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MARTIN’S AXIOM AND MAXIMAL
ORTHOGONAL FAMILIES

Abstract

It is shown that Martin’s Axiom for o-centered partial orders implies
that every maximal orthogonal family in RY is of size 270,

For z,y € RY define the inner product (z,y) = Y oo z(n)y(n) in the
obvious way noting, however, that it may not be finite or, indeed, may not
even exist. Nevertheless, if (z,y) converges and equals 0, then 2 and y are said
to be orthogonal. A family X C RN will be said to be maximal orthogonal if
any two of its elements are orthogonal and for every y € RY\ X, there is some
x € X which is not orthogonal to y. In [1], various results are established
which indicate a similarity between maximal orthogonal familes and maximal
almost disjoint families of sets of integers. There is a key distinction though.
While no infinite, countable family of subsets of the integers can be maximal
almost disjoint, there are countably infinite maximal orthogonal families. In
[1], the question of whether it is possible to construct a maximal orthogonal
family of cardinality N; without assuming any extra set theoretic axioms was
posed. The following theorem establishes that this is not possible.

The author full-heartedly thanks Juris Steprans for telling him the question
and writing up the solution.

Theorem 1. Martin’s Aziom for o-centered partial orders implies that every
uncountable, mazimal orthogonal family in RY is of size 2.

ProOOF. Let X C RN be an uncountable orthogonal family of cardinality less
than 2%. It will be shown that it can be extended to a larger orthogonal
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family. Before continuing, some notation and terminology will be established.
Whenever a topology on RY is mentioned, this will refer to the usual product
topology. Basic neighborhoods of RY will be taken to be sets of the form

V={zeR": (Vi<k)(a; <a(i) <b)}

where the end points a; and b; are all rational. The integer k£ will be said to be
the length of ¥ and will be denoted by I(V) (this violates the usual notation),
while max;<(b; — a;) will be referred to as the width of V and will be denoted
by w(V).

Let P be the set of all triples p = (V, W, n) such that:

e V is a basic open subset of RY
e IV is a finite subset of X
e 0<neQandn>wl)

o if U is the set of all z € X NV such that |Zf:0w(z)m(z)\ < n for any k
greater than the length of V and any w € W, then |U| > N;.

Define V(p) =V, W(p) = W, n(p) = n and U(p) = U. Define p <p p’ if and
only if

V(p) V()
W(p) 2 W(p')
n(p) < n(p’)

and for each t € V(p) and each integer j such that [(V(p')) < j <1(V(p))
the inequality | Y7, ¢(¢)w(i)| < n(p’) holds for for every w € W (p').

Observe that P is o-centered since, given any finite set of conditions P C P
such that V(p’) =V and n(p) = n for each p € P, the triple (V,U,cp W(p),n)
is a lower bound for all of them.

It will be shown that the following sets are dense in P:

z)={peP:xeW(p)}

(
() ={peP:z¢V(p)}
(m)={peP:np) <1/m}

o A
e B
o (C
« D(m) = {p € P: I(V(p)) > m}
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where £ € X and m € N. Given that this assertion can be established, let
G C P be a filter such that G N A(xz) N B(x) N C(m) N D(m) # @ for each
z € X U{0}, where 0 denotes the constant zero function, and m € N. Using
that GNC(m)ND(m) # 0 for each m € N, let ¢ € RN be the unique sequence
such that z¢ € V(p) for each p € G. Observe that xg # = if G N B(x) # 0.
Hence z¢ ¢ X.

To see that (zg,z) = 0 for each z € X, let x € X and € > 0 be given
and choose k£ € N such that 1/k < e. Then, select p € G N A(z) N C(k).
Now, given any j greater than the length of V(p) use that G N D(j) # 0 to
choose p’ € G N D(j) such that p’ <p p. It is an immediate consequence of
the definition of <p and the facts that zg € V(p'), z € W(p) C W(p') and
L(V(p) < j <I1VW)) that | >7_ za(i)z(i)| < n(p) < 1/k < e. Since € was
arbitrary, it follows that (zg,z) = 0.

So all that remains to be shown is that the sets A(z), B(x), C(m) and
D(m) are dense for each z € X and m € N.

Claim 1. C(m)ND(m) is dense for any m € N. Moreover, for any p € P and
any uncountable Z C U(p) it is possible to find ¢ < p in C(m) N D(m) such
that Z N U(q) is uncountable.

PRrROOF. Let p € P and Z C U(p) be uncountable. For each z € Z \ W(p),
there is some k(z) > m such that | Y 7_,w(i)z(i)| < 1/m for each j > k(x)
and w € W(p). Choose k such that U = {z € Z : k(z) = k} is uncountable.
Since R¥ has a countable base it is possible to find € U which is a com-
plete accumulation point of U. By the definition of € U(p) it follows that
| > qw(i)z(i)| < n(p) for every w € W(p) and I(V(p)) < m < k. Therefore,
there is some § > 0 such that for any sequence {t;}¥_q, |x(j) — ;| < & for
each j < k and the inequality | >~ w(i)t;| < n(p) holds for every w € W (p),
I(V(p)) <m<k.

Let W be a neighborhood of x with length k£ but of width less than the
minimum of § and 1/m. Let ¢ = W, W(p), 1/m) and note that UNnW C U(q)N
Z and UNW is uncountable since x was chosen to be a complete accumulation
point of U. Hence ¢ € P is as required. It is also easily verified that the choice
of § guarantees that ¢ <p p and that ¢ € C(m)ND(k) C C(m)ND(m). O

Claim 2. A(z) is dense for any z € X.

PROOF. Let p € P. Choose some integer m > [(V(p)) such that if Z is defined
to be the set of all z € U(p), |Zz=0 z(i)x(i)| < n(p) for each j > m, then
|Z| > Ry. Use the claim about the density of C(m) N D(m) to find ¢ < p
such that Z NU(q) is uncountable and [(V(q)) > m. It follows that there are
uncountably many z € X N V(g) such that |Zg:0 z(9)z(i)] < n(p) for each
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j> 'Z(V(q)) > m. This, in conjunction with the fact that p € P, implies that
| >7_ o 2(D)w(i)| < n(p) for each j > 1(V(q)) and w € W (p)U{z}. Therefore, if
¢’ is defined to be (V(q), W(p)U{z},n(p)), then ¢’ € PNA(z) and ¢/ <pp. O

Claim 3. B(z) is dense for any = € X.

PrROOF. Let p € P. For each 2z € U(p) \ {z} choose a pair of integers
(m(2),e(2)) such that |z(m(z)) — z(m(z))] > 1/e(z) and let (m,e) be some
pair of integers such that the set Z = {z € U(p) : (m(z),e(z)) = (m,e)} is
uncountable. Let k£ be the maximum of m and e. It follows that for each
z € Z no neighborhood W of z of length k and width 1/k contains z. Use the
claim about the density of C'(k) N D(k) to find ¢ < p such that ZNU(q) # 0
and [(V(q)) > k. It follows = ¢ V(q) and so q € B(z). O

This concludes the proofs of the claims and, hence, the proof of the theo-
rem. O
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