
Real Analysis Exchange
Vol. 28(2), 2002/2003, pp. 455–470
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SMALL OPAQUE SETS

Abstract

A set in a separable metric space is called Borel–opaque if it meets
every Borel set of positive topological dimension. We show that if there
is a set of reals with cardinality of the continuum and universal mea-
sure zero, then each separable space contains a Borel–opaque set that
is of universal measure zero. Similar results hold for opaque sets that
are perfectly meager, λ-sets, λ′-sets etc., and can be extended to some
nonseparable spaces. On the other hand, we show that a σ-set is zero–
dimensional. Using opacity we also construct universal measure zero
sets of positive Hausdorff dimension.

1 Introduction

There are deep space nebulae whose density is less than the most perfect
vacuum ever achieved in a laboratory and yet they are visible and look opaque.
So they are simultaneously material and phantom. This is a motivation for
what we call a small opaque set.

As explained below, opacity is related to dimension. Based on a result of
Hilgers [8] (see also [11, §24a,VIa–1b]), Mazurkiewicz and Szpilrajn [12] proved
the following result on the existence of a big set that is at the same time small.

Theorem 1.1 (Mazurkiewicz and Szpilrajn). (i) If there is a universal mea-
sure zero set of reals with cardinality of the continuum, then for each
n ∈ ω there is a universal measure zero set Y ⊆ Rn+1 of dimension n.

(ii) If there is a λ-set of reals with cardinality of the continuum, then for
each n ∈ ω there is a λ-set Y ⊆ Rn+1 of dimension n.
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In [22, Theorem 3.4], a similar set was constructed using Martin’s Axiom.

Theorem 1.2 (Assume Martin’s Axiom). Each analytic metrizable space X
contains a universal measure zero set Y such that dimY = dimX − 1. More-
over, the set meets every Borel subset of positive dimension.

The present paper merges the two methods (that indeed are to some extent
different) in order to get small opaque sets (and in particular small sets of
positive topological dimension). We consider the following kinds of small sets:
universal measure zero, perfectly and universally meager, σ-sets, λ and λ′-sets,
(s)0-sets and sets that do not admit a proper Borel–based ccc σ-ideal. The
results also answer four out of five questions posed in the last paragraph of [22].

In Section 2 the notion of opacity is introduced. The construction of opaque
sets is done in Section 3, the main result is Theorem 3.6. As a by–product of
the construction, we also draw a result on the existence of zero–dimensional
subspaces of full cardinality. In Section 4 we apply the construction to various
small sets obtaining improvements and variations of Theorems 1.1 and 1.2.

It turns out that while the existence of universal measure zero sets of
positive topological dimension is independent of ZFC, the Zermelo–Fraenkel set
theory including the Axiom of Choice, universal measure zero sets of positive
Hausdorff dimension always exist. We prove that in Section 5.

Throughout the paper we use the following notation. ω and ω1 denote
the first infinite and uncountable cardinal, respectively, and c denotes the
cardinal of continuum. |A| denotes the cardinality of a set A. The Continuum
Hypothesis is abbreviated by CH and its negation by ¬CH. We shall also make
use of the following well–known cardinals: non L, the minimal cardinality of
a subset of R that is not Lebesgue null; non K, the minimal cardinality of a
subset of R that is not meager; b, the minimal cardinality of a subset of ωω

that is unbounded modulo finite sets.

2 Opaque Sets

If X is a topological space, then dimX denotes the covering dimension of
X. Recall that X has strongly infinite dimension if it cannot be covered by
countably many zero–dimensional sets.

Definition 2.1. Let X be a metric space and C a family of subsets of X. A
set Y ⊆ X is called C-opaque (or opaque w.r.t. C) if

C ∩ Y 6= ∅ for each C ∈ C such that dimC > 0.
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If dimX = 0, then the empty set is C-opaque, and any dense set of reals
is C-opaque on R for any family C. Opacity becomes interesting if dimX > 1,
see Proposition 2.2 infra.

If the family C satisfies a mild additional property, then one gets a little
more. Let us call C closed–complete (Borel–complete) if C ∩ F ∈ C for each
C ∈ C and F ⊆ X closed (Borel), respectively.

The following proposition relates opacity to the two theorems mentioned
in the introduction.

Proposition 2.2. Let Y be a C-opaque set.

(i) If C is closed–complete, then dim(C ∩ Y ) > dimC − 1 for each C ∈ C.
In particular, dim(C ∩ Y ) = ∞ whenever dimC = ∞. In particular, if
X ∈ C and dimX > 1, then dimY > 0.

(ii) If C is Borel–complete, then dim(C ∩ Y ) is strongly infinite for each
C ∈ C whose dimension is strongly infinite.

Proof. (i) Assume that there is C ∈ C such that dim(C ∩ Y ) < dimC − 1.
By the Enlargement Theorem [3, 7.4.17] there is a Gδ-set G ⊇ C∩Y such that
dimG = dim(C ∩ Y ). By the Addition Theorem [3, Theorem 7.3.10],

dimC 6 dimG+ dim(C \G) + 1 < dimC − 1 + dim(C \G) + 1.

It follows that dim(C \G) > 0. The set C \G is an Fσ-subset of C. Therefore,
by the Countable Sum Theorem [3, Theorem 7.2.1], there is a closed set F
such that C ∩ F ⊆ C \ G and dim(C ∩ F ) > 0. As C is closed–complete, it
follows that C ∩ F ∩ Y 6= ∅. On the other hand,

C ∩ F ∩ Y ⊆ (C \G) ∩ Y = (C ∩ Y ) \G = ∅.

We arrived to a contradiction. (ii) is proved in a similar manner: Assuming
the dimension of C is strongly infinite and dimension of C ∩ Y is not, there is
a Gδσ-set G ⊇ C ∩Y such that the dimension of C \G is strongly infinite. By
assumption, C \G ∈ C, hence it should meet Y .

To illustrate the notion of opacity, we provide some examples. As we will
construct opaque sets from sets of reals, we consider only families of cardinality
c or less. (The argument will become clear below.)

Example 2.3 (Borel opacity). We shall consider mainly C–opaque sets for C
the family of all separable Borel subsets of the underlying metrizable space X.
This family is obviously Borel–complete.
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If |X| 6 c, then |C| 6 c. Indeed, there are only |X|ω 6 cω = c many
countable subsets of X and therefore there are at most c many closed separable
subspaces. If B ⊆ X is Borel and separable, then it is a Borel subset of its
closure, which is separable. As a separable space has at most c many Borel
sets, we are done.

It follows from Proposition 2.2 that if Y ⊆ X is C-opaque, then dimY >
dimZ − 1 for each separable subset Z ⊆ X. In particular, if X is separable,
then C is the family of all Borel sets and |C| 6 c and dimY > dimX − 1. In
this case, we call Y Borel–opaque.

As a variation, if X is analytic, one can take for C all analytic or projective
sets.

Example 2.4 (Mapping onto). Let X be a Euclidean space, or, more gener-
ally, a topological vector space. Let L be a family of linear operators (con-
tinuity is not required) on X such that |L| 6 c and |rng(Λ)| 6 c for each
Λ ∈ L.

For each Λ ∈ L choose a separable linear subspace of FΛ ⊆ null(Λ) such
that dimFΛ = dim null(Λ) and for each y ∈ rng(Λ) let F yΛ be the unique affine
subspace of Λ−1(y) that is a shift of FΛ. Put

C = {B ⊆ F yΛ : B Borel, Λ ∈ L, y ∈ rng(Λ)}.

Then C is obviously Borel–complete and |C| 6 c. If Y is a C-opaque set, then
Λ(Y ) = rng Λ whenever Λ ∈ L is not a linear isomorphism of X and rng Λ.
Indeed, if y ∈ rng Λ, then F yΛ ⊆ Λ−1(y) is an affine linear subspace of X and
therefore contains a homeomorphic copy C of the real line. As dimC = 1 and
C ∈ C, there is x ∈ C ∩ Y , whence Λx = y.

It follows from the definition of C and Proposition 2.2 that dimY >
dim null(Λ)− 1 for each Λ ∈ L.

A particular instance of this situation is |X| 6 c and L is the set of
all projections of X on proper linear subspaces of X. Then an opaque set
projects onto each such proper subspace and its dimension is strongly infinite
if dimX =∞ and dimX − 1 or more otherwise.

Another instance is X a Banach space and L ⊆ X∗ a subset of its dual,
|L| 6 c. Then each x∗ ∈ L takes an opaque set onto R.

Example 2.5 (Arcs). Let X be a metrizable space such that |X| 6 c and
C the family of all arcs in X (i.e. images of one–to–one continuous mappings
φ : [0, 1] → X) and their Borel subsets. Then |C| 6 c. If Y ⊆ X a C-opaque
set, then any path between any two distinct points in X passes through Y .
Also, dimY > dimK − 1 for each arc K in X.
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Example 2.6 (Visibility). Let X be a topological vector space, |X| 6 c,
x ∈ X and C = {{x + λy : λ > 0} : y ∈ X} be the set of all rays emanating
from x. A C-opaque set is visible from the point x in every direction.

3 Construction of Opaque Sets

In order to construct opaque sets, we employ the following theorem that follows
easily from [22, Theorem 2.1] and its proof.

Theorem 3.1. For each metric space X there is a sequence 〈hm : m ∈ ω〉 of
Lipschitz functions hm : X → [0, 1] such that

dim
(
X \

⋃
m∈ω

h−1
m (r)

)
= 0 for each r ∈ (0, 1).

Proof. We recall the construction from the proof of [22, Theorem 2.1]. Let
〈Bi : i ∈ ω〉 be a sequence of discrete open families such that B =

⋃
i∈ω Bi is

a base of X. For each B ∈ B let φB : X → [0, 1] be a continuous function
such that B = φ−1

B (0, 1]. As Bi’s are discrete, for each i ∈ ω the formula
fi =

∑
B∈Bi φB defines a continuous function fi : X → [0, 1]. For each i, j ∈ ω

and x ∈ X set gij(x) = min
(
1, jfi(x)

)
. The proof of [22, Theorem 2.1] shows

that
dim

(
X \

⋃
i,j∈ω

g−1
ij (r)

)
= 0 for each r ∈ (0, 1). (3.1)

Let d be the metric on X. To have gij Lipschitz, set φB(x) = min
(
1, d(x,X \

B)
)

(where d is the lower distance). We still have B = φ−1
B (0, 1], so (3.1)

remains valid. As the family Bi is disjoint for each i ∈ ω, routine application of
triangle inequality to the definitions of φB and fi gives fi(x)−fi(y) 6 d(x, y).
Hence fi is 1-Lipschitz and gij is j-Lipschitz for each i, j ∈ ω. Rename gij ’s
to hm’s.

Throughout this section we adopt the following notation. X is a metrizable
space, 〈hm : m ∈ ω〉 denotes the sequence from the preceding theorem and for
r ∈ (0, 1),

Fr =
⋃
m∈ω

h−1
m (r), Gr = X \

⋃
m∈ω

h−1
m (r). (3.2)

Claim 3.2. (i) dimGr = 0 for each r ∈ (0, 1),

(ii)
⋃
r∈E Gr = X for each uncountable set E ⊆ (0, 1).
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Proof. (i) is just a restatement of Theorem 3.1. For (ii), we have to show
that

⋂
r∈E Fr = ∅. So assume that there is x ∈ X such that x ∈ Fr for each

r ∈ E. Then for each r ∈ E there is m(r) ∈ ω such that hm(r)(x) = r. As
E is uncountable, there must be m ∈ ω and distinct r, s ∈ (0, 1) such that
m = m(r) = m(s). Therefore hm(x) = r and hm(x) = s, a contradiction.

We now step aside to draw two corollaries on zero–dimensional subspaces.

Theorem 3.3. Let X be a metrizable space.

(i) X is a union of ω1 many Gδ zero–dimensional subspaces.

(ii) For any cardinal κ 6 c of uncountable cofinality, X is a union of an
increasing sequence 〈Hα : α < κ〉 of zero–dimensional subspaces.

(iii) If cf|X| > ω1 or cf|X| < c, then X contains a zero–dimensional subspace
of cardinality |X|.

(iv) If no zero–dimensional subspace of X has cardinality |X|, then cf|X| =
ω1 and CH holds.

Proof. (i) is an obvious consequence of Claim 3.2.
(ii) Let κ be a cardinal, ω1 6 κ 6 c. Take a set E = {rα : α < κ} ⊆ (0, 1)

and consider the sets Grα , α < κ, defined by (3.2). For each α < κ put

Hα =
⋂

α6β<κ

Grβ . (3.3)

Using cf κ > ω1 it is routine to deduce from 3.2(ii) that
⋃
α<κHα = X.

(iii) If cf|X| > ω1, let κ = ω1. If cf|X| < c, let κ > cf|X| be any regular
cardinal such that κ 6 c. Consider the family (3.3). In either case there is
α < κ such that |Hα| = |X|. (iv) is a restatement of (iii).

Hurewicz [9] constructed under CH an uncountable separable metric space
X whose each finitely–dimensional subspace is countable. This together with
the previous theorem yields the following consequence.

Corollary 3.4. Each of the following is equivalent to ¬CH.

(i) Every metrizable space X has a zero–dimensional subspace of cardinality
|X|.

(ii) Every uncountable separable metrizable space has an uncountable zero–
dimensional subspace.
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We now get back to the construction of opaque sets.

Definition 3.5. Let X and Y be topological spaces and I and J families
of subsets of X and Y , respectively (I and J are usually ideals). We write
I 6 J if the following holds: If A ⊆ X and f : X → Y is a continuous
mapping such that f � A : A→ Y is one–to–one and f(A) ∈ J , then A ∈ I.

Theorem 3.6. Let X be a metrizable space, C a family of subsets of X and
I a σ-ideal on X. Let E ⊆ R be such that |E| = |C| and let J be a σ-ideal on
R. If I 6 J and E ∈ J , then X contains a C-opaque set Y ∈ I.

Proof. We may assume that E ⊆ (0, 1). Arrange the family C in a sequence
〈Cr : r ∈ E〉. Consider the sequence 〈hm : m ∈ ω〉 from Theorem 3.1. For
each m ∈ ω put

Em = {r ∈ E : Cr ∩ h−1
m (r) 6= ∅}.

For r ∈ Em pick a point y(m, r) ∈ Cr ∩ h−1
m (r). Finally put

Ym = {y(m, r) : r ∈ Em}, Y =
⋃
m∈ω

Ym.

We assert that Y ∈ I. Indeed, note that, for each hm � Ym : Ym → (0, 1) is
one–to–one and that Ym ⊆ h−1

m Em. As E ∈ J and I 6 J , we have Ym ∈ I.
As I is σ-complete, we are done.

We show that Y is C-opaque. Let r ∈ E and assume that Cr ∩ Y = ∅.
Then Cr ∩ Ym = ∅ for each m ∈ ω, which in turn implies Cr ∩ h−1

m (r) = ∅. It
follows (cf. (3.2)) that Cr ∩Fr = ∅, i.e. Cr ⊆ Gr. By Claim 3.2(i), dimCr = 0.
The proof is complete.

4 Small Opaque Sets

We now apply Theorem 3.6 to investigate which of the following sets can be
opaque and/or have positive dimension. The map shows inclusions in the
realm of separable metric spaces. General references are [13, 14, 2]. In [2]
questions related to dimension are discussed.

strong measure zero
↓

σ universally small → universal measure zero
↓ ↓ ↓

λ′ → λ → universally meager → (s)0
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Strong Measure Zero Sets

A set E in a metric space X is a strong measure zero set if, given any sequence
〈εn : n ∈ ω〉 of positive reals E can be covered by a sequence 〈En : n ∈ ω〉 of
sets, each En of diameter at most εn.

Fact 4.1 ([12], [22, 5.1]). Every strong measure zero set has dimension zero.

σ-Sets

A set E in a separable metric space X is a σ-set if every Fσ-subset of E is Gδ
in E. E is of bounded Borel rank if there is α < ω1 such that each Borel set
in E belongs to Σ0

α. Obviously, every σ-set is of bounded Borel rank.

Fact 4.2. Each set of bounded Borel rank (in particular each σ-set) has di-
mension zero.

Proof. This is an easy consequence of a deep result of Irek Rec law, see [14,
Theorem 17]: A set of bounded Borel rank does not map continuously onto
[0, 1]. Let E be a set of bounded Borel rank and d a metric on E. Assume
dimE > 0. According to the definition of the small inductive dimension,
there is a point x ∈ E and ε > 0 such that for each r 6 ε the sphere {y ∈ E :
d(x, y) = r} is nonempty. It follows that the continuous mapping φ : X → [0, ε]
defined by φ(y) = min(ε, d(x, y)) is onto. Apply Rec law’s theorem.

Universal Measure Zero Sets

A set E in a metric space X has universal measure zero if there is no nontrivial
finite diffused Borel measure in E. It is well–known that for any two metric
spaces, the underlying σ-ideals of universal measure zero sets I and J satisfy
I 6 J . Thus the next assertion follows from Example 2.3 and Theorem 3.6.

Theorem 4.3. If there is a set E ⊆ R of universal measure zero such that
|E| = c, then each metrizable space such that |X| 6 c contains a universal
measure zero set Y that is opaque w.r.t. separable Borel sets.

Grzegorek [5] shows that there is a universal measure zero set E ⊆ R of
cardinality non L. Thus we have

Corollary 4.4. The following are equivalent and implied by non L = c:

(i) There is a universal measure zero set E ⊆ R such that |E| = c.

(ii) There is a separable universal measure zero set X of positive dimension.
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(iii) Each separable metric space X contains a universal measure zero set Y
such that dimY > dimX − 1. If X has strongly infinite dimension, then
so has Y .

(iv) Each metric space of cardinality 6 c contains a universal measure zero
set that is opaque w.r.t. separable Borel sets.

Using Grzegorek’s theorem and the idea of Example 2.4 yields the following
absolute result. Provide the interval [0, π) with Lebesgue measure. Given
θ ∈ [0, π), denote by projθ : R2 → Lθ the orthogonal projection on the unique
line Lθ through the origin that makes angle θ with the x-axis. Each Lθ hosts
a linear Lebesgue measure. Let’s say that a set has full outer measure if its
complement has inner measure zero.

Theorem 4.5. There is a universal measure zero set Y ⊆ R2 such that{
θ ∈ [0, π) : projθ Y has full outer Lebesgue measure

}
has full outer measure.

Proof. Let E ⊆ (0, 1) have universal measure zero and |E| = non L. Let
A ⊆ [0, π) and B ⊆ R have full outer Lebesgue measure and |A| = |B| =
non L. Provide each Lθ with an isometric copy Bθ of B. Consider the family
C =

{
proj−1

θ y : y ∈ Bθ, θ ∈ A
}

. Then |C| = non L = |E|. Apply Theorem 3.6
to get a C-opaque set Y ⊆ R2 that has universal measure zero. As each element
of C is a line, it has dimension 1 and thus is met by Y . It follows that Y is
the required set.

Corollary 4.6. There is a universal measure zero set Y ⊆ R2 such that

dimH

{
θ ∈ [0, π) : dimH projθ Y = 1

}
= 1.

These theorems easily generalize to higher dimensions.

Perfectly Meager and Universally Meager Sets

A set is perfect if it has no isolated points. A set E in a metric space X is
perfectly meager if every perfect subset of E is meager in itself.

Recently Piotr Zakrzewski [20] proved that Grzegorek’s [6, 7] absolutely
first category sets and AFC sets coincide and called them universally meager
sets. By the definition, E is universally meager if, for every perfect Polish
space Z, a subspace Y ⊆ Z and a Borel one–to–one mapping f : Y → E, Y is
meager in Z. Obviously, every universally meager set is perfectly meager. It
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follows at once from results of Zakrzewski [20, Theorem 2.2], Rec law [15] and
Bartoszyński [1] that whether every perfectly meager set is universally meager
is independent of ZFC.

Zakrzewski gives eight equivalent conditions that characterize universally
meager sets. Here is one more.

Proposition 4.7. X is universally meager if and only if for each one–to–one
continuous mapping f : Y → X from a separable metric space, Y is perfectly
meager.

Proof. We prove the if part. Let Z be a perfect Polish space, Y ⊆ Z and
f : Y → X a one–to–one Borel mapping. Let {Bn : n ∈ ω} be a base for X.
The sets f−1Bn are Borel. Hence they have the Baire property. Therefore
there are meager sets In, n ∈ ω, such that Un = f−1Bn4In is open in Y
for each n ∈ ω. Put I =

⋃
n∈ω In, U = Y \ I and φ = f � U . Obviously

φ−1Bn = U ∩ Un for each n ∈ ω; so φ : U → X is continuous. Therefore U is
perfectly meager and thus meager in Z. As I is meager, we are done.

Obviously, for any two metric spaces X and Y the underlying σ-ideals of
universally meager sets I and J satisfy I 6 J . Grzegorek [5] shows that
there is a meager set in R of cardinality non K. Thus we have the counterpart
to Theorem 4.3 and Corollary 4.4.

Theorem 4.8. The following are equivalent and implied by non K = c:

(i) There is a universally meager set E ⊆ R such that |E| = c.

(ii) Each separable metric space contains a universally meager Borel–opaque
set.

(iii) There is a universally meager set X of positive dimension.

There is also a category couterpart of Theorem 4.5.

Theorem 4.9. There is a universally meager set Y ⊆ R2 such that the set{
θ ∈ [0, π) : projθ Y is not meager

}
is not meager.

λ-Sets

A set E in a metric space X is a λ-set if every countable subset of X is Gδ.
Being a λ-set is not a σ-additive property. On the other hand, if X, Y are
metric spaces and I, J the underlying families of λ-sets, then I 6 J ([13,
Lemma 9.3.1(b)]). Also, there is a λ-set of cardinality b ([17], see also [14,
Theorem 21]). Thus Theorem 1.1 and Theorem 3.6 yield



Small Opaque Sets 465

Theorem 4.10. The following are equivalent and implied by b = c:

(i) There is a λ-set E ⊆ R such that |E| = c.

(ii) Each metrizable space of cardinality 6 c contains a union of countably
many λ-sets that is opaque w.r.t. separable Borel sets.

(iii) There is a separable λ-set of positive dimension.

Note that as every λ-set is perfectly meager ([13, Theorem 5.2]), it follows
from Proposition 4.7 that every λ-set is universally meager.

λ′-Sets

A set E in a metric space X is a λ′-set (relX) if E ∪ D is a λ-set for each
countable set D ⊆ X. So E is a λ-set iff it is a λ′-set (relE). In particular,
every λ′-set is a λ-set. Unlike other small sets, being a λ′-set is not an intrinsic
property.

Being a λ′-set is a σ-additive property ([18], see [13, Theorem 7.1]). If X,
Y are metric spaces and I, J the underlying σ-ideals of λ′-sets, then I 6 J
([19], see [13, Lemma 9.3.1(c)]; the proof therein is incorrect, yet the lemma
holds). Thus Theorem 3.6 yields the following theorem.

Theorem 4.11. The following are equivalent:

(i) There is a λ′-set (rel R) of cardinality c.

(ii) There is a compact metric space X that contains a λ′-set (relX) of pos-
itive dimension.

(iii) Each separable metric space X contains a λ′-set Y (relX) such that
dimY > dimX−1. If X has strongly infinite dimension, then so has Y .

(iv) Each metric space X of cardinality 6 c contains a λ′-set (relX) that is
opaque w.r.t. separable Borel sets.

Note that while it is known that CH implies (i), the discussion around
Theorems 21–23 in [14] reveals that b = c is not enough: In the Laver model
all λ′-sets in R have cardinality at most ω1 while b = d = c = ω2.

Universally Small Sets

Following [21], call a set E in a separable metric space X universally small if
it belongs to every Borel–based ccc σ-ideal on X. Equivalently, if there are no
nontrivial Borel–based ccc σ-ideals on E. Being universally small is obviously
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a σ-additive property that is preserved by one–to one preimages. It is known
that there is a universally small set of cardinality ω1, see [13, Theorem 5.3].
Thus Theorem 3.6 yields

Theorem 4.12. The following are equivalent and implied by CH:

(i) There is a universally small set in R of cardinality c.

(ii) There is universally small set of positive dimension.

(iii) Each separable metrizable space contains a Borel–opaque universally small
set.

(s)0-Sets

A set E in a separable metric space X is an (s)0-set (relX) if for every
perfect compact set P ⊆ X there is a perfect set Q ⊆ P \ E. This property
obviously depends on the space X and is not therefore intrinsic. To overcome
this trouble we define E to be an absolutely (s)0-set if it is an (s)0-set (relX)
for each separable metric space X ⊇ E. The following follows easily from the
Perfect Set Theorem.

Proposition 4.13. If there is an analytic space X ⊇ E such that E is an
(s)0-set (relX), then E is absolutely (s)0.

It is known that there is an (s)0-set (rel R) of cardinality c. By the above
proposition, it is absolutely (s)0. As being absolutely (s)0 is a σ-additive
property that is preserved by one–to–one preimages (see [2]), Theorem 3.6
yields the following fact.

Theorem 4.14. Each separable metrizable space contains a Borel–opaque ab-
solutely (s)0-set. Thus there are absolutely (s)0-sets of positive dimension.

5 Universal Measure Zero Sets with Positive Hausdorff
Dimension

In this section we apply Theorem 3.6 to Hausdorff measures. The goal is
to get, without any extra axioms, universal measure zero sets with positive
Hausdorff dimension. Recall that, given s > 0, the s-dimensional Hausdorff
measure on a separable metric space X with metric d is defined as

Hs(E) = sup
δ>0

inf
∑
n

(dEn)s, E ⊆ X,
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where dEn stands for the diameter of En and the infima are taken over all
finite or countable covers {En} of E by sets of diameter at most δ. We refer
to [4] or [16] for properties of Hs. The Hausdorff dimension of a set E ⊆ X
is defined by dimH E = sup{s > 0 : Hs(E) > 0}.

Lemma 5.1. Let X be a metric space. If dimX > n ∈ ω, then there is a
countable family F of Lipschitz mappings f : X → [0, 1]n such that for each
r ∈ (0, 1)n there is f ∈ F with dim f−1(r) > dimX − n.

Proof. We use the notation of (3.2). Consider the functions hm from Theo-
rem 3.1. For each ι ∈ ωn define a function fι : X → [0, 1]n by

fι(x) = 〈hι(j)(x) : j < n〉.

As all hm’s are Lipschitz, so is fι. Let F = {fι : ι ∈ ωn}. We assert that F is
the required family. It is obviously countable. Let r ∈ (0, 1)n. By Claim 3.2(i),
dimGr(j) = 0 for all j < n. The Decomposition and Addition Theorems [3,
Theorems 7.7.9 and 7.3.10] thus yield dim

⋃n−1
j=0 Gr(j) 6 n− 1 and

dim
n−1⋂
j=0

Fr(j) > dimX − dim
n−1⋃
j=0

Gr(j) − 1 > dimX − n.

On the other hand

n−1⋂
j=0

Fr(j) =
n−1⋂
j=0

⋃
m∈ω

h−1
m

(
r(j)

)
=
⋃
ι∈ωn

n−1⋂
j=0

h−1
ι(j)

(
r(j)

)
=
⋃
ι∈ωn

f−1
ι (r).

As f−1
ι (r) is closed for each ι ∈ ωn, by the Countable Sum Theorem [3,

Theorem 7.2.1] there is ι ∈ ωn such that dim f−1
ι (r) = dim

⋂n−1
j=0 Fr(j) >

dimX − n, as required.

In connection with the following theorem we mention the classical result
of [10]: If X is a separable metric space, then dimH X > dimX.

Theorem 5.2. Let X be a separable metric space. If dimX > n ∈ ω, then
there is a set Y ⊆ X of universal measure zero such that Hn(Y ) =∞.

Proof. By Lemma 5.1 there is a countable family F of Lipschitz mappings
f : X → [0, 1]n such that for each r ∈ (0, 1)n there is f ∈ F with dim f−1(r) >
0. Choose B ⊆ (0, 1)n such that |B| = non L and Hn(B) > 0. For each f ∈ F
let B(f) = {r ∈ B : dim f−1(r) > 0}. Then

⋃
f∈F B(f) = B. Therefore there

is g ∈ F such that Hn
(
B(g)

)
> 0. Put C = {g−1(r) : r ∈ B(g)}. By the above
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metioned Grzegorek’s theorem there is a set E ⊆ R of universal measure zero
such that |E| = non L. Obviously |E| = |C|. Apply Theorem 3.6 to get a
C-opaque set Y ⊆ X that has universal measure zero.

We prove that Y is the required set. As each C ∈ C has positive dimension,
it is met by Y . Therefore g maps Y onto B(g). In particular, Hn

(
g(Y )

)
>

Hn
(
B(g)

)
> 0. As g is Lipschitz, [4, Lemma 6.1] yieldsHn

(
g(Y )

)
6 LnHn(Y ),

where L is the Lipschitz constant of g. It follows that Hn(Y ) > 0.
If Hn(Y ) <∞, then its restriction to Y would be a finite Borel measure in

Y witnessing to Y not having universal measure zero. Thus Hn(Y ) =∞.

Corollary 5.3. Each separable metric space X contains a set Y of universal
measure zero such that

(i) if dimX <∞, then HdimX−1(Y ) =∞ and thus dimH Y > dimX − 1,

(ii) if dimX =∞, then Hs(Y ) =∞ for all s > 0 and thus dimH Y =∞.

Proof. (i) is obvious. To prove (ii), construct for each n ∈ ω a universal
measure zero set Yn ⊆ X such that Hn(Yn) > 0 and put Y =

⋃
n∈ω Yn.

Corollary 5.4. For each n ∈ ω there is a set Y ⊆ Rn+1 of universal measure
zero such that Hn(Y ) =∞.

Thus we have “real” examples of sets that have positive Hausdorff dimension
and universal measure zero. I learned from David Fremlin that he has this
result for n = 1 (published on the web).
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