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DARBOUX SYMMETRICALLY
CONTINUOUS FUNCTIONS

Abstract

For a symmetrically continuous function f : R — [0, 1], a reduction
formula is obtained which gives a Darboux symmetrically continuous
function gy : R — [0, 1] such that the set C(f) of continuity points
of f is a subset of C(gy). Under additional conditions, gf and the
oscillation function wy of f are Croft-like functions. One consequence of
gf being Darboux is that the absolutely convergent values s(x) of a real
trigonometric series > | pn sin(ne + x,), with >°>°  |pn| = oo and
with an uncountable set E of points of absolute convergence, almost has
the intermediate value property except for countably many values s(x)
and countably many points of E.

A function f : R — R is symmetrically continuous if for each z € R,
limp_o(f(z+h) — f(x—h)) = 0. The Stein-Zygmund and Pesin-Preiss Theo-
rems [5] state that a symmetrically continuous function f : R — R is Lebesgue
measurable and its set D(f) of discontinuities is an F, set of measure zero.
Also, the Denjoy-Luzin Theorem [6] states that the set E of points of ab-
solute convergence of a real trigonometric series Y.~ | p, sin(nz + z,,), with
>0 1 |pn| = 00, is an F, set of measure 0. Furthermore, according to Preiss
[4], the function f: R — [0, 1] defined by

m
J@) = tim (1 [pasin(nz + 2,)) "
n=1

is upper semicontinuous, symmetrically continuous, C(f) = R\ E = f~1(0),
and F can be uncountable. We redefine this f at countably many points to
get a Darboux function gy with these same properties of f. So gy is just like
the Croft function on [0,1] described in [1] in that they both are Darboux,
Baire class 1, and equal 0 a.e. but not everywhere. However, Croft’s function
is not symmetrically continuous.
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A Darbouz function maps connected sets to connected sets. Suppose B C
F and C C R. A function f : E — R has the intermediate value property
relative to (E'\ B) x (R\ C) if whenever a,b € E'\ B,a < b, and the number
y € R\ C lies between f(a) and f(b), then there exists x € (E \ B) N (a,b)
such that f(z) = y. A point (z,y) € R? is a bilateral limit (c-limit) point
of the graph of f : R — R if for every open neighborhood U of (z,y), both
((—o0,2) xR)NUN f and ((x, 00) x R)NU N f are infinite (have cardinality c).
The graph of f is bilaterally dense (c-dense) in itself if every point (z, f(x))
is a bilateral limit (¢-limit) point of f.

Given f : R — R, define the set By = {z € R: (z, f(z)) is not a bilateral
c-limit point of f }. If f is bounded, define g : R — R by g¢(z) = sup{z :
(x, z) is a bilateral c¢-limit point of f} and denote the oscillation of f at = by
wp(w) = limsupy_ou {1 f() — F(2)| - 9,2 € (2 — by + h)}.

Lemma 1. (Maliszewski [3]) If f : R — R, then card(By) < ¢. If f is also
Lebesgue measurable (Borel measurable), then By has measure 0 (is countable).

Theorem 1. If f : R — [0,1] is symmetrically continuous, then gy is up-
per semicontinuous, Darboux, symmetrically continuous, and C(f) C C(gy).
Moreover, if D(f) = R\ f~(0), then C(gs) = g;l(O) and card(D(gy)) =
¢ whenever card(D(f)) =c.

PROOF. According to Lemma 1, By had cardinality < ¢, and therefore g¢(z)
exists for each z € R because f is bounded and symmetrically continuous.
Notice that gf > f on R\ By and C(f) C C(gy). Soif D(f) =R\ f~*(0), then
Clgy) = gf_l(()) and card(D(gy)) = ¢ whenever card(D(f)) = ¢. Because gy
is a sup and f is symmetrically continuous, gy is upper semicontinuous. The
graph of g; is bilaterally c-dense in itself because By has cardinality < «.
Therefore by [2], every Baire class 1, bilaterally dense in itself function, which
gy is, must have a connected graph and so must be Darboux.

To see that g; is symmetrically continuous, let € > 0 and x € R. There
exists > 0 such that if 0 < h < 4, then [f(z + h) — f(z — h)] < 5. We
may as well suppose gr(z — h) < gy(xz + h). Since (z + h,gs(z + h)) is
a bilateral ¢-limit point of f, there exists a sequence f(x + hyn) — gy(z +
h) as hy, — h such that « + h, € R\ By. Since f is symmetrically continuous
at x, { f(x—h,)} has a subsequence { f(z—h;, )} converging to some z < gr(x—
h) such that (z — h, z) is a bilateral c-limit point of f. Therefore for h;, close
enough to h with h;, <0, |f(x—h;,)—z| < 5 and |gy(z+h)— f(z+h,)| < 5.
Since z < gf(xz — h) < gs(x + h),

lgg(xz +h) —gp(x —h)| <|gg(z +h) — 2] < |gg(x +h) = f@+hi,)|
+[f(x+hi,) = f(xz = hi,)| + [f(x = hi,) — 2| <e.
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Apply Lemma 1 and Theorem 1 to Preiss’ usc function f and observe f =
gy on R\ By because f is usc order to obtain immediately the first corollary.
The second corollary follows from Y | |py sin(nz+z,,)| = ﬁ —1for f(z) €

(0, 1].

Corollary 1. If f(z) = limy,—oo (14>, |pn sin(nz+x,)|) 1, where Z |on|
n=1

= oo and D(f) is uncountable, then gy is an upper semicontinuous, symmet-
rically continuous, and Darbouz 2m-periodic function with D(gy) uncountable
and C(gf) = g;l(()), Moreover, f has the intermediate value property relative
to(R\ Bf) x (R\ g¢(By)), where By is countable.

Corollary 2. Let B be the set of all x € R such that

s(z) = Z |on sin(nx + x,)| < 0o

n=1

and such that the graph of s does not have a bilateral c-limit point at (x, s(x)).
If 207 |pn] = oo and the set E of points of absolute convergence of the
real trigonometric series Y . pn Sin(nx + x,) is uncountable, then s has the
intermediate value property relative to (E '\ B) x (R '\ (i —1)(B)), where B
is countable and f is as in Corollary 1.

A result for convergence instead of absolute convergence can be found
in (6], Thm 2.20, p.323. If > }_, kpr = o(n), then the set Ey of points of
convergence of Y~ py sin(nz +x,) has cardinality ¢ in every interval and its
sum is Darboux with respect to Eg x R. Observe that s(z) = 3" | L|sin2"z|
is bilaterally dense in itself at each dyadic rational g times 7. In particular,

as rp = 5 — 0, then for n > 1,

2TL
o) 1 n—1 1 T n—1 - ﬂ-zk’ok
_ P k _ . k=1

According to a reduction theorem in [5], Cor. 2.6, if f : R — [0,1] is sym-
metrically continuous, then the oscillation wy : R — [0, 1] is upper semicon-
tinuous, symmetrically continuous, and f is continuous exactly at the points
w?l(O) where wy is continuous. Alternatively, in lieu of this reduction theo-
rem, Theorem 1 can be used at the end of the proof of the Pesin-Preiss The-
orem in [5] to show that a symmetrically continuous function f : R — [0, 1]
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continuous on a dense set is measurable because f is continuous a.e. on ac-
count of C(f) C C(gy).

For a symmetrically continuous function f : R — [0,1], wy is symmetri-
cally continuous by the above reduction theorem. Thus by Theorem 1, g,,, is
upper semicontinuous, symmetrically continuous, and Darboux , but f might
be discontinuous at only countably many of the points g;fl, (0) where g, is
continuous. Also, f can be symmetrically continuous and bilaterally c-dense
in itself, yet ws not be Darboux. The example

Fa) = 1+1isind if o #0
0 ifr=0

illustrates both situations. However, if f : R — [0, 1] is symmetrically contin-
uous, bilaterally c¢-dense in itself and C(f) C f~1(0), then wy = gy, which is
Darboux by Theorem 1.

Theorem 2. If f : R — [0,1] is symmetrically continuous, just bilaterally
dense in itself, and C(f) C f~1(0), then wy; is Darbouz. Consequently, if
F7H0) #R, then wy acts like Croft’s function.

PROOF. By the reduction theorem in [5], wy is upper semicontinuous, symmet-
rically continuous and C(wy) = ijl(O) = C(f) € f~40). Since f is symmet-
rically continuous, C(f) is dense in R [5]. To see that the graph of wy is bilat-
erally dense in itself, let z € R and € > 0. Because C(f) C f~1(0) and C(f)
is dense in R,

wi(x) =limsup{|f(y) = f(2)| :y,2 € (x = h,x + h)}
h—0+

=limsup{f(y):y € (x — h,z+ h)} > f(x).
h—0+

Since f is symmetrically continuous at x and w; is upper semicontinuous,
there exists 6 > 0 such that: if 0 < h < ¢, then |f(z+h)— f(z —h)| < € and if
|z —y| < 4, then wy(y) < ws(x)+e. Then, since f is bilaterally dense in itself
and C(f) C f71(0), for every 0 < h < § there exist ¢, ¢ € (x — h,z + h) \ {z}
symmetric with respect to = (i.e., t +¢' = 2x) such that | f(¢) —wy(z)| < € and
|f(t") — f(t)] < e. Therefore,

If () = wr(@)| < [£(E) = £(
(

Then |wy(t) — wy(x)| < € because wy(t) < wy(z) + ¢, [f(t) —wr(z)| < e
and wy(t) > f(t). Also |wy(t') — ws(x)] < 2e because wy(t') < wy(x) + ¢,
|f(t") — wr(z)] < 26 and wy(t') > f(t'). So wy is Darboux due to it being
Baire 1 and its graph having each (z,ws(x)) as a bilateral limit point [2]. [

D+ |f(t) —wp(z)| < 2e.
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