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THE MAXIMAL CLASS WITH RESPECT
TO MAXIMUMS FOR THE FAMILY OF
ALMOST CONTINUOUS FUNCTIONS

Abstract

It is shown that a function f : R → R is Darboux and upper semi-
continuous if and only if its maximum with each almost continuous
function is almost continuous. This result generalizes an old theorem
due to J. Farková.

The letters R and N denote the real line and the set of positive integers,
respectively. Let f : R → R. We say that f is Darboux if it maps intervals
onto connected sets. We say that f is almost continuous in the sense of
Stallings [7], if for every open set U ⊂ R2 containing f there is a continuous
function h : R→ R with h ⊂ U . (We make no distinction between a function
and its graph.) Recall that almost continuous functions possess the Darboux
property, and that the converse is not true [7]. However, in Baire class one
these two notions coincide [1].

Denote by M the maximal class with respect to maximums for the fam-
ily of almost continuous functions; i.e., let M consist of all functions f such
that max{f, g} is almost continuous whenever g is so. It is well-known that
M contains all continuous functions [5, Proposition 2] and that if f ∈ M is
almost continuous, then f is upper semicontinuous [3]. (Recall that the class
of Darboux upper semicontinuous functions is the maximal class with respect
to maximums for the family of Darboux functions [2, Theorems 1 and 2].)
T. Natkaniec asked for a characterization of M [5, Problem], [6, Problem 6.5].
Corollary 4 is the solution to this problem.

We start with a simple lemma.
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Lemma 1. Let M ∈ R. Assume that a function g : [a, b] → (−∞,M) is
upper semicontinuous both at a and at b. Then there is a continuous function
ψ : [a, b]→ [min{g(a), g(b)},M ] such that ψ = g on {a, b} and ψ > g on (a, b).

Proof. Let δ0 = (b− a)/2. For each n ∈ N, find a δn ∈ (0, δn−1/2) such that
g < g(a) + n−1 on [a, a+ δn] and g < g(b) + n−1 on [b− δn, b]. Let

ψ(x) =


M if x ∈ [a+ δ1, b− δ1],
min

{
g(a) + n−1,M

}
if x = a+ δn+1, n ∈ N,

min
{
g(b) + n−1,M

}
if x = b− δn+1, n ∈ N,

g(x) if x ∈ {a, b},

and let ψ be linear on the intervals [a + δn+1, a + δn] and [b − δn, b − δn+1]
(n ∈ N). One can easily see that ψ has all required properties.

Theorem 2. Suppose f is almost continuous and g is Darboux and upper
semicontinuous. Then ϕ = max{f, g} is almost continuous.

Proof. By [4] or [6, Corollary 2.2], it suffices to show that ϕ�[α, β] is almost
continuous whenever α < β. Fix α < β and let U ⊂ R2 be an open set such
that ϕ�[α, β] ⊂ U . Denote by J the family of all compact (possibly degenerate)
intervals [a, b] for which there exists a continuous function h : [a, b] → R such
that h ⊂ U , h = ϕ on {a, b}, and h > g on (a, b).

The rest of the proof is divided into claims. The end of the proof of each
claim is marked with a triangle C.

Claim 1. For each x ∈ [α, β] and each ε > 0, there are a, b ∈ (x − ε, x + ε)
such that a < x < b and [a, b] ∈ J.

Let δ ∈ (0, ε) be such that
(
(x − δ, x + δ) × (ϕ(x) − δ, ϕ(x) + 2δ)

)
⊂ U .

We consider two cases. If f(x) > g(x), then choose y ∈ (g(x), f(x)), and
let I ⊂ (x − δ, x + δ) be an open interval such that I 3 x and g < y on I.
Since f is almost continuous, there are a, b ∈ I such that a < x < b and
f(t) ∈ (max{y, f(x)− δ}, f(x) + δ) for t ∈ {a, b}. Let h = f on {a, b} and let
h be linear on [a, b]. Clearly h proves [a, b] ∈ J.

Now assume f(x) ≤ g(x). There is an open interval I ⊂ (x − δ, x + δ)
such that I 3 x and g < g(x) + δ on I. Since g is Darboux, there are a, b ∈ I
such that a < x < b and g > g(x)− δ on {a, b}. Use Lemma 1 to construct a
continuous function ψ : [a, b] → (g(x) − δ, g(x) + δ] such that ψ = g on {a, b}
and ψ > g on (a, b). Define the open set Ũ by

Ũ = U ∪
{
〈t, y〉 ∈ R2 : t /∈ [a, b] or y < ψ(t)

}
.
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If t ∈ [a, b] and f(t) ≥ ψ(t), then

〈t, f(t)〉 = 〈t, ϕ(t)〉 ∈ U ⊂ Ũ .

Thus, f�[a, b] ⊂ Ũ . By [6, Lemma 6.2], we can find a continuous function
h̃ : [a, b] → R such that h̃ ⊂ Ũ and h̃ = f on {a, b}. Put h = max

{
ψ, h̃

}
. We

will show that h proves [a, b] ∈ J.
Indeed, let t ∈ [a, b]. If h(t) ≥ g(x) + δ, then h(t) ≥ ψ(t), whence

〈t, h(t)〉 = 〈t, h̃(t)〉 ∈ U.

(Recall that h̃ ⊂ Ũ .) On the other hand, if h(t) < g(x) + δ, then

〈t, h(t)〉 ∈
(
{t} × (g(x)− δ, g(x) + δ)

)
⊂ U.

(We used the fact that h(t) ≥ ψ(t) > g(x) − δ.) The conditions ‘h = ϕ
on {a, b}’ and ‘h > g on (a, b)’ are evident. C

Let S =
{
x ∈ (−∞, β] : [x, β] ∈ J

}
, and note that β ∈ S.

Claim 2. inf S < α.

Suppose ᾱ = inf S ≥ α. By Claim 1, there are a, b ∈ (−∞, β) with
a < ᾱ < b such that [a, b] ∈ J. We will show that a ∈ S, which is impossible.

Let h1 : [a, b] → R correspond to [a, b] ∈ J. Choose an x ∈ S ∩ [ᾱ, b), and
let h2 : [x, β] → R correspond to [x, β] ∈ J. First assume that h1(b) > h2(b).
Define the open set Ũ by

Ũ = U ∪
{
〈t, y〉 ∈ R2 : t /∈ [b, β] or y < h2(t)

}
,

and observe that f�[b, β] ⊂ Ũ . Construct a continuous function h̃ : [b, β]→ R
such that h̃ ⊂ Ũ and h̃ = f on {x, b}. Let h = h1 ∪ max

{
h2�[b, β], h̃

}
. One

can easily show that h proves [a, β] ∈ J. (Cf. the argument used in Claim 1.)
The case h1(x) < h2(x) is analogous. If neither of the above two cases

holds, then (h1(x) − h2(x))(h1(b) − h2(b)) ≤ 0, so h1(t) = h2(t) for some t ∈
[x, b]. Put h = h1�[a, t] ∪ h2�[t, β]. Clearly h proves that [a, β] ∈ J. Conse-
quently, a ∈ S. But a < ᾱ = inf S, an impossibility. C

By Claim 2, there exists a continuous function h : [α, β] → R such that
h ⊂ U . Since U was arbitrary open neighborhood of ϕ�[α, β], we conclude
that ϕ�[α, β] is almost continuous. Since α < β were arbitrary, ϕ is almost
continuous as well. This completes the proof.

The following theorem, which is interesting by itself, is due to D. Preiss.
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Theorem 3. Let g : R → R and assume that the function ϕc = max{c, g} is
almost continuous for each c ∈ R. Then the function g is almost continuous.

Proof. Clearly g is Darboux. To show that g is almost continuous fix α < β
and let U ⊂ R2 be an open set such that g�[α, β] ⊂ U . Denote by S the set of
all x ∈ [α, β] for which there is a continuous function h : [x, β]→ R such that
h ⊂ U and h = g on {x, β}. Observe that β ∈ S. Lry ᾱ = inf S.

The rest of the proof is divided into claims. The end of the proof of each
claim is marked with a triangle C.

Claim 1. ᾱ ∈ S.

Let c < min
{
g(ᾱ), g(β)

}
. Since the function ϕc−1 is almost continuous,

there is a continuous function h0 : [ᾱ, β]→ R such that h0 ⊂ U∪
(
R×(−∞, c)

)
and h0 = ϕc−1 = g on {ᾱ, β}. Let δ ∈ (0, g(ᾱ)− c) be such that(

(ᾱ− δ, ᾱ+ δ)× (g(ᾱ)− δ, g(ᾱ) + δ)
)
⊂ U.

There is a τ ∈
(
0,min{δ, β − ᾱ}

)
such that

|h0(x)− g(ᾱ)| < δ whenever x ∈ [ᾱ, ᾱ+ τ ].

Since g is Darboux, there is an x0 ∈ (ᾱ, ᾱ+τ) with |g(ᾱ)−g(x0)| < δ. Take an
arbitrary x1 ∈ S ∩ (ᾱ, x0) and let h1 ⊂ U correspond to x1 ∈ S. We consider
three cases.

If h1(x1) ≥ h0(x1), then find a continuous function h2 : [ᾱ, x1] → R with
h2 ⊂ U ∪

(
R× (−∞, c)

)
such that h2 = g on {ᾱ, x1}. (Again we use the fact

that the function ϕc−1 is almost continuous.) Let

h = max{h0�[ᾱ, x1], h2} ∪ h1.

Clearly the function h proves ᾱ ∈ S.
If h1(x0) ≤ h0(x0), then choose a c1 < min

(
h1[[x1, β]]∪ {c}

)
. Use the fact

that the function ϕc1−1 is almost continuous to find a continuous function
h2 : [x0, β] → R such that h2 ⊂ U ∪

(
R × (−∞, c1)

)
and h2 = g on {x0, β}.

Let

h(x) =


max{h1(x), h2(x)} if x ∈ [x0, β],
g(ᾱ) if x = ᾱ,
linear on [ᾱ, x0].

Note that

g(ᾱ)− δ < g(x0) = h2(x0) ≤ h(x0) = max{h1(x0), g(x0)} < g(ᾱ) + δ.
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So, h ⊂ U and the function h proves ᾱ ∈ S.
Finally if h1(x1) < h0(x1) and h1(x0) > h0(x0), then h1(x2) = h0(x2) for

some x2 ∈ (x1, x0). Let

h = h0�[ᾱ, x2] ∪ h1�[x2, β].

Clearly the function h proves ᾱ ∈ S. C

Claim 2. ᾱ = α.

Indeed, suppose that ᾱ > α. Let h1 ⊂ U correspond to ᾱ ∈ S. (Cf.
Claim 1.) Let δ ∈ (0, ᾱ− α) be such that(

(ᾱ− δ, ᾱ+ δ)× (g(ᾱ)− δ, g(ᾱ) + δ)
)
⊂ U.

Since g is Darboux, there is an x0 ∈ (ᾱ − δ, ᾱ) such that |g(x0) − g(ᾱ)| < δ.
Let

h(x) =


h1(x) if x ∈ [ᾱ, β],
g(x0) if x = x0,
linear on [x0, ᾱ].

Then the function h proves x0 ∈ S. But x0 < ᾱ = inf S, an impossibility. C
By Claim 2, the restriction g�[α, β] is almost continuous. Since α < β were

arbitrary, the function g is almost continuous as well.

Corollary 4. The family M coincides with the family of all Darboux upper
semicontinuous functions.

Proof. The inclusion ‘⊃’ follows by Theorem 2.
To prove the opposite inclusion let g ∈ M. Then by Theorem 3, the

function g is almost continuous. So, by the results of [3], the function g is
both Darboux and upper semicontinuous.

Acknowledgement. I would like to thank Prof. D. Preiss for Theorem 3,
which contains a solution of a natural problem and which helped me to shorten
the proof of Corollary 4.
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