Ewa Strońska, Mathematical Institute, Kazimierz Wielki University, Plac Weyssenhoffa 11, 85-071 Bydgoszcz, Poland. email: stronska@neostrada.pl

ON ALMOST CONTINUOUS DERIVATIONS

Abstract

It is proved that every derivation is the sum of two almost continuous (in Stallings' sense) derivations and the limit of a sequence (of a transfinite sequence) of almost continuous derivations.

A function $g:(a,b) \to \mathbb{R}$ is said to be almost continuous (in Stallings' sense [5]) if for every open set $D \subset \mathbb{R}^2$ containing the graph $\operatorname{Gr}(g)$ of the function g there is a continuous function $h:(a,b) \to \mathbb{R}$ with $\operatorname{Gr}(h) \subset D$.

A function $f : \mathbb{R} \to \mathbb{R}$ is called additive ([4]) if it satisfies Cauchy's equation

$$f(x+y) = f(x) + f(y)$$
, for all $x, y \in \mathbb{R}$.

An additive function $f : \mathbb{R} \to \mathbb{R}$ is called a derivation if it satisfies the equation

$$f(xy) = xf(y) + yf(x)$$
, for all $x, y \in \mathbb{R}$.

It is well known that there exists a discontinuous additive almost continuous function $f : \mathbb{R} \to \mathbb{R}$ ([2] and [3]) and that every additive function is the sum of two additive almost continuous functions and the limit of a sequence (of a transfinite sequence) of additive almost continuous functions ([1]). In this article I prove analogous theorems for derivations.

If $f : \mathbb{R} \to \mathbb{R}$ is a function, by a blocking set of f we mean a closed set $K \subset \mathbb{R}^2$ such that $\operatorname{Gr}(f) \cap K = \emptyset$ and $\operatorname{Gr}(g) \cap K \neq \emptyset$ for every continuous function $g : \mathbb{R} \to \mathbb{R}$. An irreducible blocking set (IBS) K of f is a blocking set of f such that no proper subset of K is a blocking set ([3]).

It is known that $f : \mathbb{R} \to \mathbb{R}$ is almost continuous if and only if it has no blocking set. Moreover, if f is not almost continuous, then there is an

Key Words: derivation, additive functions, continuity, almost continuity, transfinite sequences

Mathematical Reviews subject classification: 26A15, 14L27, 26A51, 54C08 Received by the editors May 22, 2006

Communicated by: B. S. Thomson

(IBS) K of f and the x-projection $pr_x(K)$ of K is a non-degenerate interval ([3]). Let

$$K_0, K_1, \ldots, K_{\alpha}, \ldots, \alpha < \omega_c,$$

be a transfinite sequence of all irreducible blocking sets in \mathbb{R}^2 , with $K_{\alpha} \neq K_{\beta}$ for $\alpha \neq \beta$, $\alpha, \beta < \omega_c$ and ω_c denoting the first ordinal of the cardinality of the continuum.

Let $F \subset K$ be a field. An element $a \in K$ is called algebraically dependent (or algebraic) over F if there exists a non-trivial ($\neq 0$) polynomial p with the coefficients from F such that p(a) = 0.

The algebraic closure of F (in K) is the set

$$\operatorname{algcl}(F) = \{a \in K : a \text{ is algebraic over } F\}.$$

It is known that $\mathbb{R} \neq \operatorname{algcl}(\mathbb{Q})$ and there exists an algebraic base of \mathbb{R} over \mathbb{Q} ([4, p. 102]).

In the proofs of the main theorems we use the following.

Theorem 1 ([4] Th. 1, p. 352). Let K be a field of characteristic zero, let F be a subfield of K, let X be an algebraic base of K over F, if it exists, and let $X = \emptyset$ otherwise. Let $f : F \to K$ be a derivation. Then, for every function $u : X \to K$ there exists a unique derivation $g : K \to K$ such that $g|_F = f$ and $g|_X = u$.

Theorem 2. If $f : \mathbb{R} \to \mathbb{R}$ is a derivation, then there are two almost continuous derivations $g, h : \mathbb{R} \to \mathbb{R}$ such that f = g + h.

PROOF. We apply transfinite induction. Since $\operatorname{pr}_x(K_0)$ is a non-degenerate interval, there are algebraically independent (over \mathbb{Q}) elements $u_0, v_0 \in \operatorname{pr}_x(K_0) \setminus \operatorname{algcl}(\mathbb{Q})$.

Next, we fix an ordinal $\alpha > 0$ with $\alpha < \omega_c$ and assume that for each ordinal $\beta < \alpha$ we have defined elements $u_{\beta}, v_{\beta} \in \operatorname{pr}_x(K_{\beta})$, such that the set

$$S_{\alpha} = \{u_{\beta}, v_{\beta} : \beta < \alpha\}$$

is algebraically independent (over \mathbb{Q}) and $(u_{\beta_1}, v_{\beta_1}) \neq (u_{\beta_2}, v_{\beta_2})$ for $\beta_1 < \beta_2 \leq \beta$.

Finally, there are algebraically independent (over \mathbb{Q}) elements $u_{\alpha}, v_{\alpha} \in \operatorname{pr}_{x}(K_{\alpha}) \setminus \operatorname{algcl}(\mathbb{Q} \cup S_{\alpha}).$

Observe that the set $S = A \cup B$, where $A = \{u_{\alpha} : \alpha < \omega_c\}$ and $B = \{v_{\alpha} : \alpha < \omega_c\}$ are algebraically independent (over \mathbb{Q}). Consequently, there is an algebraic base $X \supset S$ in \mathbb{R} (over \mathbb{Q}).

392

For every $\alpha < \omega_c$, let $t_{\alpha}, z_{\alpha} \in \mathbb{R}$ be points such that

$$(u_{\alpha}, t_{\alpha}) \in K_{\alpha} \text{ and } (v_{\alpha}, z_{\alpha}) \in K_{\alpha}$$

Let

$$g_1(x) = \begin{cases} t_\alpha & \text{if } x = u_\alpha, \ \alpha < \omega_c, \\ f(x) - z_\alpha & \text{if } x = v_\alpha, \ \alpha < \omega_c, \\ 0 & \text{otherwise in } X, \end{cases}$$

and let

$$h_1(x) = \begin{cases} f(x) - t_\alpha & \text{if } x = u_\alpha, \ \alpha < \omega_c, \\ z_\alpha & \text{if } x = v_\alpha, \ \alpha < \omega_c, \\ f(x) & \text{otherwise in } X, \end{cases}$$

and let $g : \mathbb{R} \to \mathbb{R}$ be an extension of g_1 to some derivation. Since f - g is a derivation, the function $h : \mathbb{R} \to \mathbb{R}$ such that $h|_X = h_1$ and h(x) = f(x) - g(x) for $x \in \mathbb{R} \setminus X$ is an extension of h_1 to some derivation.

Observe that for every $\alpha < \omega_c$,

$$(u_{\alpha}, g(u_{\alpha})) = (u_{\alpha}, t_{\alpha}) \in K_{\alpha} \text{ and } (v_{\alpha}, h(v_{\alpha})) = (v_{\alpha}, z_{\alpha}) \in K_{\alpha}.$$

So, the functions g, h are almost continuous and evidently f = g + h.

The next remark follows from Theorem 2.

Remark 1. There are almost continuous derivations $f : \mathbb{R} \to \mathbb{R}$ which are discontinuous.

PROOF. It suffices to find a discontinuous derivation $\phi : \mathbb{R} \to \mathbb{R}$ ([4, Th. 2, p. 352]) and two almost continuous derivations $g, h : \mathbb{R} \to \mathbb{R}$ with $\phi = g + h$. Then, at least one derivation g or h is discontinuous.

Theorem 3. If $f : \mathbb{R} \to \mathbb{R}$ is a derivation, then there is a sequence of almost continuous derivations $f_n : \mathbb{R} \to \mathbb{R}$, $n \ge 1$, such that $f = \lim_{n \to \infty} f_n$.

PROOF. As in the proof of Theorem 2, for every $\alpha < \omega_c$ we find a sequence of points

$$x_{\alpha,n} \in \operatorname{pr}_x(K_\alpha), \ n = 1, 2, \dots,$$

such that the set

$$S = \{x_{\alpha,n} : \alpha < \omega_c, \ n \ge 1\}$$

is algebraically independent over \mathbb{Q} . Let $X \supset S$ be an algebraic basis (over \mathbb{Q}) in \mathbb{R} . For each point $x_{\alpha,n}$ there is a point $y_{\alpha,n}$ such that

$$(x_{\alpha,n}, y_{\alpha,n}) \in K_{\alpha}, \ \alpha < \omega_c, n \ge 1.$$

For n = 1, 2, ..., let

$$g_n(x) = \begin{cases} y_{\alpha,k} & \text{if } x = x_{\alpha,k}, \ \alpha < \omega_c, \ k \ge n, \\ f(x) & \text{otherwise in } X, \end{cases}$$

and let f_n be an extension of g_n to a derivation on \mathbb{R} . Since

 $(x_{\alpha,n}, y_{\alpha,n}) \in K_{\alpha} \cap \operatorname{Gr}(f_n)$ for $\alpha < \omega_c$ and $n \ge 1$,

all functions f_n are almost continuous. Moreover, if $x = x_{\alpha,k}$, where $\alpha < \omega_c$, and $k \ge 1$, then $f_n(x) = f(x)$ for n > k and if $x \in X$ and $x \ne x_{\alpha,k}$ for all $\alpha < \omega_c$ and $k \ge 1$, then $f_n(x) = f(x)$ for all $n \ge 1$. So, $f = \lim_{n \to \infty} f_n$ on Xand consequently on \mathbb{R} . Thus, the proof is completed. \Box

Now we will consider the transfinite convergence. Recall that a transfinite sequence of functions $f_{\alpha} : \mathbb{R} \to \mathbb{R}$, where $\alpha < \omega_1$ (ω_1 denoting the first uncountable ordinal), converges to a function $f : \mathbb{R} \to \mathbb{R}$ (then we write $\lim_{\alpha} f_{\alpha} = f$) if for each point $x \in \mathbb{R}$ there is a countable ordinal $\beta(x)$ such that for each countable ordinal $\alpha > \beta(x)$ the equality $f_{\alpha}(x) = f(x)$ holds ([6]).

Theorem 4. Assume that $\omega_1 = \omega_c$. If $f : \mathbb{R} \to \mathbb{R}$ is a derivation, then there is a transfinite sequence of almost continuous derivations $f_\alpha : \mathbb{R} \to \mathbb{R}$, $\alpha < \omega_1$, such that $\lim_\alpha f_\alpha = f$.

PROOF. As above we find pairwise disjoint sets $T_{\alpha}, \alpha < \omega_1 = \omega_c$, such that every set

$$\operatorname{pr}_x(K_\alpha) \cap T_\alpha, \ \alpha < \omega_1,$$

is uncountable, and the union $\bigcup_{\alpha < \omega_1} \operatorname{pr}_x(K_\alpha) \cap T_\alpha$ is algebraically independent over \mathbb{Q} in \mathbb{R} . For each $\alpha < \omega_1$, let $(x_{\alpha,\beta})_{\beta < \omega_1}$ be a transfinite sequence of all points of the set $\operatorname{pr}_x(K_\alpha) \cap T_\alpha$, and let

$$g_{\alpha}(x) = \begin{cases} y_{\alpha,\beta} & \text{if } x = x_{\alpha,\beta}, \ \omega_1 > \beta \ge \alpha, \\ f(x) & \text{otherwise in } X, \end{cases}$$

where $y_{\alpha,\beta}$ are points such that

$$(x_{\alpha,\beta}, y_{\alpha,\beta}) \in K_{\alpha}, \ \alpha, \beta < \omega_1,$$

and let f_{α} be an extension g_{α} to a derivation on \mathbb{R} . Analogously, as in the proof of Theorem 3 we can observe that all functions f_{α} are almost continuous and

$$\lim_{\alpha} f_{\alpha} = f.$$

This completes the proof.

References

- Z. Grande, On Almost Continuous Additive Functions, Math. Slovaca, 46, No. 2-3 (1996), 203–211.
- [2] F. B. Jones, Connected and Disconnected Plane Sets and the Functional Equation f(x + y) = f(x) + f(y), Bull. Amer. Math. Soc., **48** (1942), 115–120.
- [3] K. R. Kellum, Almost Continuity and Connectivity Sometimes It's as Easy to Prove a Stronger Result, Real Anal. Exch., 8(1) (1982/83), 244– 252.
- M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN Warszawa– Kraków–Katowice, 1985.
- [5] J. Stallings, Fixed Point Theorems for Connectivity Maps, Fund. Math., 47 (1959), 249–263.
- [6] W. Sierpiński, Sur les Suites Transfinies Convergent de Fonctions de Baire, Fund. Math., 1 (1920), 134–141.

Ewa Strońska

396