Saharon Shelah, Department of Mathematics, Rutgers University, Hill Center, Piscataway, New Jersey 08854-8019. Current Address: Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel. e-mail: shelah@math.rutgers.edu

MARTIN'S AXIOM AND MAXIMAL ORTHOGONAL FAMILIES

Abstract

It is shown that Martin's Axiom for σ-centered partial orders implies that every maximal orthogonal family in $\mathbb{R}^{\mathbb{N}}$ is of size $2^{\aleph_{0}}$.

For $x, y \in \mathbb{R}^{\mathbb{N}}$ define the inner product $\langle x, y\rangle=\sum_{n=0}^{\infty} x(n) y(n)$ in the obvious way noting, however, that it may not be finite or, indeed, may not even exist. Nevertheless, if $\langle x, y\rangle$ converges and equals 0 , then x and y are said to be orthogonal. A family $X \subseteq \mathbb{R}^{\mathbb{N}}$ will be said to be maximal orthogonal if any two of its elements are orthogonal and for every $y \in \mathbb{R}^{\mathbb{N}} \backslash X$, there is some $x \in X$ which is not orthogonal to y. In [1], various results are established which indicate a similarity between maximal orthogonal familes and maximal almost disjoint families of sets of integers. There is a key distinction though. While no infinite, countable family of subsets of the integers can be maximal almost disjoint, there are countably infinite maximal orthogonal families. In [1], the question of whether it is possible to construct a maximal orthogonal family of cardinality \aleph_{1} without assuming any extra set theoretic axioms was posed. The following theorem establishes that this is not possible.

The author full-heartedly thanks Juris Steprāns for telling him the question and writing up the solution.

Theorem 1. Martin's Axiom for σ-centered partial orders implies that every uncountable, maximal orthogonal family in $\mathbb{R}^{\mathbb{N}}$ is of size $2^{\aleph_{0}}$.

Proof. Let $X \subseteq \mathbb{R}^{\mathbb{N}}$ be an uncountable orthogonal family of cardinality less than $2^{\aleph_{0}}$. It will be shown that it can be extended to a larger orthogonal

[^0]family. Before continuing, some notation and terminology will be established. Whenever a topology on $\mathbb{R}^{\mathbb{N}}$ is mentioned, this will refer to the usual product topology. Basic neighborhoods of $\mathbb{R}^{\mathbb{N}}$ will be taken to be sets of the form
$$
\mathcal{V}=\left\{x \in \mathbb{R}^{\mathbb{N}}:(\forall i \leq k)\left(a_{i}<x(i)<b_{i}\right)\right\}
$$
where the end points a_{i} and b_{i} are all rational. The integer k will be said to be the length of \mathcal{V} and will be denoted by $l(\mathcal{V})$ (this violates the usual notation), while $\max _{i \leq k}\left(b_{i}-a_{i}\right)$ will be referred to as the width of \mathcal{V} and will be denoted by $w(\mathcal{V})$.

Let \mathbb{P} be the set of all triples $p=(\mathcal{V}, W, \eta)$ such that:

- \mathcal{V} is a basic open subset of $\mathbb{R}^{\mathbb{N}}$
- W is a finite subset of X
- $0<\eta \in \mathbb{Q}$ and $\eta \geq w(\mathcal{V})$
- if U is the set of all $x \in X \cap \mathcal{V}$ such that $\left|\sum_{i=0}^{k} w(i) x(i)\right|<\eta$ for any k greater than the length of \mathcal{V} and any $w \in W$, then $|U| \geq \aleph_{1}$.

Define $\mathcal{V}(p)=\mathcal{V}, W(p)=W, \eta(p)=\eta$ and $U(p)=U$. Define $p \leq_{\mathbb{P}} p^{\prime}$ if and only if

- $\mathcal{V}(p) \subseteq \mathcal{V}\left(p^{\prime}\right)$
- $W(p) \supseteq W\left(p^{\prime}\right)$
- $\eta(p) \leq \eta\left(p^{\prime}\right)$
- and for each $t \in \mathcal{V}(p)$ and each integer j such that $l\left(\mathcal{V}\left(p^{\prime}\right)\right)<j \leq l(\mathcal{V}(p))$ the inequality $\left|\sum_{i=0}^{j} t(i) w(i)\right|<\eta\left(p^{\prime}\right)$ holds for for every $w \in W\left(p^{\prime}\right)$.
Observe that \mathbb{P} is σ-centered since, given any finite set of conditions $\mathcal{P} \subseteq \mathbb{P}$ such that $\mathcal{V}\left(p^{\prime}\right)=\mathcal{V}$ and $\eta(p)=\eta$ for each $p \in \mathcal{P}$, the triple $\left(\mathcal{V}, \bigcup_{p \in \mathcal{P}} W(p), \eta\right)$ is a lower bound for all of them.

It will be shown that the following sets are dense in \mathbb{P} :

- $A(x)=\{p \in \mathbb{P}: x \in W(p)\}$
- $B(x)=\{p \in \mathbb{P}: x \notin \overline{\mathcal{V}(p)}\}$
- $C(m)=\{p \in \mathbb{P}: \eta(p)<1 / m\}$
- $D(m)=\{p \in \mathbb{P}: l(\mathcal{V}(p))>m\}$
where $x \in X$ and $m \in \mathbb{N}$. Given that this assertion can be established, let $G \subseteq \mathbb{P}$ be a filter such that $G \cap A(x) \cap B(x) \cap C(m) \cap D(m) \neq \emptyset$ for each $x \in X \cup\{\overrightarrow{0}\}$, where $\overrightarrow{0}$ denotes the constant zero function, and $m \in \mathbb{N}$. Using that $G \cap C(m) \cap D(m) \neq \emptyset$ for each $m \in \mathbb{N}$, let $x_{G} \in \mathbb{R}^{\mathbb{N}}$ be the unique sequence such that $x_{G} \in \mathcal{V}(p)$ for each $p \in G$. Observe that $x_{G} \neq x$ if $G \cap B(x) \neq \emptyset$. Hence $x_{G} \notin X$.

To see that $\left\langle x_{G}, x\right\rangle=0$ for each $x \in X$, let $x \in X$ and $\epsilon>0$ be given and choose $k \in \mathbb{N}$ such that $1 / k<\epsilon$. Then, select $p \in G \cap A(x) \cap C(k)$. Now, given any j greater than the length of $\mathcal{V}(p)$ use that $G \cap D(j) \neq \emptyset$ to choose $p^{\prime} \in G \cap D(j)$ such that $p^{\prime} \leq_{\mathbb{P}} p$. It is an immediate consequence of the definition of $\leq_{\mathbb{P}}$ and the facts that $x_{G} \in \mathcal{V}\left(p^{\prime}\right), x \in W(p) \subseteq W\left(p^{\prime}\right)$ and $l(\mathcal{V}(p)) \leq j \leq l\left(\mathcal{V}\left(p^{\prime}\right)\right)$ that $\left|\sum_{i=0}^{j} x_{G}(i) x(i)\right|<\eta(p)<1 / k<\epsilon$. Since ϵ was arbitrary, it follows that $\left\langle x_{G}, x\right\rangle=0$.

So all that remains to be shown is that the sets $A(x), B(x), C(m)$ and $D(m)$ are dense for each $x \in X$ and $m \in \mathbb{N}$.

Claim 1. $C(m) \cap D(m)$ is dense for any $m \in \mathbb{N}$. Moreover, for any $p \in \mathbb{P}$ and any uncountable $Z \subseteq U(p)$ it is possible to find $q \leq p$ in $C(m) \cap D(m)$ such that $Z \cap U(q)$ is uncountable.

Proof. Let $p \in \mathbb{P}$ and $Z \subseteq U(p)$ be uncountable. For each $x \in Z \backslash W(p)$, there is some $k(x) \geq m$ such that $\left|\sum_{i=0}^{j} w(i) x(i)\right|<1 / m$ for each $j \geq k(x)$ and $w \in W(p)$. Choose k such that $U=\{x \in Z: k(x)=k\}$ is uncountable. Since \mathbb{R}^{ω} has a countable base it is possible to find $x \in U$ which is a complete accumulation point of U. By the definition of $x \in U(p)$ it follows that $\left|\sum_{i=0}^{m} w(i) x(i)\right|<\eta(p)$ for every $w \in W(p)$ and $l(\mathcal{V}(p))<m \leq k$. Therefore, there is some $\delta>0$ such that for any sequence $\left\{t_{j}\right\}_{j=0}^{k},\left|x(j)-t_{j}\right|<\delta$ for each $j \leq k$ and the inequality $\left|\sum_{i=0}^{m} w(i) t_{i}\right|<\eta(p)$ holds for every $w \in W(p)$, $l(\mathcal{V}(p))<m \leq k$.

Let \mathcal{W} be a neighborhood of x with length k but of width less than the minimum of δ and $1 / m$. Let $q=(\mathcal{W}, W(p), 1 / m)$ and note that $U \cap \mathcal{W} \subseteq U(q) \cap$ Z and $U \cap \mathcal{W}$ is uncountable since x was chosen to be a complete accumulation point of U. Hence $q \in \mathbb{P}$ is as required. It is also easily verified that the choice of δ guarantees that $q \leq_{\mathbb{P}} p$ and that $q \in C(m) \cap D(k) \subseteq C(m) \cap D(m)$.
Claim 2. $A(x)$ is dense for any $x \in X$.
Proof. Let $p \in \mathbb{P}$. Choose some integer $m \geq l(\mathcal{V}(p))$ such that if Z is defined to be the set of all $z \in U(p),\left|\sum_{i=0}^{j} z(i) x(i)\right|<\eta(p)$ for each $j \geq m$, then $|Z| \geq \aleph_{1}$. Use the claim about the density of $C(m) \cap D(m)$ to find $q \leq p$ such that $Z \cap U(q)$ is uncountable and $l(\mathcal{V}(q)) \geq m$. It follows that there are uncountably many $z \in X \cap \mathcal{V}(q)$ such that $\left|\sum_{i=0}^{j} z(i) x(i)\right|<\eta(p)$ for each
$j \geq l(\mathcal{V}(q)) \geq m$. This, in conjunction with the fact that $p \in \mathbb{P}$, implies that $\left|\sum_{i=0}^{j} z(i) w(i)\right|<\eta(p)$ for each $j \geq l(\mathcal{V}(q))$ and $w \in W(p) \cup\{x\}$. Therefore, if q^{\prime} is defined to be $(\mathcal{V}(q), W(p) \cup\{x\}, \eta(p))$, then $q^{\prime} \in \mathbb{P} \cap A(x)$ and $q^{\prime} \leq \mathbb{P} p$.

Claim 3. $B(x)$ is dense for any $x \in X$.
Proof. Let $p \in \mathbb{P}$. For each $z \in U(p) \backslash\{x\}$ choose a pair of integers $(m(z), e(z))$ such that $|x(m(z))-z(m(z))|>1 / e(z)$ and let (m, e) be some pair of integers such that the set $Z=\{z \in U(p):(m(z), e(z))=(m, e)\}$ is uncountable. Let k be the maximum of m and e. It follows that for each $z \in Z$ no neighborhood \mathcal{W} of z of length k and width $1 / k$ contains x. Use the claim about the density of $C(k) \cap D(k)$ to find $q \leq p$ such that $Z \cap U(q) \neq \emptyset$ and $l(\mathcal{V}(q)) \geq k$. It follows $x \notin \mathcal{V}(q)$ and so $q \in B(x)$.

This concludes the proofs of the claims and, hence, the proof of the theorem.

References

[1] A. W. Miller and J. Steprāns, Orthogonal families of real sequences, J. Symbolic Logic, 63 (1998), 29-49.

[^0]: Key Words: orthogonal family, Martin's Axiom, maximal almost disjoint family Mathematical Reviews subject classification: 03E35,03E65
 Received by the editors November 19, 2002
 *This research was supported by The Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities, and by NSF grant No. NSF-DMS97-04477. This is number 806 in the author's personal numbering system.

