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THE MAXIMAL CLASS WITH RESPECT
TO MAXIMUMS FOR THE FAMILY OF
ALMOST CONTINUOUS FUNCTIONS

Abstract

It is shown that a function f: R — R is Darboux and upper semi-
continuous if and only if its maximum with each almost continuous
function is almost continuous. This result generalizes an old theorem
due to J. Farkova.

The letters R and N denote the real line and the set of positive integers,
respectively. Let f: R — R. We say that f is Darboux if it maps intervals
onto connected sets. We say that f is almost continuous in the sense of
Stallings [7], if for every open set U C R? containing f there is a continuous
function h: R — R with A C U. (We make no distinction between a function
and its graph.) Recall that almost continuous functions possess the Darboux
property, and that the converse is not true [7]. However, in Baire class one
these two notions coincide [1].

Denote by M the maximal class with respect to maximums for the fam-
ily of almost continuous functions; i.e., let M consist of all functions f such
that max{f, g} is almost continuous whenever g is so. It is well-known that
M contains all continuous functions [5, Proposition 2] and that if f € M is
almost continuous, then f is upper semicontinuous [3]. (Recall that the class
of Darboux upper semicontinuous functions is the maximal class with respect
to maximums for the family of Darboux functions [2, Theorems 1 and 2].)
T. Natkaniec asked for a characterization of M [5, Problem], [6, Problem 6.5].
Corollary 4 is the solution to this problem.

We start with a simple lemma.
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Lemma 1. Let M € R. Assume that a function g: [a,b] — (—oo, M) is

upper semicontinuous both at a and at b. Then there is a continuous function
P [a,b] — [min{g(a), g(b)}, M] such that ) = g on {a,b} and ) > g on (a,b).

PROOF. Let 6y = (b—a)/2. For each n € N, find a d,, € (0,d,,—1/2) such that
g<g(a)+n~tonla,a+d,] and g < g(b)+n~' on [b—d,,b]. Let

M if:z:e[a+51,b—51],
min{g(a)+n’1,]\/[} ifr=a4d,41,n €N,
min{g(b)—i—n‘l,M} ife=0—0p41,n €N,
g(x) if z € {a, b},

P(x) =

and let ¢ be linear on the intervals [a + d,41,a + 6,] and [b — 0,,b — dpt1]
(n € N). One can easily see that ¢ has all required properties. O

Theorem 2. Suppose f is almost continuous and g is Darboux and upper
semicontinuous. Then ¢ = max{f, g} is almost continuous.

PRrROOF. By [4] or [6, Corollary 2.2], it suffices to show that ¢[[«, 5] is almost
continuous whenever a < 3. Fix o < 8 and let U C R? be an open set such
that ¢[[a, 8] C U. Denote by J the family of all compact (possibly degenerate)
intervals [a, b] for which there exists a continuous function h: [a,b] — R such
that h C U, h = ¢ on {a,b}, and h > g on (a,b).

The rest of the proof is divided into claims. The end of the proof of each
claim is marked with a triangle <.

Claim 1. For each x € [a, 8] and each & > 0, there are a,b € (x — e,z + ¢)
such that a < x < b and [a,b] € J.

Let 0 € (0,¢) be such that ((z — 6,z + 6) x (¢(x) — &, ¢(z) +25)) C U.
We consider two cases. If f(z) > g(z), then choose y € (g(z), f(z)), and
let I C (z — d,2+ 0) be an open interval such that I 3 « and ¢ < y on I.
Since f is almost continuous, there are a,b € I such that a < x < b and
f(t) € (max{y, f(x) — 0}, f(x) + ) for t € {a,b}. Let h = f on {a,b} and let
h be linear on [a, b]. Clearly h proves [a,b] € J.

Now assume f(z) < g(x). There is an open interval I C (z — 6,z + )
such that I > z and g < g(x) + d on I. Since g is Darboux, there are a,b € T
such that a < < b and g > g(x) — J on {a,b}. Use Lemma 1 to construct a
continuous function ¥: [a,b] — (g(x) — J, g(x) + §] such that ¢ = g on {a,b}
and ¥ > g on (a,b). Define the open set U by

U=UU{(t,y) eR*: t ¢ [a,b] ory < ¥(t)}.
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If ¢t € [a,b] and f(t) > 9 (t), then

(t, f(t)) = (t,p(t)) e U CU.

Thus, f|la,b] € U. By [6, Lemma 6.2], we can find a continuous function
h: [a,b] — R such that & € U and h = f on {a,b}. Put h = max{¢y,h}. We
will show that h proves [a,b] € J.

Indeed, let ¢ € [a, b]. If h(t) > g(x) + 0, then h(t) > (), whence

(t,h(t)) = (6, (1) € U.
(Recall that h C U.) On the other hand, if h(t) < g(z) + 6, then

(t,h(t)) € ({t} x (9(x) = 6,9(x) +6)) C U.

(We used the fact that h(¢t) > () > g(z) — J.) The conditions ‘h = ¢
on {a,b} and ‘h > g on (a,b)’ are evident. <
Let S = {x € (—o0,0]: [x,0] € 3}, and note that 8 € S.

Claim 2. inf S < a.

Suppose @ = infS > «. By Claim 1, there are a,b € (—o0,3) with
a < & < b such that [a,b] € J. We will show that a € S, which is impossible.

Let hq: [a,b] — R correspond to [a,b] € J. Choose an = € SN [&,b), and
let ho: [z, 8] — R correspond to [z, (] € J. First assume that hy(b) > ha(b).
Define the open set U by

U=UU{{t,y) eR*: t ¢ [b,f] ory < ha(t)},

and observe that f[[b, 5] C U. Construct a continuous function h: [b,0] = R
such that h € U and h = f on {a,b}. Let h = hy Umax{ha[[b,5],h}. One
can easily show that h proves [a, 5] € §. (Cf. the argument used in Claim 1.)

The case hi(x) < ho(z) is analogous. If neither of the above two cases
holds, then (hy(x) — ha(x))(h1(b) — ha(b)) < 0, so hi(t) = ha(t) for some t €
[z,b]. Put h = hql[a,t] U hal[t,B]. Clearly h proves that [a,(] € J. Conse-
quently, a € S. But a < & = inf S, an impossibility. <

By Claim 2, there exists a continuous function h: [a, 8] — R such that
h C U. Since U was arbitrary open neighborhood of ¢[[a, 8], we conclude
that o[[a, ] is almost continuous. Since o < 3 were arbitrary, ¢ is almost
continuous as well. This completes the proof. O

The following theorem, which is interesting by itself, is due to D. Preiss.
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Theorem 3. Let g: R — R and assume that the function . = max{c, g} is
almost continuous for each ¢ € R. Then the function g is almost continuous.

PrOOF. Clearly g is Darboux. To show that g is almost continuous fix o < f3
and let U C R? be an open set such that g[[a, 3] C U. Denote by S the set of
all z € [a, §] for which there is a continuous function h: [z, 5] — R such that
h CU and h = g on {z,3}. Observe that § € S. Lry & = inf S.

The rest of the proof is divided into claims. The end of the proof of each
claim is marked with a triangle <.

Claim 1. a € S.

Let ¢ < min{g(a),g(B)}. Since the function ¢._; is almost continuous,
there is a continuous function ho: [@, 8] — R such that hg C UU (R x (—00,¢))
and ho = pe.—1 = g on {@, 8}. Let 6 € (0,g(a@) — ¢) be such that

((a—é,a+6)x (g(a)—d,9(a)+0)) CU.
Thereis a 7 € (0, min{d, 8 — 64}) such that
|ho(z) — g(&)| < § whenever = € [, & + 7].

Since g is Darboux, there is an xg € (@, @+7) with |g(&) —g(zo)| < . Take an
arbitrary z1 € SN (&, o) and let hy C U correspond to z; € S. We consider
three cases.

If hi(x1) > ho(x1), then find a continuous function hs: [@, z1] — R with
hy C UU (R x (—00,c)) such that hy = g on {@, 21}. (Again we use the fact
that the function ¢._1 is almost continuous.) Let

h = max{ho[@,x1], he} U hs.

Clearly the function h proves & € S.

If hy(z0) < ho(wo), then choose a ¢; < min(hy[[z1, 8] U{c}). Use the fact
that the function ¢.,_1 is almost continuous to find a continuous function
ha: [0, 3] — R such that hy C U U (R x (—00,¢1)) and he = g on {zo, B}.
Let

max{hi(x), ha(z)} if z € [xo, 1],
h(z) = < g(@) if z = a,

linear on [@, xo].

Note that

g(@) = < g(wo) = ha(wo) < h(wo) = max{hi(x0),g(z0)} < g(@) + 6.
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So, h C U and the function h proves a € S.
Finally if hq (1‘1) < ho(.’lﬁl) and hl(l‘o) > ho(ﬂ'}o), then hl(afg) = ho(ﬂ?g) for
some o € (x1,%o). Let

h = holla, z2] U hy [[z2, B].

Clearly the function h proves & € S. <
Claim 2. a = a.

Indeed, suppose that @ > a. Let hy C U correspond to & € S. (Cf.
Claim 1.) Let ¢ € (0,& — «) be such that

((@—é,a+6)x (g(a)—d,9(a)+0)) CU.

Since ¢ is Darboux, there is an zg € (& — J, @) such that |g(z¢) — g(@)| < 0.
Let
hi(z) ifz € a,ps,
hz) =< g(zo) if z =z,

linear on [z, &)

Then the function h proves xg € S. But g < & = inf S, an impossibility. <

By Claim 2, the restriction g[[«, 8] is almost continuous. Since o < ( were
arbitrary, the function ¢ is almost continuous as well. O

Corollary 4. The family M coincides with the family of all Darbouz upper
semicontinuous functions.

PrOOF. The inclusion ‘D’ follows by Theorem 2.

To prove the opposite inclusion let ¢ € M. Then by Theorem 3, the
function g is almost continuous. So, by the results of [3], the function g is
both Darboux and upper semicontinuous. O
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which contains a solution of a natural problem and which helped me to shorten
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