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ON THE NON-COMPACTNESS OF
MAXIMAL OPERATORS

Abstract

It is proved that if B is a convex quasi-density basis and E is a
symmetric space on R™ with respect to Lebesgue measure, then there
do not exist non-orthogonal weights w and v for which the maximal
operator Mp corresponding to B acts compactly from the weight space
FE., to the weight space F,.

1 Definitions and Notation

A mapping B defined on R™ is said to be a differentiation basis in R™ (see,
e.g., [1]) if for every x € R™, B(xz) is a family of open bounded sets containing
the point x such that there exists a sequence { Ry} C B(x) with diam Ry — 0
(k — 00).

By Mp we mean the mazimal operator corresponding to the differentiation
basis B; that is,

Maf(@) = sup o [1f](f € Lue®), 0 € RY)
ReB(x) |R‘
R

The basis B is said to differentiate the integral of the function f if for

almost every € R™ the integral mean ﬁ J f tends to f(x) when R € B(z),
R

diam R — 0.
The basis B is called:
a density basis if B differentiates the integral of the characteristic function
of every measurable set,
conver if for every x € R™ the collection B(z) consists of convex sets,
translation invariant if B(x) = {x + R: R € B(0)} for any x € R",
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Busemann—Feller if for any R € |J B(z) we have that R € B(y) for
TER™
every y € R.

We call the basis B:

quasi-density if it contains some density basis; i.e., if there exists a density
basis H such that H(z) C B(z) (z € R™),

measurable if Mp f is a measurable function for any f € Lj,.(R"™).

Note that: 1) any translation invariant convex basis is a quasi-density basis
(see [1, Ch. I, §3]; 2) any translation invariant basis and any Busemann-Feller
basis are measurable (as is easy to verify).

Denote by Q the differentiation basis for which Q(z) (z € R™) consists of
all cubic intervals containing x. Recall that Mg is called the Hardy-Littlewood
mazximal operator.

Let (X, .S, 1) be a measure space and let A be the class of all y-measurable
functions defined on X. The normed function space (function space for short)
E is said to be ideal (see, e.g., [2]) if

r€ANYyEE, |z|<|ylp-ae =z X and ||z||; < |yl
The function space E on (X, S, 1) is said to be symmetric if it is ideal and
x €A,y € E, x is equimeasurable with y = z € X and |z|, = ||yl -

Let E be a symmetric space on R™ with respect to Lebesgue measure and
w be a locally integrable and non-negative function on R™ (i.e., w is a weight).
Denote by F,, the set of all measurable functions f for which there is a function
g € E such that

{IF1 >t} = [{lgl > t}] (¢ > 0), (1)

where |- |, = wdz and |- | = dz. The norm in E,, is defined as follows. For
f € Eu, Iflle, =19l 5, where g is some function from F satisfying (1). E,, is
called the space E with respect to the weight w. Note that F,, is a symmetric
space on the measure space (R"™, w dzx).

For the symmetric space E on the measure space (X, S, 1) let

¢s(t) = [Xalls (¢>0),

where A € S and p(A) =t. ¢, is called a fundamental function of E.
We call the symmetric space E regular if t1i151+ v, (t) =0.

We call the weights w and v non-orthogonal if

Hz e R": w(z) >0, v(z) >0} > 0.
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Let w and v be non-orthogonal weights. Obviously, there is k € N such
that [{z € R" : + < w(x), v(z) < k}| > 0. Due to this note we can introduce
the notation

Cww = sup{g 0< ¢ <cg, Hx €eR" 1 g < w(x), v(z) <ca}| > 0}.
C2

2 Results

Edmunds and Meskhi [3] proved the following theorem. Let 1 < p < oo. Then
there do mot exist almost everywhere positive weights w and v on R™ for which
the Hardy-Littlewood mazimal operator Mg acts compactly from LP (R™) to
LP(R™).

The following generalization of this result is true.
Theorem. Let B be a convex quasi-density measurable basis, E be a symmet-
ric space on R™ with respect to Lebesgue measure. Then for any non-orthogonal

weights w and v on R™ and for any € € (0,1) there exists a sequence of sets
{Ax} with {Xa,} C Ey, [[Xa, |z, >0 (k €N) such that

(Mg fm — Mpfr)Xa,,

5, > (1 —=€)cwy when m >k,

where fr = Xa, /IIXa,|lp, (k €N). Furthermore, if E is a regular symmetric
space, then the same conclusion is true for quasi-density measurable bases.

Corollary. Let B be a convex quasi-density basis, E be a symmetric space on
R™ with respect to Lebesque measure. Then there do not exist non-orthogonal
weights w and v on R™ for which Mp acts compactly from E,, to E,. Fur-
thermore, if E is a reqular symmetric space, then the same conclusion is true
for quasi-density bases.

3 Auxiliary Statements

Lemma 1. Let E be a symmetric space on R™ with respect to Lebesgue mea-
sure, w and v be weights on R™. Suppose 0 < ¢1 < co and the set

H={zeR":¢; <w(x), v(z) <ca}
is of positive measure. Then for every set A C H with |A| > 0 the inequalities

a _ Xallg, e
0 <oy (arldA]) < Xall,, Xallg, < @plcalA]) and = < T2 < =
c2 = [[Xallg, T a

hold.
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PROOF. As is known (see [2, Ch. II, §4]), the fundamental function of F has
the properties: ¢, (0) = 0, ¢, is positive and increasing on (0, 00) and ¢, (t)/t
is decreasing on (0,00). According to the definition of a weight symmetric
space we have

Xallz, = ¢r(|Alw) and [[Xallz, = @5 (A]o).
Since A C H and |4], = [wdz , |A], = [vdz, we have ¢1]|A| < |A]y, [A]s <
A A

ca|Al. Now taking into account the properties of ¢, we easily obtain the
validity of the lemma. O

Lemma 2. Let (X, 51, u1) and (X, Sa, u2) be measure spaces, Eq be a function
space on (X,S1,p1), By be an ideal function space on (X, Sa,u2), and T :
L>(X, Sy, 1) — L®(X, Sa, u2) be a positively homogeneous operator. If there
exists a sequence of sets {H;} C S1 NSy with the properties:
1) {XH } C E1NE;,
2) >0 (ieN)

5, — 0 (i — 00),
(i € N),

3)

4) TXp, ( ) > 1 for almost every ze HZ-,
5) TXH € L*® (X, SQ,/,LQ) (’L S N),

then for any € € (0,1) there exists an increasing sequence of indexes {i(k)}

such that

(T fitmy = T i) X, | 5, > (1 = €)c when m >k,

where f; = (1 eN).

PROOF. Let o; = and B; = [T fill oo x5y 4y (¢ € N). Since a; — 00
(i — o0), we can choose an increasing sequence of indexes {i(k)} such that
Qim) > iy (m > k) and ea;q1) > Bik) (k € N). Taking into account the
condition of Lemma 1 and choosing {i(k)}, for m > k we can write

H(Tfi(m - Tfi )XHi(m) ||E2 2> ”Tfi(m) ’ XHi(m) ||E2 - HTfi(k) ' XHi(m) ”E2
> ||a1(m)XH1(m) ||E2 Hﬂl k)XHz:(m) ”Ez = (al(m) - ﬂi(k))”XHi(m) ||E2
(1 - 6)0‘1(771 C”XHl(m) ||E1 (1 - g)c' O

We shall call a strip in R™ an open set bounded by two different parallel
hyperplanes; i.e., a set of the form

{zeR" :a <oz + -+ apz, < b},

where a,b (a < b) , a1,...,a, (Jai| + -+ + |a,| > 0) are real numbers, and
xr (k=1,...,n) denotes the k-th coordinate of the point z € R™. The strip
width will be called the distance between the hyperplanes that bound the strip.
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Lemma 3. Let A be a set of positive measure in R™. Then for any § € (0,1)
there exists a sequence of mutually parallel strips {Sk} such that

1) |SeNA|l>0(keN),

2) (deﬂlofsk)

5 (k< m).
Gst(Sp. 8, O k<m)

PROOF. By virtue of the well-known Lebesgue theorem (see, e.g., [1]), basis
Q differentiates the integral of every locally summable function. Thus

1
lim —/X = X4(z) a.e. 2
QeQ(2), [Q—0 |Q)| 2 4 (=) @)

Let us consider the point zg € A for which (2) is valid. Denote N = [4] + 1.
Obviously, we can choose cubic intervals Qp (k € N) with centers at xy such

that Qe Al : 1
ﬁ >1-— IN and {(Qr+1) = §£(Qk) (k €N),

where ¢(Q) denotes the length of the edges of the cube Q). Obviously, Q) has
the form Qy = I X Ji, where I is an interval in R and Jj is a cubic interval
in R"~!. Let us divide I} (k € N) into 2N equal intervals and denote by I},
the first interval from the left. Let Sy (k € N) be the strip I}, x R"~1. It is
easy to check that {Sj} satisfies the conditions of Lemma 3. O

Lemma 4 below was proved in [4]. We present the proof here for the sake
of completeness.

Lemma 4. Let B be a convex basis and S be a strip in R™. Then

2" (width of S)

Mp(Xs)(z) < dist(z, S)

when dist(z, S) > (width of) S.

PrOOF. Let § = (width of S), dist(z,S) > § and R € B(z), RN S # &.
Among the hyperplanes bounding S we denote by I' the hyperplane which is
closest to z. It is obvious that RNI' # @. For every y € RN T let A, be a

segment connecting x and y. Let K = |J A,. Since R is convex, we have
yeRNT
K CR. (3)

Let H be the homothety centered at x and with the coefficient

_ dist(z,S) +6
~ dist(z, 9)
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Let us show that
RNSCHK)\K. (4)

Indeed, let z be an arbitrary point from RN S and let y be the point at which
the segment connecting « and z intersects with I'. Since z,z € R, by virtue
of the convexity of R we have y € R. Therefore y € RNT'. By the definitions
of the set K and homothety H we easily obtain z € H(A,) C H(K).Since
(RNS)NK = @. Therefore z ¢ K. Thus, z € H(K) \ K.(4) is proved.

Using (3), (4), the definition of H and obvious inequality a” —1 < -2~
we can write

L/ Yo IBOS| JHE)NK]  (a" - K] 279
Rl Jn"* B[~ | K| K| dist(z, S)

_2"5
dist(x,S)

O

4 Proof of the Theorem

PROOF OF THE SECOND PART OF THE THEOREM. Let 0 < d <1 —+1—¢
and 0 < ¢; < ¢3 be such that z—; > (1 — 0)cy,» and the set

H={zeR":¢; <w(z), v(iz) <co} (5)

is of positive measure. Let {H;} be a sequence of measurable sets with the
properties

H;,CH 0<|H)| <o0(ieN), |H|—0 (i > ). (6)

Let us set (X,S1,p1) = (R, S,wdzx), (X, S2,pu2) = (R", S,vdx), where S
is the class of all measurable sets in R"; Fy = E,, Fs = E, and T =
ME| Lo (®n,5,dz)-

Now let us show that {H;} satisfies all the conditions of Lemma 2. Every
ideal space contains a characteristic function of any set with the finite measure.
Therefore from (5) and (6) we have that {Xg,} C E1 N E2. From Lemma 1,
the regularity of the space E and (5), (6) we write

||XHi||Ew > @E(cl‘HiD >0 (7/ € N)a

||XHi Euw < @E(CQ‘HZD —0 (7’ - 00)7
Xolle,  a ‘
=t > = > (1 —=§)cww (i €N).
||XH1 o Co ( ) w, ( )

Thus we have established that {H;} satisfies conditions 1)-3) of Lemma 2.
(Note that in condition 3) instead of ¢ we have (1 — §)ey,».) Condition 4) is
satisfied because B is a quasi-density basis and 5) is obvious. Now by virtue
of Lemma 2 and a choice of § we conclude that the assertion is proved.
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PrROOF OF THE REMAINING PART OF THE THEOREM. Due to the asser-
tion already established it remains to prove the assertion in the case where
tlir&goE(t) =p>0. Let 0<d<1—+1—cand 0 < c; < cz be such that

2> (1= d)cw,v and the set
A={z eR": 1 <w(x), v(z) < ca}
is of positive measure. By virtue of Lemma 3 there exists a sequence of mu-

tually parallel strips {Sj} such that

(width of Si;) ¢
NnA keN d—F—F7F—F7--< —= (k .
|Sk | >0 (keN)an dst(Sr. o) <16( < m)

For any k € N let Ay be a set with the properties
A CSpNA, |Ag| > 0 and ¢, (ca]Ag]) < 2p.
Let ap = 1/[[X4,l,, (k € N). Due to Lemma 1 we have
p < ¢ (aldel) < [Xallz, < eplc2lAr]) < 2p.

Hence ] 1
— < a < - (keN). 7
D) k ( ) ()

By virtue of Lemma 4 for £ < m and x € S,, we can write

4(width of S
MBXAk(I) < MBXSk(I) < M

5
S dist(Sp, 8m) 4° ®)

Now taking into account the condition of the Theorem, (7), (8), Lemma 1 and
a choice of §, for £ < m we have

|(MB fm — Mpfr)Xa,,

Z ||MBfm : XAm

sy — IMB e Xa,, |l g,

Ey

> o Xa,, e, — arl[MpXa, - Xa,, g,
)
= (@m —an 7)1,
ar 0\ C1
> |1 — 7) —|X
n(1- 25 7)o,
> (1-— 5)20w,v||04mXAmHEw > (1—¢)eyw,p. O
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