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ON ALMOST CONTINUOUS DERIVATIONS

Abstract

It is proved that every derivation is the sum of two almost contin-
uous (in Stallings’ sense) derivations and the limit of a sequence (of a
transfinite sequence) of almost continuous derivations.

A function g : (a, b)→ R is said to be almost continuous (in Stallings’ sense
[5]) if for every open set D ⊂ R2 containing the graph Gr(g) of the function g
there is a continuous function h : (a, b)→ R with Gr(h) ⊂ D.

A function f : R→ R is called additive ([4]) if it satisfies Cauchy’s equation

f(x+ y) = f(x) + f(y), for all x, y ∈ R.

An additive function f : R→ R is called a derivation if it satisfies the equation

f(xy) = xf(y) + yf(x), for all x, y ∈ R.

It is well known that there exists a discontinuous additive almost contin-
uous function f : R → R ([2] and [3]) and that every additive function is the
sum of two additive almost continuous functions and the limit of a sequence
(of a transfinite sequence) of additive almost continuous functions ([1]). In
this article I prove analogous theorems for derivations.

If f : R → R is a function, by a blocking set of f we mean a closed set
K ⊂ R2 such that Gr(f) ∩ K = ∅ and Gr(g) ∩ K 6= ∅ for every continuous
function g : R → R. An irreducible blocking set (IBS) K of f is a blocking
set of f such that no proper subset of K is a blocking set ([3]).

It is known that f : R → R is almost continuous if and only if it has
no blocking set. Moreover, if f is not almost continuous, then there is an
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(IBS) K of f and the x-projection prx(K) of K is a non-degenerate interval
([3]). Let

K0,K1, . . . ,Kα, . . . , α < ωc,

be a transfinite sequence of all irreducible blocking sets in R2, with Kα 6= Kβ

for α 6= β, α, β < ωc and ωc denoting the first ordinal of the cardinality of the
continuum.

Let F ⊂ K be a field. An element a ∈ K is called algebraically dependent
(or algebraic) over F if there exists a non-trivial ( 6= 0) polynomial p with the
coefficients from F such that p(a) = 0.

The algebraic closure of F (in K) is the set

algcl(F ) = {a ∈ K : a is algebraic over F}.

It is known that R 6= algcl(Q) and there exists an algebraic base of R over Q
([4, p. 102]).

In the proofs of the main theorems we use the following.

Theorem 1 ([4] Th. 1, p. 352). Let K be a field of characteristic zero, let F
be a subfield of K, let X be an algebraic base of K over F , if it exists, and let
X = ∅ otherwise. Let f : F → K be a derivation. Then, for every function
u : X → K there exists a unique derivation g : K → K such that g|F = f and
g|X = u.

Theorem 2. If f : R→ R is a derivation, then there are two almost contin-
uous derivations g, h : R→ R such that f = g + h.

Proof. We apply transfinite induction. Since prx(K0) is a non-degenerate in-
terval, there are algebraically independent (over Q) elements u0, v0 ∈ prx(K0)\
algcl(Q).

Next, we fix an ordinal α > 0 with α < ωc and assume that for each ordinal
β < α we have defined elements uβ , vβ ∈ prx(Kβ), such that the set

Sα = {uβ , vβ : β < α}

is algebraically independent (over Q) and (uβ1 , vβ1) 6= (uβ2 , vβ2) for β1 < β2 ≤
β.

Finally, there are algebraically independent (over Q) elements uα, vα ∈
prx(Kα) \ algcl(Q ∪ Sα).

Observe that the set S = A ∪ B, where A = {uα : α < ωc} and B =
{vα : α < ωc} are algebraically independent (over Q). Consequently, there is
an algebraic base X ⊃ S in R (over Q).
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For every α < ωc, let tα, zα ∈ R be points such that

(uα, tα) ∈ Kα and (vα, zα) ∈ Kα.

Let

g1(x) =


tα if x = uα, α < ωc,

f(x)− zα if x = vα, α < ωc,

0 otherwise in X,

and let

h1(x) =


f(x)− tα if x = uα, α < ωc,

zα if x = vα, α < ωc,

f(x) otherwise in X,

and let g : R → R be an extension of g1 to some derivation. Since f − g is a
derivation, the function h : R→ R such that h|X = h1 and h(x) = f(x)−g(x)
for x ∈ R \X is an extension of h1 to some derivation.

Observe that for every α < ωc,

(uα, g(uα)) = (uα, tα) ∈ Kα and (vα, h(vα)) = (vα, zα) ∈ Kα.

So, the functions g, h are almost continuous and evidently f = g + h.

The next remark follows from Theorem 2.

Remark 1. There are almost continuous derivations f : R → R which are
discontinuous.

Proof. It suffices to find a discontinuous derivation φ : R → R ([4, Th. 2,
p. 352]) and two almost continuous derivations g, h : R → R with φ = g + h.
Then, at least one derivation g or h is discontinuous.

Theorem 3. If f : R→ R is a derivation, then there is a sequence of almost
continuous derivations fn : R→ R, n ≥ 1, such that f = limn→∞ fn.

Proof. As in the proof of Theorem 2, for every α < ωc we find a sequence of
points

xα,n ∈ prx(Kα), n = 1, 2, . . . ,

such that the set
S = {xα,n : α < ωc, n ≥ 1}

is algebraically independent over Q. Let X ⊃ S be an algebraic basis (over Q)
in R. For each point xα,n there is a point yα,n such that

(xα,n, yα,n) ∈ Kα, α < ωc, n ≥ 1.
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For n = 1, 2, . . . , let

gn(x) =

{
yα,k if x = xα,k, α < ωc, k ≥ n,
f(x) otherwise in X,

and let fn be an extension of gn to a derivation on R. Since

(xα,n, yα,n) ∈ Kα ∩Gr(fn) for α < ωc and n ≥ 1,

all functions fn are almost continuous. Moreover, if x = xα,k, where α < ωc,
and k ≥ 1, then fn(x) = f(x) for n > k and if x ∈ X and x 6= xα,k for all
α < ωc and k ≥ 1, then fn(x) = f(x) for all n ≥ 1. So, f = limn→∞ fn on X
and consequently on R. Thus, the proof is completed.

Now we will consider the transfinite convergence. Recall that a transfinite
sequence of functions fα : R → R, where α < ω1 (ω1 denoting the first
uncountable ordinal), converges to a function f : R → R (then we write
limα fα = f) if for each point x ∈ R there is a countable ordinal β(x) such
that for each countable ordinal α > β(x) the equality fα(x) = f(x) holds ([6]).

Theorem 4. Assume that ω1 = ωc. If f : R → R is a derivation, then there
is a transfinite sequence of almost continuous derivations fα : R→ R, α < ω1,
such that limα fα = f .

Proof. As above we find pairwise disjoint sets Tα, α < ω1 = ωc, such that
every set

prx(Kα) ∩ Tα, α < ω1,

is uncountable, and the union
⋃
α<ω1

prx(Kα)∩Tα is algebraically independent
over Q in R. For each α < ω1, let (xα,β)β<ω1 be a transfinite sequence of all
points of the set prx(Kα) ∩ Tα, and let

gα(x) =

{
yα,β if x = xα,β , ω1 > β ≥ α,
f(x) otherwise in X,

where yα,β are points such that

(xα,β , yα,β) ∈ Kα, α, β < ω1,

and let fα be an extension gα to a derivation on R. Analogously, as in the
proof of Theorem 3 we can observe that all functions fα are almost continuous
and

lim
α
fα = f.

This completes the proof.
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