}$. By Proposition 3.2, for all $i \geq 1$, $\dim \bigcup_{h' \leq h-1/i} E_{h'}^{\nu^{t}} \leq \tau_{\nu^{t}}^{*}(h-1/i)$. Moreover, $\tau_{\nu^{t}} \geq \tau_{\nu}$ so $\tau_{\nu^{t}}^{*}(h-1/i) \leq \tau_{\nu}^{*}(h-1/i) < \tau_{\nu}^{*}(h) = H_{\tau}/\rho$. Hence $m_{\alpha,\rho}(\bigcup_{i\geq 1} \bigcup_{h' \leq h-1/i} E_{h'}^{\nu^{t}}) = 0$. We deduce that $S \setminus \bigcup_{i\geq 1} \bigcup_{h' \leq h-1/i} E_{h'}^{\nu^{t}} \subset E_{h}^{\nu^{t}}$. Since $\varepsilon_{j} \geq \xi_{j}$, by construction $m_{\alpha,\rho}(S) > 0$, and $m_{\alpha,\rho}(S \setminus \bigcup_{i\geq 1} \bigcup_{h' \leq h-1/i} E_{h'}^{\nu^{t}}) > 0$. As a conclusion, $\dim E_{h}^{\nu^{t}} \geq h$.

Proposition 4.7. For every $h \in (H_{\tau}, h_{\max}), d_{\nu^t}(h) \ge d_{\nu}(h)$.

PROOF. We need a lemma extracted from the proof of Proposition 8 in [2].

Lemma 4.8. Let $h \in [H_{\tau}, h_{\max})$. Let m_h be a measure as in **P2**. Then there exists a subset S of $\widetilde{E}^{\mu}_{h\,\widetilde{\epsilon}}$ such that $m_h(S) > 0$ and $S \subset E^{\nu}_h$.

Let $h \in (H_{\tau}, h_{\max})$. Consider a set S and a measure m_h as in Lemma 4.8. Let $x \in S \subset \tilde{E}^{\mu}_{h,\tilde{\xi}} \cap E^{\nu}_h$. Note that at every scale j, at least one of $I_j^{(-1)}(x)$, $I_j^0(x), I_j^{(+1)}(x)$, is irreducible. Hence, for this irreducible *b*-adic interval I, by Proposition 4.1 we have $\nu^t(I) \ge \mu(I)b^{-j\varepsilon} \ge b^{-j(h+\xi_j+\varepsilon)}$. This holds for every j large enough, and then for every ε small enough. Hence $h_{\nu^t}(x) \le h$. But $h_{\nu^t}(x)$ is always larger than $h_{\nu}(x)$, which equals h since $S \subset E^{\nu}_h$. Hence $h_{\nu^t}(x) = h$, and $S \subset E^{\nu^t}_h$. As a consequence, $m_h(E^{\nu^t}_h) \ge m_h(S) > 0$, and $\dim E^{\nu^t}_h \ge d_{\nu}(h)$.

4.2 Proof of Item 2. of Theorem 2.2.

We come back to the general measures $\nu_{\gamma,\sigma}$ and to the general form of their thresholded versions $\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}$. Let $\tilde{\xi}$ be a sequence such that **P3** holds with $\alpha = \tau'_{\mu}(\sigma q_{\tau}(\nu))$, and let $\tilde{\varepsilon} = (\varepsilon_j)_{j\geq 1}$ be defined by $\varepsilon_j = \sigma \tilde{\xi}_j + 2\log_b(j)/j$.

Let $\mu_{\sigma q_{\tau}}$ be the Gibbs measure constructed as μ , but with the potential $\sigma q_{\tau}(\nu)\phi$. We deduce from Theorem 2.1 that $q_{\tau}(\nu_{\gamma,\sigma})H_{\tau}(\nu_{\gamma,\sigma}) = \tau^*_{\mu}(\sigma q_{\tau}(\nu_{\gamma,\sigma}))$. Then, the same arguments as those used in the proof of Proposition 4.3 show that for $\rho \geq 1$, if $x \in S_{\mu}(\rho, \tau'_{\mu}(\sigma q_{\tau}(\nu_{\gamma,\sigma})), \tilde{\xi})$, then $h_{\nu^{\tilde{\xi}}_{\gamma,\sigma}}(x) \leq H_{\tau}(\nu_{\gamma,\sigma})/\rho$. Since by construction $\tau_{\nu_{\gamma,\sigma}} \geq \tau_{\nu_{\gamma,\sigma}}$, for every $h \in [0, H_{\tau}(\nu_{\gamma,\sigma})]$ we have dim $\bigcup_{h' \leq h} E_{h'}^{\nu_{\gamma,\sigma}} \leq \tau_{\nu_{\gamma,\sigma}}^*(h) = q_{\tau}(\nu_{\gamma,\sigma})h$. This is enough to conclude as in the proof of Proposition 4.6.

4.3 Proof of Item 1. of Theorem 2.2.

It follows from the item $\mathcal 2$. of Theorem 2.2 that

$$d_{\nu_{\tau,\sigma}^{\tilde{\varepsilon}}}(H_{\tau}(\nu_{\gamma,\sigma})) = q_{\tau}(\nu_{\gamma,\sigma})H_{\tau}(\nu_{\gamma,\sigma}).$$

Moreover, due to the threshold operation, we have $\tau_{\nu_{\gamma,\sigma}} \geq \tau_{\nu_{\gamma,\sigma}}$ on \mathbb{R}_+ , so that $q_{\tau}(\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}) \leq q_{\tau}(\nu_{\gamma,\sigma})$.

On the other hand, $d_{\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}}(H_{\tau}(\nu_{\gamma,\sigma})) \leq \tau_{\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}}^{*}(H_{\tau}(\nu_{\gamma,\sigma})) \leq q_{\tau}(\nu_{\gamma,\sigma}^{\tilde{\varepsilon}})H_{\tau}(\nu_{\gamma,\sigma}).$ This yields $q_{\tau}(\nu_{\gamma,\sigma}^{H_{\tau}}(\nu),\tilde{\varepsilon}) = q_{\tau}(\nu_{\gamma,\sigma})$ and then $H_{\tau}(\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}) \leq H_{\tau}(\nu_{\gamma,\sigma})$ again because $\tau_{\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}} \geq \tau_{\nu_{\gamma,\sigma}}$ and these functions are concave.

Coming back to $d_{\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}}(H_{\tau}(\nu_{\gamma,\sigma})) = q_{\tau}(\nu_{\gamma,\sigma})H_{\tau}(\nu_{\gamma,\sigma})$ and the fact that for any positive Borel measure m on [0,1], we have $d_m(h) \leq \tau_m^*(h) < q_{\tau}(m)h$ if $h > H_{\tau}(m)$, we finally obtain $H_{\tau}(\nu_{\gamma,\sigma}^{\tilde{\varepsilon}}) = H_{\tau}(\nu_{\gamma,\sigma})$.

References

- V. Aversa, C. Bandt, The multifractal spectrum of discrete measures. 18th Winter School on Abstract Analysis (1990), Acta Univ. Carolin. Math. Phys. 31(2) (1990), 5–8.
- [2] J. Barral, S. Seuret, Combining multifractal additive and multiplicative chaos, Commun. Math. Phys., 257(2) (2005), 473–497.
- [3] J. Barral, S. Seuret, Inside singularity sets of random Gibbs measures, J. Stat. Phys., 120 (2005), 1101–1124.
- [4] J. Barral, S. Seuret, The multifractal nature of heterogeneous sums of Dirac masses, submitted (2006).
- [5] J. Barral, S. Seuret, Information parameters and large deviations spectrum of discontinuous measures, Real Analysis Exchange, this issue.
- [6] J. Barral, S. Seuret, The singularity spectrum of Lévy processes in multifractal time, Adv. Math., to appear.
- [7] A. Batakis, Y. Heurteaux, On relations between entropy and Hausdorff dimension of measures, Asian J. Math., 6 (2002), 399–408.

- [8] G. Brown, G. Michon, J. Peyrière, On the multifractal analysis of measures, J. Stat. Phys., 66 (1992), 775–790.
- [9] K. J. Falconer, Representation of families of sets by measures, dimension spectra and Diophantine approximation, Math. Proc. Cambridge Philos. Soc., 128 (2000), 111–121.
- [10] A.-H. Fan, Multifractal analysis of infinite products. J. Stat. Phys., 86 (1997), 1313–1336.
- [11] A.-H. Fan, K.-S. Lau, H. Rao, Relationships between different dimensions of a measure, Monatsh. Math., 135 (2002), 191–201.
- [12] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A, 33 (1986), 1141.
- [13] Y. Kifer, Fractals via random iterated function systems and random geometric constructions, Fractal geometry and stochastics (Finsterbergen, 1994) Progr. Probab., 37, 145–164, Birkhäuser, Basel (1995)
- [14] S. Jaffard, Old friends revisited: the multifractal nature of some classical functions, J. Fourier Anal. Appl., 3(1) (1997), 1–21.
- [15] S. Jaffard, The multifractal nature of Lévy processes, Probab. Theory Relat. Fields, 114 (1999), 207–227.
- [16] S.-M. Ngai, A dimension result arising from the L^p-spectrum of a measure, Proc. Amer. Math. Soc., (1997) 125, 2943–2951.
- [17] L. Olsen, A multifractal formalism, Adv. in Math., (1995) 116, 92–195.
- [18] L. Olsen, Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures, Math. Scand., 86, no. 1 (2000), 109–129.
- [19] W. Parry and M. Policott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Société Mathématique de France, Astérisque, 187–188 (1990), 268.
- [20] Y. Pesin, H. Weiss, The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples, Chaos, 7(1) (1997), 89–106.
- [21] D. A. Rand, The singularity spectrum $f(\alpha)$ for cookie-cutters, Ergodic Th. Dyn. Sys., **9** (1989), 527–541.

- [22] R. Riedi, An improved multifractal formalism and self-similar measures, J. Math. Anal. Appl., 189 (1995), 462–490.
- [23] R. Riedi, *Multifractal processes*, Theory and applications of long-range dependence, 625–716 (2003), Birkhuser Boston, Boston, MA.
- [24] R. Riedi, B. B. Mandelbrot, Exceptions to the multifractal formalism for discontinuous measures, Math. Proc. Cambridge Philos. Soc., 123 (1998), 133–157.
- [25] L. S. Young, Dimension, entropy and Lyapounov exponents, Ergodic Th. Dyn. Sys., 2 (1982), 109–124.