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MARTIN’S AXIOM AND MAXIMAL
ORTHOGONAL FAMILIES

Abstract

It is shown that Martin’s Axiom for σ-centered partial orders implies
that every maximal orthogonal family in RN is of size 2ℵ0 .

For x, y ∈ RN define the inner product 〈x, y〉 =
∑∞

n=0 x(n)y(n) in the
obvious way noting, however, that it may not be finite or, indeed, may not
even exist. Nevertheless, if 〈x, y〉 converges and equals 0, then x and y are said
to be orthogonal. A family X ⊆ RN will be said to be maximal orthogonal if
any two of its elements are orthogonal and for every y ∈ RN \X, there is some
x ∈ X which is not orthogonal to y. In [1], various results are established
which indicate a similarity between maximal orthogonal familes and maximal
almost disjoint families of sets of integers. There is a key distinction though.
While no infinite, countable family of subsets of the integers can be maximal
almost disjoint, there are countably infinite maximal orthogonal families. In
[1], the question of whether it is possible to construct a maximal orthogonal
family of cardinality ℵ1 without assuming any extra set theoretic axioms was
posed. The following theorem establishes that this is not possible.

The author full-heartedly thanks Juris Steprāns for telling him the question
and writing up the solution.

Theorem 1. Martin’s Axiom for σ-centered partial orders implies that every
uncountable, maximal orthogonal family in RN is of size 2ℵ0 .

Proof. Let X ⊆ RN be an uncountable orthogonal family of cardinality less
than 2ℵ0 . It will be shown that it can be extended to a larger orthogonal
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family. Before continuing, some notation and terminology will be established.
Whenever a topology on RN is mentioned, this will refer to the usual product
topology. Basic neighborhoods of RN will be taken to be sets of the form

V = {x ∈ RN : (∀i ≤ k)(ai < x(i) < bi)}

where the end points ai and bi are all rational. The integer k will be said to be
the length of V and will be denoted by l(V) (this violates the usual notation),
while maxi≤k(bi−ai) will be referred to as the width of V and will be denoted
by w(V).

Let P be the set of all triples p = (V,W, η) such that:

• V is a basic open subset of RN

• W is a finite subset of X

• 0 < η ∈ Q and η ≥ w(V)

• if U is the set of all x ∈ X ∩ V such that |
∑k

i=0 w(i)x(i)| < η for any k
greater than the length of V and any w ∈W , then |U | ≥ ℵ1.

Define V(p) = V, W (p) = W , η(p) = η and U(p) = U . Define p ≤P p
′ if and

only if

• V(p) ⊆ V(p′)

• W (p) ⊇W (p′)

• η(p) ≤ η(p′)

• and for each t ∈ V(p) and each integer j such that l(V(p′)) < j ≤ l(V(p))
the inequality |

∑j
i=0 t(i)w(i)| < η(p′) holds for for every w ∈W (p′).

Observe that P is σ-centered since, given any finite set of conditions P ⊆ P
such that V(p′) = V and η(p) = η for each p ∈ P, the triple (V,

⋃
p∈PW (p), η)

is a lower bound for all of them.
It will be shown that the following sets are dense in P:

• A(x) = {p ∈ P : x ∈W (p)}

• B(x) = {p ∈ P : x /∈ V(p)}

• C(m) = {p ∈ P : η(p) < 1/m}

• D(m) = {p ∈ P : l(V(p)) > m}
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where x ∈ X and m ∈ N. Given that this assertion can be established, let
G ⊆ P be a filter such that G ∩ A(x) ∩ B(x) ∩ C(m) ∩ D(m) 6= ∅ for each
x ∈ X ∪ {~0}, where ~0 denotes the constant zero function, and m ∈ N. Using
that G∩C(m)∩D(m) 6= ∅ for each m ∈ N, let xG ∈ RN be the unique sequence
such that xG ∈ V(p) for each p ∈ G. Observe that xG 6= x if G ∩ B(x) 6= ∅.
Hence xG /∈ X.

To see that 〈xG, x〉 = 0 for each x ∈ X, let x ∈ X and ε > 0 be given
and choose k ∈ N such that 1/k < ε. Then, select p ∈ G ∩ A(x) ∩ C(k).
Now, given any j greater than the length of V(p) use that G ∩ D(j) 6= ∅ to
choose p′ ∈ G ∩ D(j) such that p′ ≤P p. It is an immediate consequence of
the definition of ≤P and the facts that xG ∈ V(p′), x ∈ W (p) ⊆ W (p′) and
l(V(p)) ≤ j ≤ l(V(p′)) that |

∑j
i=0 xG(i)x(i)| < η(p) < 1/k < ε. Since ε was

arbitrary, it follows that 〈xG, x〉 = 0.
So all that remains to be shown is that the sets A(x), B(x), C(m) and

D(m) are dense for each x ∈ X and m ∈ N.

Claim 1. C(m)∩D(m) is dense for any m ∈ N. Moreover, for any p ∈ P and
any uncountable Z ⊆ U(p) it is possible to find q ≤ p in C(m) ∩D(m) such
that Z ∩ U(q) is uncountable.

Proof. Let p ∈ P and Z ⊆ U(p) be uncountable. For each x ∈ Z \W (p),
there is some k(x) ≥ m such that |

∑j
i=0 w(i)x(i)| < 1/m for each j ≥ k(x)

and w ∈ W (p). Choose k such that U = {x ∈ Z : k(x) = k} is uncountable.
Since Rω has a countable base it is possible to find x ∈ U which is a com-
plete accumulation point of U . By the definition of x ∈ U(p) it follows that
|
∑m

i=0 w(i)x(i)| < η(p) for every w ∈ W (p) and l(V(p)) < m ≤ k. Therefore,
there is some δ > 0 such that for any sequence {tj}kj=0, |x(j) − tj | < δ for
each j ≤ k and the inequality |

∑m
i=0 w(i)ti| < η(p) holds for every w ∈W (p),

l(V(p)) < m ≤ k.
Let W be a neighborhood of x with length k but of width less than the

minimum of δ and 1/m. Let q = (W,W (p), 1/m) and note that U∩W ⊆ U(q)∩
Z and U∩W is uncountable since x was chosen to be a complete accumulation
point of U . Hence q ∈ P is as required. It is also easily verified that the choice
of δ guarantees that q ≤P p and that q ∈ C(m) ∩D(k) ⊆ C(m) ∩D(m).

Claim 2. A(x) is dense for any x ∈ X.

Proof. Let p ∈ P. Choose some integer m ≥ l(V(p)) such that if Z is defined
to be the set of all z ∈ U(p), |

∑j
i=0 z(i)x(i)| < η(p) for each j ≥ m, then

|Z| ≥ ℵ1. Use the claim about the density of C(m) ∩ D(m) to find q ≤ p
such that Z ∩ U(q) is uncountable and l(V(q)) ≥ m. It follows that there are
uncountably many z ∈ X ∩ V(q) such that |

∑j
i=0 z(i)x(i)| < η(p) for each
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j ≥ l(V(q)) ≥ m. This, in conjunction with the fact that p ∈ P, implies that
|
∑j

i=0 z(i)w(i)| < η(p) for each j ≥ l(V(q)) and w ∈W (p)∪{x}. Therefore, if
q′ is defined to be (V(q),W (p)∪{x}, η(p)), then q′ ∈ P∩A(x) and q′ ≤P p.

Claim 3. B(x) is dense for any x ∈ X.

Proof. Let p ∈ P. For each z ∈ U(p) \ {x} choose a pair of integers
(m(z), e(z)) such that |x(m(z)) − z(m(z))| > 1/e(z) and let (m, e) be some
pair of integers such that the set Z = {z ∈ U(p) : (m(z), e(z)) = (m, e)} is
uncountable. Let k be the maximum of m and e. It follows that for each
z ∈ Z no neighborhood W of z of length k and width 1/k contains x. Use the
claim about the density of C(k) ∩D(k) to find q ≤ p such that Z ∩ U(q) 6= ∅
and l(V(q)) ≥ k. It follows x /∈ V(q) and so q ∈ B(x).

This concludes the proofs of the claims and, hence, the proof of the theo-
rem.
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