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A NOTE ON ALGEBRAIC SUMS OF
SUBSETS OF THE REAL LINE

Abstract

We investigate the algebraic sums of sets for a large class of invari-
ant o-ideals and o-fields of subsets of the real line. We give a simple
example of two Borel subsets of the real line such that its algebraic
sum is not a Borel set. Next we show a similar result to Proposition 2
from A. Kharazishvili paper [4]. Our results are obtained for ideals with
coanalytical bases.

1 Introduction

We shall work in ZFC set theory. By w we denote natural numbers. By A we
denote the symmetric difference of sets. The cardinality of a set X we denote
by | X|. By R we denote the real line and by Q we denote rational numbers. If
A and B are subsets of R” and b € R", then A+ B={a+b:a€ AANbE B}
and A+b= A+ {b}. Similarly, if ACR, BCR"” and a € R, then A- B =
{a-b:a€c ANbe B} and a-B={a}-B.

We say that a family F of subsets of R is invariant if for each A € F, a € Q
and b € R we have a- A+ b € F (see [3]).

Let E be a polish space. If x € E and € > 0, then by B(z, ) we denote the
ball with center x and radius €. The family of Borel subsets of ' we denote
by Bor (E). For each o < wy such that o > 0 we denote by X2 (E) the a-th
additive class of Borel subsets of E and by I1% (E) the a-th multiplicative class
of Borel subsets of E; i.e., 3)(E) coincides with the family of all open subsets
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of E, TI{(E) is the family of all closed subsets of E, ©9(F) is the family of all
F, subsets of E, TI(E) is the family of all G subsets of E and so on. By
Y1(E) and II1(E) we denote the family of all analytic and coanalytic subsets
of the space E.

Let I be an ideal of subsets of a set X, S any family of subsets of X. We
say that I is an ideal with S-base, or that I has S-base, if for every A € I
there exists B € I NS such that A C B. In particular, if E is a polish space
and [ is an ideal of subsets of F, then we say that the ideal I has a Borel base
if it has Bor (F)-base.

Notice that the o-ideal L of Lebesgue measure zero subsets of R has a
Gs-base and that the o-ideal K of first category subsets of R has a F,-base.
Notice that it is quite easy to construct invariant o-ideals with I1}-base which
has no Xi-base. Namely, let P be a non-empty perfect subset of the real
line consisting of linearly independent over Q elements (see [5]). Let us fix a
subset A € I} (R) \ Z1(R) of P. Let I be the o-ideal of subsets of the real
line generated by the family of all translations of A. Then I is invariant over
translations, has ITj (R)-base and has no %} (R)-base.

Suppose that S is a o-field of subsets of a set X and that I is a o-ideal of
subsets of the set X. Then by S[I] we denote the smallest o-field containing
SUI. It is easy to check that S[I]={AAB: AecSABel}.

We consider the field R as a linear space over the field Q of rational num-
bers. Let us recall that any base of the space R over Q is called a Hamel base.
For each X C R we denote by Span(X) the linear subspace of R generated by
the set X. If X C R and n € w, then we put

Span(X,n)=Q - X +...+Q - X.

n

Therefore for each set X C R we have Span(X) = |J{Span(X,n) : n € w}.

Let us recall that a boolean algebra B satisfies the countable chain condition
if each family of pairwise disjoint elements from B is countable. In [3] and [4]
A. Kharazishvili proved the following theorem.

Theorem 1.1. Let I be an invariant o-ideal of subsets of R, let S be an
imwvariant o-algebra of subsets of R, containing I and let the quotient boolean
algebra S/1 satisfy the countable chain condition. Then the next four sentences
are equivalent:

1L GX,Ye)X+Y &I,

2. BX e DN(X+X &),
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3. there exists a linearly independent (over rational numbers Q) set X € I
such that Span(X) ¢ S,

4. (3X € I)(Span(X) € S).

2  On Algebraic Sums of Borel Sets

In this section we recall some probably well - known facts about algebraic
sums of Borel subsets of the space R™. It is clear that if A is a nonempty open
subset of R™ and B is an arbitrary subset of R", then A 4+ B is an open set.
If A is compact and B is closed, then A + B is closed. If A and B are closed,
then A+ B is a F, set. But it may not be a closed set. Indeed, let A = /2-Z.
Then A + 7Z is a dense subset of R. The following result is a generalization of
this observation.

Theorem 2.1. For each ordinal number o < wy there exists a set A € 119 (R)
such that A+ 7 € £9 1 (R) \ TI%(R).

PrOOF. Let B C (0,1) be such set that B € X2 (R) \ II%(R). Therefore
B = U,co, An, where A, € IY(R) for each natural number n. Let A =
U,c(An 1 n). Then A € II%(R) and (A +Z) 1 (0,1) = B. 0

Suppose that A, B C R™ are Borel sets. Then A+ B = {f(z,y) : = €
ANy € B}, where f(z,y) = ¢ +y. Therefore A+ B is a continuous image of
the Borel set A x B; so A+ B is an analytic set.

It is quite easy to give an example of two Borel subsets A, B C R2 such that
A+ B is not a Borel set. Namely, let us consider a G5 subset A C [0,1]2 such
that 72 (A) is not a Borel set, where 73 is the projection defined by w2 (x,y) = y.
Finally let us put B = [0, 1] x {0}. Note that (A\B)N ({0} xR) = {0} x m3(A4)
and therefore A\ B is not a Borel set. In fact we showed that for each natural
number n > 2 there exist a G5 subset A of R™ and a compact subset B of R™
such that A\ B is not a Borel set.

In 1954 B. Sodnomow (see [7]), P. Erdés and A. H. Stone in 1969 (see [2])
and C. A. Rogers in 1969 (see [6]) showed that there exists a Gs subset A of
the real line and a compact subset B of the real line such that A + B is not a
Borel set. We shall present now a simple proof of this fact.

Let N be a perfect and compact subset of the real line of algebraically in-
dependent elements. Let P* and Q* be two disjoint nonempty perfect subsets
of N. Then Span(P*) N Span(Q*) = {0}. Let G* C P* x Q* be such a G;
set such that mo(G*) is not a Borel set. Let us fix an element r € Q*. Using
similar arguments as above we show that G*\ (P* x {r}) is not a Borel subset
of R2. Let P = P*\ P* and Q = Q*\ Q*. Then G*\ (P* x {r}) C P x Q and
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P x @ is a compact set. Let ¢o(z,y) = z +y. Then ¢ is a continuous one-to-
one function on P x Q). Therefore ¢ is a homeomorphism between P x Q and
o(P x Q). Let G = ¢(G*) and P = —(p(P*) +r). Then G is a Gs subset of
R and P is a compact set. But G+ P = o(G*\ (P* x {r}); so G+ P is not a
Borel set.

3 On Summable Families of Sets

Let A and S be two families of sets. We say that A is S-summable if for every
family B C A we have | JB € S. A family A is point-finite if {X € 4: 2z € X}
is finite for each . The following result is a slightly stronger formulation of
the main result from [1].

Theorem 3.1. Suppose that E is a polish space and that I C P(E) is a
o-ideal with a 11} (E)-base. Suppose also that A is a point-finite and %1 (E)[I]-
summable family. Then there exists a countable subfamily B C A such that

UA\UB €.

ProoF. Without loss of generality we may assume that the cardinality of the
family A is less or equal to that of the continuum. Let T be an arbitrary subset
of R which contain no perfect subset and |T'| = |A|. Let A= {4, :t € T}.
Let us put R = {(x,t) € E xR:z € A;}. Let D be a countable dense subset
of R. Since the family A is point-finite, we get

r= U (R*l(B(d,%)) « B(d, 1)).

n
new debD

For any n € w and d € D let S, 4 € X}(E) and A, 4 € I be such that
R™Y(B(d, %)) = Sna A Ay g Let us put B =J, U, An,a and let us fix some
C € I} (E) such that C € I and B C C. Then the set Q = RN ((E\ C) x R)
is an analytic subset of the product polish space E x R. Hence the set S =
{t € T: (3z)((z,t) € Q} is a subset of T which is an analytic subset of the
real numbers, so is countable. Thus we have (J,.g 4: 2 J.A\ C. O

It is possible to apply Theorem directly 3.1 to the family of all analytic
subsets of a polish space (put I = {0}), to the family of all Lebesgue mea-
surable subsets of R, to the o-field of all subsets with the Baire property of a
fixed polish space and so on. We shall now formulate some other applications
of this theorem.

Corollary 3.2. Let E be a polish space and let A be an uncountable family of
pairwise disjoint X1 (E) sets. Then there exists a subfamily B C A such that
U B is not in the class X1(E).
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Corollary 3.3. Let E be a polish space and let I C P(E) be a o-ideal with a
13 (E)-base and let A be an uncountable pairwise disjoint family of subsets of
Bor (E)[I]\ I. Then there exists a subfamily B C A such that |JB is not in
the class Bor (E)[I].

Corollary 3.4. (see [1]) Suppose that E is a polish space and that I C P(F)
is a o-ideal with a 11}(E)-base. Suppose also that A C I is a point-finite
family of sets such that | JA & I. Then there exists a subfamily B of A such
that | J B & Bor (E)[I].

For a given family S of sets let us denote by S~ the family of sets which
are hederatively in S; i.e., S~ = {A: (VB C A)(B € S)}. Note that if Leb
denotes the family of all Lebesgue measurable subsets of the real line, then
Leb™ is the family of all Lebesgue measure zero subsets of the reals. A similar
remark is holds for the Baire property.

Corollary 3.5. Suppose that E is a polish space and that I C P(E) is a
o-ideal with a 11}(E)-base. Then (Bor (E)[I])~ = 1.

PrOOF. The inclusion I C (Bor (E)[I])~ is obvious. Suppose that A €
(Bor (E)[I])~. Let A = {{z} : x € A}. Then A is point-finite and Bor (E)[]-
summable. Therefore there exists a countable family B C A such that [J.A \
UBel. Butthen A=JBU(UA\UB),so Ael. O

4 Main Result

In this section we prove the main result of this paper. We begin with one
auxiliary result, whose easy proof is omitted.

Lemma 4.1. Let C be a linearly independent over Q subset of the real line and
let A, B be disjoint subsets of the set C. Then Span(A)+byNSpan(A)+by =0
for different b1,bs € B.

Theorem 4.2. Let I C P(R) be an invariant o-ideal with a 11} (R)-base. Then
the following are equivalent:

1. GABeD(A+B¢I),
2. (3A,B € I)(A + B ¢ Bor (R)[1)).

PrOOF. The implication (2) = (1) is obvious. We prove the implication
(1) = (2). Suppose that A, B € I and A+ B ¢ I. Observe that the set
D = AUB issuch that D € T and D+ D ¢ I. Let A* be a maximal
linearly independent subset of D over Q. Then D + D C Span(A*) and hence
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Span(A*) & I. Let {A, : n < w} be an increasing family of subsets of the set
A* such that:

LA™ = Upne, An,
2. (Vnew)(|A*\ Ay| > w).

Then Span(A*) = U, ., Span(A,). Hence there exists m € w such that
Span(A,,) ¢ I. But Span(A,,) = Uyc, Span(4y,, k). Therefore we find
natural number k& such that Span(A,,,k — 1) € I and Span(4,,,k) & I.
We may assume that Span(A,,,k) € Bor (R)[I]; otherwise the theorem is
proved. Let C = Span(4,,, k) and let T = A* \ A,,. Lemma 4.1 implies that
A ={C+t:t e T} is uncountable family of pairwise disjoint subsets of
Bor (R)[Z] \ I. Let us apply Corollary 3.3 to the family .A. Then we obtain a
set Z C T such that | J,.,(C +1t) = C + Z ¢ Bor (R)[/]. Hence we have

Q-Ap+---+Q- A, +Q- Ay, + Z ¢ Bor (R)[1].
k—1

Note that if Q- A, +Z € T or Q- Ay, + Z ¢ Bor (R)[I], then the proof
of the theorem is done. Suppose that Q- A,, + Z € Bor (R)[I] \ I. Then
A={Q-A,,+z:2z € Z} is uncountable pairwise disjoint family of subsets of
ideal T such that |JA & I. So by Corollary 3.4 there exists a set S C Z such
that Q- A,, + S ¢ Bor (R)[I]. This finishes the proof of the theorem. O

It is easy to see that a similar result also holds for an invariant o-ideal of
subsets of the Euclidean space R" with a IT} (R")-base, where n is an arbitrary
natural number. We can apply our theorem to some natural o-ideals I such
that the quotient boolean algebra does not satisfy the countable chain con-
dition. Hence we may apply our theorem in such cases when Kharazishvili’s
theorem mentioned in the introduction does not apply. For example, let us
consider the o-ideal of subsets of R?

M ={ACR?: (3B € Bor (R?))(A C BA(Vz)(B, € L)},

where B, = {y € R: (z,y) € B}. Then M is an invariant o-ideal of subsets of
R? with a Borel base. It is easy to check that the boolean algebra Bor (R?)/M
does not satisfy the countable chain condition.
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