R. Supper,

Université Louis Pasteur, UFR de Mathématique et Informatique, URA CNRS 001, 7 rue René Descartes, F-67 084 Strasbourg Cedex, France. e-mail: supper@math.u-strasbg.fr

BLOCH AND GAP SUBHARMONIC FUNCTIONS

Abstract

For subharmonic functions $u \geq 0$ in the unit ball B_{N} of \mathbb{R}^{N}, the paper characterizes this kind of growth: $\sup _{x \in B_{N}}\left(1-|x|^{2}\right)^{\alpha} u(x)<+\infty$ (given $\alpha>0$), through criteria involving such integrals as $\int u(x) d x$ or $\int u(x)\left(1-|x|^{2}\right)^{\alpha-N} d x$ over balls centered at points $a \in B_{N}$. Given $p \in \mathbb{R}$ and ω some non-negative function, this article compares subharmonic functions with the previous kind of growth to subharmonic functions satisfying: $\sup _{a \in B_{N}} \int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p} \omega\left(\left|\varphi_{a}(x)\right|\right) d x<+\infty$, where φ_{a} are Möbius transformations. The paper also studies subharmonic functions which are sums of lacunary series and their links with both previous kinds of subharmonic functions.

1 Introduction.

Throughout the paper, $N \geq 2$ denotes a fixed integer and $|$.$| the Euclidean$ norm in \mathbb{R}^{N}.

Definition 1. Given $\alpha>0$, let \mathcal{B}_{α} denote the set of all positive subharmonic functions u in $B_{N}=\left\{x \in \mathbb{R}^{N}:|x|<1\right\}$ such that

$$
\begin{equation*}
G_{\alpha}(u):=\sup _{x \in B_{N}}\left(1-|x|^{2}\right)^{\alpha} u(x)<+\infty \tag{1}
\end{equation*}
$$

Remark 1. When $N=2$, the holomorphic functions f in the unit disk of \mathbb{C} such that $u=\left|f^{\prime}\right|$ satisfies (1) form the so-called α-Bloch space (see [8, page 10]).

[^0]Definition 2. For any $a \in B_{N}$ and any $R \in[0,1[$, let $B(a, R)=\{x \in$ $\left.B_{N}:|x-a|<R\right\}$, with $\operatorname{Vol} B(a, R)$ the volume of this ball. In particular $\operatorname{Vol} B(a, R)=V_{N} R^{N}$ where $V_{N}=\frac{2 \pi^{N / 2}}{N \cdot \Gamma(N / 2)}$ is the volume of B_{N}, see [2, p.29]. We note $R_{a}=R \frac{1-|a|^{2}}{1+R|a|}$.

Theorem 1 establishes the following characterization of \mathcal{B}_{α}.

$$
\begin{equation*}
u \in \mathcal{B}_{\alpha} \Longleftrightarrow \sup _{a \in B_{N}}\left(\frac{1}{\operatorname{Vol} B\left(a, R_{a}\right)}\right)^{1-\frac{\alpha}{N}} \int_{B\left(a, R_{a}\right)} u(x) d x<+\infty \tag{2}
\end{equation*}
$$

whatever $R \in] 0,1[$. In Theorem 2 and Proposition 1 , we observe that only implication \Longleftarrow still holds when the ball $B\left(a, R_{a}\right)$ is replaced by an ellipsoid $E(a, R)=\left\{x \in B_{N}:\left|\varphi_{a}(x)\right|<R\right\}$, the transformation φ_{a} being defined by:

$$
\varphi_{a}(x)=\frac{a-P_{a}(x)-\sqrt{1-|a|^{2}} Q_{a}(x)}{1-\langle x, a\rangle} \forall x \in B_{N}
$$

where $\langle x, a\rangle=\sum_{j=1}^{N} x_{j} a_{j}$ for $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right), a=\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$, $P_{a}(x)=\frac{\langle x, a\rangle}{|a|^{2}} a$ and $Q_{a}(x)=x-P_{a}(x)$, with $P_{a}(x)=0$ if $a=0$. This points out a significant difference with the α-Bloch space of holomorphic functions in the unit disk of \mathbb{C}. This space is characterized ([9]) by a property similar to (2), with $B\left(a, R_{a}\right)$ replaced by $E(a, R)$ which happens to be an Euclidean disk when $\varphi_{a}(z)=\frac{a-z}{1-\bar{a} z}$ for all a and z in the unit disk of \mathbb{C}. Another difference with the case of \mathbb{C} is outlined in Section 2. Our set \mathcal{B}_{α} is not invariant under the map $\varphi_{a}\left(a \in B_{N}, a \neq 0\right)$. From now on, φ_{a} will always denote this more general automorphism defined above. This transformation φ_{a} is an automorphism of the unit ball of \mathbb{C}^{N} (cf. [1, p.115] or [5, pp.25-30]). In this paper, we work on the unit ball of \mathbb{R}^{N}, but many interesting properties of φ_{a} carry over to the real case.

Theorem 3 sets forth another characterization of \mathcal{B}_{α}; namely for all $R \in$]0, 1[,

$$
u \in \mathcal{B}_{\alpha} \Longleftrightarrow \sup _{a \in B_{N}} \int_{B\left(a, R_{a}\right)} u(x)\left(1-|x|^{2}\right)^{\alpha-N} d x<+\infty
$$

Definition 3. Given $p \in \mathbb{R}$ and $\omega:[0,1[\rightarrow[0,+\infty[$ a measurable function, let $\mathcal{S H}(p, \omega)$ denote the set of all non-negative subharmonic functions u in B_{N} which satisfy

$$
S_{p, \omega}(u):=\sup _{a \in B_{N}} \int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p} \omega\left(\left|\varphi_{a}(x)\right|\right) d x<+\infty .
$$

When the function ω is decreasing and such that

$$
\begin{equation*}
\Omega:=\int_{0}^{1} \frac{\omega(r) r^{N-1}}{\left(1-r^{2}\right)^{\frac{N+1}{2}}} d r<+\infty \tag{3}
\end{equation*}
$$

Theorems 4 and 5 prove that $\mathcal{B}_{\alpha} \subset \mathcal{S H}(p, \omega) \subset \mathcal{B}_{\gamma}$ for $0<\alpha<p+\frac{N+1}{2}<$ $p+N \leq \gamma$. Propositions 4 and 5 provide counterexamples to show that the converse inclusions do not hold.

Section 5 studies the case of gap subharmonic functions of the form $u(x)=$ $\sum_{k=1}^{+\infty} c_{k}|x|^{2^{k}}$. Theorems 6, 7 and Propositions 7,8 give several criteria for such functions to belong to \mathcal{B}_{α} or $\mathcal{S H}(p, \omega)$.

Technical lemmas 1-7 are postponed to the appendix (see Section 6).
Let us end Section 1 with some remarks about the significance of p and ω in Definition 3. For holomorphic functions f in the unit disk of \mathbb{C}, let $S_{p, \omega}\left(\left|f^{\prime}\right|^{q}\right)$ be defined, for any $q>0$, as in Definition 3, with φ_{a} replaced by map $z \mapsto \frac{a-z}{1-\bar{a} z}$ where a and z belong to the unit disk of \mathbb{C}, identified with B_{2}. If $\omega(r)=\log \frac{1}{r}$ and $p=0$, then $S_{p, \omega}\left(\left|f^{\prime}\right|^{2}\right)<+\infty$ means that f belongs to the space $B M O A$. If $\omega(r)=\left(\log \frac{1}{r}\right)^{s}$ with $s>1, p>-2$ and $q>0$, then $S_{p, \omega}\left(\left|f^{\prime}\right|^{q}\right)<+\infty$ means that f belongs to the $\frac{p+2}{q}-$ Bloch space. If $\omega \equiv 1$ and $p=1$, then $S_{p, \omega}\left(\left|f^{\prime}\right|^{2}\right)<+\infty$ means that f belongs to the Hardy space H^{2}. If $\omega \equiv 1$ and $p \geq 1$, then $S_{p, \omega}\left(\left|f^{\prime}\right|^{p}\right)<+\infty$ means that f belongs to the Bergman space L_{a}^{p}. If $\omega \equiv 1$ and $p>-1$, then $S_{p, \omega}\left(\left|f^{\prime}\right|^{2}\right)<+\infty$ means that f belongs to the Dirichlet space D_{p}. If $\omega \equiv 1$ and $p>-1$, then $S_{p, \omega}\left(\left|f^{\prime}\right|^{p+2}\right)<+\infty$ means that f belongs to the $(p+2)$-Besov space. More details and references about these spaces may be found in [8].

2 The Set \mathcal{B}_{α} Is Not Möbius-Invariant.

Given $a \in B_{N}$, if $u \in \mathcal{B}_{\alpha}$ is such that $u \circ \varphi_{a}$ remains subharmonic in B_{N}, then $u \circ \varphi_{a} \in \mathcal{B}_{\alpha}$.

This assertion follows from Lemma 2 (see Section 6).
Let $x \in B_{N}$ and $y=\varphi_{a}(x)=\varphi_{a}^{-1}(x)$. Then $1-\langle x, a\rangle \geq 1-|a|>0$. Hence

$$
\begin{aligned}
\left(1-|x|^{2}\right)^{\alpha} u\left(\varphi_{a}(x)\right) & =\left(1-\left|\varphi_{a}(y)\right|^{2}\right)^{\alpha} u(y)=\frac{\left(1-|y|^{2}\right)^{\alpha}\left(1-|a|^{2}\right)^{\alpha} u(y)}{(1-\langle y, a\rangle)^{2 \alpha}} \\
& \leq \frac{\left(1-|y|^{2}\right)^{\alpha} u(y)\left(1-|a|^{2}\right)^{\alpha}}{(1-|a|)^{2 \alpha}} \leq\left(\frac{1+|a|}{1-|a|}\right)^{\alpha} G_{\alpha}(u)<+\infty
\end{aligned}
$$

Remark 2. For $u \in \mathcal{B}_{\alpha}$, the function $u \circ \varphi_{a}$ is not necessarily subharmonic in B_{N}.

Example. Given $a \in B_{N}, a \neq 0$, the function u defined by $u(x)=1+\langle x, a\rangle$ $\forall x \in B_{N}$ belongs to \mathcal{B}_{α} (for any $\alpha>0$) but $u \circ \varphi_{a}$ is not subharmonic. This function u is subharmonic and even harmonic in \mathbb{R}^{N} since its Laplacian is identically zero. Moreover $u(x) \geq 0 \forall x \in B_{N}$ since $|\langle x, a\rangle| \leq|x| \cdot|a|<1$ $\forall x \in B_{N} \forall a \in B_{N}$. As u is bounded on B_{N}, (1) obviously holds. Now

$$
\begin{aligned}
v(x) & :=u\left(\varphi_{a}(x)\right)=1+\left\langle\varphi_{a}(x), a\right\rangle=1+\frac{|a|^{2}-\langle x, a\rangle}{1-\langle x, a\rangle}= \\
& =1+\frac{|a|^{2}-1+1-\langle x, a\rangle}{1-\langle x, a\rangle}=2-\frac{1-|a|^{2}}{1-\langle x, a\rangle}
\end{aligned}
$$

For any $j \in\{1,2, \ldots, N\}$, we have:
$\frac{\partial v}{\partial x_{j}}(x)=-\left(1-|a|^{2}\right) \frac{a_{j}}{(1-\langle x, a\rangle)^{2}} \quad$ and $\quad \frac{\partial^{2} v}{\partial x_{j}^{2}}(x)=-\left(1-|a|^{2}\right) \frac{2 a_{j}^{2}}{(1-\langle x, a\rangle)^{3}}$
thus $\Delta v(x)=-\frac{2\left(1-|a|^{2}\right)|a|^{2}}{(1-\langle x, a\rangle)^{3}}<0 \forall x \in B_{N}$.

3 Averaging Over Balls and Ellipsoids

Theorem 1. Given $\alpha>0$ and $R \in] 0,1[$, a subharmonic function $u \geq 0$ belongs to \mathcal{B}_{α} if and only if

$$
M_{\alpha, R}(u):=\sup _{a \in B_{N}} \frac{1}{\left[\operatorname{Vol} B\left(a, R_{a}\right)\right]^{1-\frac{\alpha}{N}}} \int_{B\left(a, R_{a}\right)} u(x) d x<+\infty
$$

Moreover $\left(\frac{1}{1+R}\right)^{\alpha} G_{\alpha}(u) \leq\left(\frac{1}{R \sqrt[N]{V_{N}}}\right)^{\alpha} M_{\alpha, R}(u) \leq\left(\frac{1+R}{1-R}\right)^{\alpha} G_{\alpha}(u)$.
Proof. \Longleftarrow Let $a \in B_{N}$. The subharmonicity of u yields

$$
u(a) \leq \frac{1}{\operatorname{Vol} B\left(a, R_{a}\right)} \int_{B\left(a, R_{a}\right)} u(x) d x
$$

Now $1-|a|^{2}=\frac{1+R|a|}{R} R_{a} \leq \frac{1+R}{R}\left(\frac{\operatorname{Vol} B\left(a, R_{a}\right)}{V_{N}}\right)^{1 / N}$. Hence

$$
u(a)\left(1-|a|^{2}\right)^{\alpha} \leq\left(\frac{1+R}{R \sqrt[N]{V_{N}}}\right)^{\alpha} \frac{1}{\left[\operatorname{Vol} B\left(a, R_{a}\right)\right]^{1-\frac{\alpha}{N}}} \int_{B\left(a, R_{a}\right)} u(x) d x
$$

\Longrightarrow Since $u \in \mathcal{B}_{\alpha}$, we have $u(x) \leq \frac{G_{\alpha}(u)}{\left(1-|x|^{2}\right)^{\alpha}} \quad \forall x \in B_{N}$. Let $a \in B_{N}$. By Lemma $1, \frac{1}{1-|x|^{2}} \leq \frac{1+R}{1-R} \frac{1}{1-|a|^{2}} \forall x \in B\left(a, R_{a}\right)$. Thus

$$
\int_{B\left(a, R_{a}\right)} u(x) d x \leq G_{\alpha}(u)\left(\frac{1+R}{1-R}\right)^{\alpha} \frac{1}{\left(1-|a|^{2}\right)^{\alpha}} \cdot \operatorname{Vol} B\left(a, R_{a}\right) ;
$$

so that

$$
\begin{aligned}
& \frac{1}{\left[\operatorname{Vol} B\left(a, R_{a}\right)\right]^{1-\frac{\alpha}{N}}} \int_{B\left(a, R_{a}\right)} u(x) d x \leq G_{\alpha}(u)\left(\frac{1+R}{1-R}\right)^{\alpha} \frac{\left[\operatorname{Vol} B\left(a, R_{a}\right]^{\alpha / N}\right.}{\left(1-|a|^{2}\right)^{\alpha}} \\
& =G_{\alpha}(u)\left(\frac{1+R}{1-R}\right)^{\alpha} \frac{1}{\left(1-|a|^{2}\right)^{\alpha}} V_{N}^{\alpha / N} R^{\alpha} \frac{\left(1-|a|^{2}\right)^{\alpha}}{(1+R|a|)^{\alpha}} \\
& \leq G_{\alpha}(u)\left(\frac{1+R}{1-R} R \sqrt[N]{V_{N}}\right)^{\alpha} .
\end{aligned}
$$

Corollary 1. Let $\alpha>0$ and $u \in \mathcal{B}_{\alpha}$. Then $\left.M_{\alpha, R}(u)<+\infty \forall R \in\right] 0,1[$. If there exist constants $C>0$ and $\varepsilon>0$ such that $\left.M_{\alpha, R}(u) \leq C R^{\alpha+\varepsilon} \forall R \in\right] 0,1[$, then u is the function identically zero in B_{N}.
Proof. If $G_{\alpha}(u) \neq 0$, Theorem 1 implies $M_{\alpha, R}(u) \sim R^{\alpha} V_{N}^{\alpha / N} G_{\alpha}(u)$ as $R \rightarrow 0^{+}$, which is a contradiction.

Theorem 2. Let $\alpha>0, R \in] 0,1[$ and u a non-negative subharmonic function in B_{N}. If

$$
L_{\alpha, R}(u):=\sup _{a \in B_{N}} \frac{1}{[\operatorname{Vol} E(a, R)]^{2 \frac{N-\alpha}{N+1}}} \int_{E(a, R)} u(x) d x<+\infty,
$$

then $u \in \mathcal{B}_{\alpha}$, with $G_{\alpha}(u) \leq m_{\alpha}(R)\left[V_{N} R^{N}\right]^{1-2 \frac{\alpha+1}{N+1}} L_{\alpha, R}(u)$ where $m_{\alpha}(R)=$ $\frac{\left(1-R^{2}\right)^{\alpha}}{(1-R)^{N}}$ if $0<\alpha \leq N$ and $m_{\alpha}(R)=\left(\frac{2}{2 \alpha-N}\right)^{2 \alpha-N}(\alpha-N)^{\alpha-N} \alpha^{\alpha}$ if $\alpha>N$.

Remark 3. When $\alpha>N$ and $0<R \leq \frac{N}{2 \alpha-N}$, the above upper bound of $G_{\alpha}(u)$ still holds with $m_{\alpha}(R)=\frac{\left(1-R^{2}\right)^{\alpha}}{(1-R)^{\alpha}}$ and is even sharper.

Proof. Let $a \in B_{N}$. Since $u \geq 0$, Lemma 3 (Section 6) and the subharmonicity of u lead to

$$
\begin{align*}
\int_{E(a, R)} u(x) d x & \geq \int_{B\left(a, R_{a}\right)} u(x) d x \geq u(a) \operatorname{Vol} B\left(a, R_{a}\right) \\
& =u(a) V_{N} R^{N} \frac{\left(1-|a|^{2}\right)^{N}}{(1+R|a|)^{N}} . \tag{4}
\end{align*}
$$

Whence

$$
u(a)\left(1-|a|^{2}\right)^{\alpha} \leq \frac{1}{V_{N} R^{N}} \frac{(1+R|a|)^{N}}{\left(1-|a|^{2}\right)^{N-\alpha}} \int_{E(a, R)} u(x) d x
$$

As $1-|a|^{2}=\left(1-R^{2}|a|^{2}\right)\left(\frac{\operatorname{Vol} E(a, R)}{V_{N} R^{N}}\right)^{\frac{2}{N+1}}$ according to Lemma 4, we obtain

$$
\begin{aligned}
u(a)\left(1-|a|^{2}\right)^{\alpha} & \leq \frac{(1+R|a|)^{N}}{V_{N} R^{N}} \frac{\left(V_{N} R^{N}\right)^{\frac{2(N-\alpha)}{N+1}}}{\left(1-R^{2}|a|^{2}\right)^{N-\alpha}[\operatorname{Vol} E(a, R)]^{\frac{2(N-\alpha)}{N+1}}} \int_{E(a, R)} u(x) d x \\
& =\frac{\left(1-R^{2}|a|^{2}\right)^{\alpha}}{(1-R|a|)^{N}} \frac{\left(V_{N} R^{N}\right)^{\frac{N-1-2 \alpha}{N+1}}}{[\operatorname{Vol} E(a, R)]^{\frac{2(N-\alpha)}{N+1}}} \int_{E(a, R)} u(x) d x
\end{aligned}
$$

Let the function $g:\left[0,1\left[\rightarrow\left[0,+\infty\left[\right.\right.\right.\right.$ be defined by $g(t)=\frac{\left(1-t^{2}\right)^{\alpha}}{(1-t)^{N}}$. When $0<\alpha \leq N, g$ is increasing on $\left[0,1\left[\right.\right.$ so that $g(R|a|) \leq g(R) \forall a \in B_{N} \forall R \in$ $\left[0,1\left[\right.\right.$. When $\alpha>N$, a study of the derivative g^{\prime} shows that g is increasing on $\left[0, \tau\left[\right.\right.$ with $\tau=\frac{N}{2 \alpha-N}$ and decreasing on $] \tau, 1[$, with maximum $g(\tau)=$ $\left(\frac{2}{2 \alpha-N}\right)^{2 \alpha-N}(\alpha-N)^{\alpha-N} \alpha^{\alpha}$. Hence $g(R|a|) \leq g(R) \leq g(\tau) \forall a \in B_{N} \forall R \in$ $[0, \tau]$ and $g(R|a|) \leq g(\tau) \forall a \in B_{N} \forall R \in[\tau, 1[$.
Corollary 2. Given $\alpha>0$, let $u \geq 0$ be a subharmonic function in B_{N} such that $\left.L_{\alpha, R}(u)<+\infty \forall R \in\right] 0,1[$.
(i) If $\left.L_{\alpha, R}(u) \leq C(1-R)^{N+\varepsilon} \forall R \in\right] 0,1[$ (for some constants $C>0$ and $\varepsilon>0)$, then u is the function identically zero in B_{N}.
(ii) Let $\mu=\frac{2 N(\alpha+1)}{N+1}-N$. If $\left.L_{\alpha, R}(u) \leq C R^{\mu+\varepsilon} \forall R \in\right] 0,1[$ (for some constants $C>0$ and $\varepsilon>0$), then u is the function identically zero in B_{N}.

Proof. (i) Since $\left.G_{\alpha}(u) \leq C\left(V_{N} R^{N}\right)^{-\frac{\mu}{N}}(1-R)^{\varepsilon} \forall R \in\right] 0,1[$, the result follows as $R \rightarrow 1^{-}$
(ii) Since $\left.G_{\alpha}(u) \leq C \frac{\left(V_{N}\right)^{-\frac{\mu}{N}}}{(1-R)^{N}} R^{\varepsilon} \forall R \in\right] 0,1[$, the result follows by letting $R \rightarrow 0^{+}$.

The converse of Theorem 2 does not hold for all $u \in \mathcal{B}_{\alpha}$. The function u of Proposition 1 produces a counterexample.

Proposition 1. Given $\alpha>0$ and $R \in] 0,1[$, the function u defined by $u(x)=$ $\frac{1}{\left(1-|x|^{2}\right)^{\alpha}}\left(\forall x \in B_{N}\right)$ belongs to \mathcal{B}_{α} but

$$
\sup _{a \in B_{N}} \frac{1}{[\operatorname{Vol} E(a, R)]^{2 \frac{N-\alpha}{N+1}}} \int_{E(a, R)} u(x) d x=+\infty
$$

Proof. The subharmonicity of u follows from $\Delta u(x)=g^{\prime \prime}(r)+\frac{N-1}{r} g^{\prime}(r) \geq 0$ where $r=|x|$ (see $[2, \mathrm{p} .26])$ and $g(r)=\frac{1}{\left(1-r^{2}\right)^{\alpha}}(r \in[0,1[)$.

Let $a \in B_{N}$. Since φ_{a} is a \mathcal{C}^{1}-diffeomorphism of B_{N} onto itself (Lemma $2)$, the change of variable $x=\varphi_{a}(y)$ leads to

$$
\begin{aligned}
\int_{E(a, R)} u(x) d x & =\int_{B(0, R)} \frac{1}{\left(1-\left|\varphi_{a}(y)\right|^{2}\right)^{\alpha}}\left(\frac{\sqrt{1-|a|^{2}}}{1-\langle y, a\rangle}\right)^{N+1} d y \\
& =\int_{|y|<R} \frac{(1-\langle y, a\rangle)^{2 \alpha-(N+1)}}{\left(1-|a|^{2}\right)^{\alpha-\frac{N+1}{2}}\left(1-|y|^{2}\right)^{\alpha}} d y
\end{aligned}
$$

From the Cauchy-Schwarz inequality $1-R \leq 1-R|a| \leq 1-\langle y, a\rangle \leq 1+R|a| \leq$ $1+R \leq \frac{1}{1-R}$. Thus $(1-\langle y, a\rangle)^{2 \alpha-N-1} \geq(1-R)^{|2 \alpha-N-1|}$. Let $d \sigma$ denote the area element on the unit sphere S_{N} of \mathbb{R}^{N}. With $y=r \eta$, where $r=|y|$ and $\eta \in S_{N}$, we have $\int_{|y|<R} \frac{d y}{\left(1-|y|^{2}\right)^{\alpha}}=\int_{0}^{R} \int_{S_{N}} \frac{d \sigma(\eta) r^{N-1} d r}{\left(1-r^{2}\right)^{\alpha}}$, so that

$$
\begin{equation*}
\int_{E(a, R)} u(x) d x \geq\left(1-|a|^{2}\right)^{\frac{N+1}{2}-\alpha}(1-R)^{|2 \alpha-N-1|} \sigma_{N} \int_{0}^{R} \frac{r^{N-1} d r}{\left(1-r^{2}\right)^{\alpha}} \tag{5}
\end{equation*}
$$

with $\sigma_{N}=\frac{2 \pi^{N / 2}}{\Gamma(N / 2)}$ the area of $S_{N}([2$, p.29]). Now, Lemma 4 (Section 6) provides

$$
\begin{aligned}
{[\operatorname{Vol} E(a, R)]^{2 \frac{N-\alpha}{N+1}} } & =\left(V_{N} R^{N}\right)^{2 \frac{N-\alpha}{N+1}}\left(\frac{1-|a|^{2}}{1-R^{2}|a|^{2}}\right)^{N-\alpha} \\
& \leq\left(1-|a|^{2}\right)^{N-\alpha} \frac{\left(V_{N} R^{N}\right)^{2 \frac{N-\alpha}{N+1}}}{\left(1-R^{2}\right)^{|N-\alpha|}}
\end{aligned}
$$

since $1-R^{2} \leq 1-R^{2}|a|^{2} \leq 1 \leq \frac{1}{1-R^{2}}$ implies $\left(1-R^{2}|a|^{2}\right)^{N-\alpha} \geq\left(1-R^{2}\right)^{|N-\alpha|}$. Finally

$$
\frac{1}{[\operatorname{Vol} E(a, R)]^{2 \frac{N-\alpha}{N+1}}} \int_{E(a, R)} u(x) d x \geq C(N, \alpha, R) \frac{1}{\left(1-|a|^{2}\right)^{\frac{N-1}{2}}}
$$

for some constant $C(N, \alpha, R)$ independant of $a \in B_{N}$.
When $\operatorname{Vol} E(a, R)$ is considered with the same exponent $\frac{N-\alpha}{N}$ as $\operatorname{Vol} B\left(a, R_{a}\right)$ in Theorem 1, instead of the exponent $2 \frac{N-\alpha}{N+1}$, we also obtain the next assertion.
Proposition 2. Let $\alpha \geq N$ and $R \in] 0,1[$. If a subharmonic function $u \geq 0$ in B_{N} satisfies

$$
\begin{equation*}
P_{\alpha, R}(u)=\sup _{a \in B_{N}} \frac{1}{[\operatorname{Vol} E(a, R)]^{\frac{N-\alpha}{N}}} \int_{E(a, R)} u(x) d x<+\infty \tag{6}
\end{equation*}
$$

then $u \in \mathcal{B}_{\alpha}$. But the converse is not valid, the same function u as in Proposition 1 also serves as a counterexample here.

Proof. It is enough to show that

$$
\frac{1}{[\operatorname{Vol} E(a, R)]^{2 \frac{N-\alpha}{N+1}}} \leq\left(V_{N}\right)^{\frac{(\alpha-N)(N-1)}{N(N+1)}} \frac{1}{[\operatorname{Vol} E(a, R)]^{\frac{N-\alpha}{N}}}
$$

This is a consequence of Lemma 4

$$
\begin{aligned}
& {[\operatorname{Vol} E(a, R)]^{(N-\alpha)\left(\frac{1}{N}-\frac{2}{N+1}\right)}=[\operatorname{Vol} E(a, R)]^{(\alpha-N) \frac{N-1}{N(N+1)}}=} \\
& \quad=\left[V_{N} R^{N}\left(\frac{1-|a|^{2}}{1-R^{2}|a|^{2}}\right)^{\frac{N+1}{2}}\right]^{\frac{(\alpha-N)(N-1)}{N(N+1)}}
\end{aligned}
$$

Now, $R<1, \frac{1-|a|^{2}}{1-R^{2}|a|^{2}} \leq 1$ and $(\alpha-N) \frac{N-1}{N(N+1)} \geq 0$, hence the majorization above.

On one hand, if (6) holds, then Theorem 2 applies, thus $u \in \mathcal{B}_{\alpha}$. On the other hand, for the function u from Proposition 1, (6) does not hold: the "sup" in (6) is infinite.

Proposition 3. Let $0<\alpha<N$ and $R \in] 0,1[$. If a subharmonic function $u \geq 0$ in B_{N} satisfies (6), then $u \in \mathcal{B}_{\nu}$ with $\nu=N+\frac{(\alpha-N)(N+1)}{2 N}$. But the converse is not valid.

Proof. First suppose that u satisfies (6). Let $a \in B_{N}$. According to (4) and Lemma 4

$$
\begin{align*}
& \frac{1}{[\operatorname{Vol} E(a, R)]^{\frac{N-\alpha}{N}}} \int_{E(a, R)} u(x) d x \\
& \geq u(a) V_{N} R^{N} \frac{\left(1-|a|^{2}\right)^{N}}{(1+R|a|)^{N}}\left(V_{N} R^{N}\right)^{\frac{\alpha-N}{N}}\left(\frac{1-|a|^{2}}{1-R^{2}|a|^{2}}\right)^{\frac{(N+1)(\alpha-N)}{2 N}} \tag{7}\\
& \geq u(a)\left(V_{N} R^{N}\right)^{\frac{\alpha}{N}} \frac{\left(1-|a|^{2}\right)^{N}}{(1+R)^{N}}\left(\frac{1-|a|^{2}}{1-R^{2}}\right)^{\frac{(N+1)(\alpha-N)}{2 N}}
\end{align*}
$$

since $1+R|a| \leq 1+R, 1-R^{2}|a|^{2} \geq 1-R^{2}$ and $\frac{(N+1)(\alpha-N)}{2 N}<0$. Note that $\nu=\frac{N-1}{2}+\alpha \frac{N+1}{2 N}>\alpha$ because $\nu-\alpha=\frac{N-1}{2}+\alpha \frac{1-N}{2 N}=\frac{N-1}{2}\left(1-\frac{\alpha}{N}\right)>0$.

Next consider the function u from Proposition 1. Then $u \in \mathcal{B}_{\alpha}$. Hence $u \in \mathcal{B}_{\nu}\left(\mathcal{B}_{\alpha} \subset \mathcal{B}_{\nu}\right.$ since $\left.\alpha \leq \nu\right)$. Let $a \in B_{N}$. From (5) together with

$$
\begin{aligned}
{[\operatorname{Vol} E(a, R)]^{\frac{N-\alpha}{N}} } & =\left(V_{N} R^{N}\right)^{\frac{N-\alpha}{N}}\left(\frac{1-|a|^{2}}{1-R^{2}|a|^{2}}\right)^{\frac{(N+1)(N-\alpha)}{2 N}} \\
& \leq\left(V_{N}\right)^{\frac{N-\alpha}{N}}\left(\frac{1-|a|^{2}}{1-R^{2}}\right)^{\frac{(N+1)(N-\alpha)}{2 N}}
\end{aligned}
$$

(since $R<1$ and $N-\alpha \geq 0$), it follows that

$$
\frac{1}{[\operatorname{Vol} E(a, R)]^{\frac{N-\alpha}{N}}} \int_{E(a, R)} u(x) d x \geq K \frac{\left(1-|a|^{2}\right)^{\frac{N+1}{2}-\alpha}}{\left(1-|a|^{2}\right)^{\frac{(N+1)(N-\alpha)}{2 N}}}=K\left(1-|a|^{2}\right)^{\varepsilon}
$$

with $\varepsilon=\frac{N+1}{2}-\alpha-\frac{(N+1)(N-\alpha)}{2 N}=-\alpha+\frac{(N+1) \alpha}{2 N}=\alpha \frac{1-N}{2 N}<0$ and $K=$ $K(N, \alpha, R)$ a constant independant of $a \in B_{N}$. Finally

$$
\sup _{a \in B_{N}} \frac{1}{[\operatorname{Vol} E(a, R)]^{\frac{N-\alpha}{N}}} \int_{E(a, R)} u(x) d x=+\infty .
$$

Corollary 3. Given $\alpha>0$, let ν be defined as in Proposition 3 and $u \geq 0$ be a subharmonic function in B_{N}, such that $\left.P_{\alpha, R}(u)<+\infty \forall R \in\right] 0,1[$.
(i) If there exist constants $C>0$ and $\varepsilon>0$ such that $P_{\alpha, R}(u) \leq C R^{\alpha+\varepsilon}$ $\forall R \in] 0,1\left[\right.$, then $u \equiv 0$ in B_{N}.
(ii) If $\left.P_{\alpha, R}(u) \leq C(1-R)^{|N-\nu|+\varepsilon} \forall R \in\right] 0,1[$ (for some constants $C>0$ and $\varepsilon>0)$, then $u \equiv 0$ in B_{N}.

Proof. Given $a \in B_{N}$, the first inequality of (7) is valid for all $\alpha>0$. Since $\frac{1}{1-R^{2}} \geq 1-R^{2}|a|^{2} \geq 1-R^{2}$, it follows that $\left(1-R^{2}|a|^{2}\right)^{N-\nu} \geq\left(1-R^{2}\right)^{|N-\nu|}$. Hence

$$
\left.P_{\alpha, R}(u) \geq u(a)\left(1-|a|^{2}\right)^{\nu}\left(V_{N}\right)^{\frac{\alpha}{N}} \frac{R^{\alpha}}{(1+R)^{N}}\left(1-R^{2}\right)^{|N-\nu|} \forall R \in\right] 0,1[
$$

Proof of (i). Since $\left.u(a)\left(1-|a|^{2}\right)^{\nu}\left(V_{N}\right)^{\frac{\alpha}{N}} \frac{\left(1-R^{2}\right)^{|N-\nu|}}{(1+R)^{N}} \leq C R^{\varepsilon} \forall R \in\right] 0,1[$, the result $u(a)=0$ follows when $R \rightarrow 0^{+}$.
Proof of (ii). Now $u(a)\left(1-|a|^{2}\right)^{\nu}\left(V_{N}\right)^{\frac{\alpha}{N}} R^{\alpha}(1+R)^{|N-\nu|-N} \leq C(1-R)^{\varepsilon}$ $\forall R \in] 0,1\left[\right.$. Letting $R \rightarrow 1^{-}$, we obtain (ii).

4 Another Characterization of \mathcal{B}_{α}.

Theorem 3. Given $\alpha>0$ and $R \in] 0,1[$, a non-negative subharmonic function u in B_{N} belongs to \mathcal{B}_{α} if and only if $\sup _{a \in B_{N}} \int_{B\left(a, R_{a}\right)} u(x)\left(1-|x|^{2}\right)^{\alpha-N} d x<+\infty$.

Proof. Since $\left[\operatorname{Vol} B\left(a, R_{a}\right)\right]^{\frac{\alpha}{N}-1}=\left(V_{N}\right)^{\frac{\alpha-N}{N}}\left[\frac{R\left(1-|a|^{2}\right)}{1+R|a|}\right]^{\alpha-N}$ and $\frac{1-|x|^{2}}{2} \leq$ $1-|a|^{2} \leq \frac{1+R}{1-R}\left(1-|x|^{2}\right) \forall x \in B\left(a, R_{a}\right)$ (Lemmas 1 and 5, Section 6), it follows that

$$
\begin{aligned}
\left(\frac{R\left(1-|x|^{2}\right)}{2(1+R)}\right)^{\alpha-N} & \leq\left[\frac{\operatorname{Vol} B\left(a, R_{a}\right)}{V_{N}}\right]^{\frac{\alpha-N}{N}} \\
& \leq\left(\frac{R(1+R)\left(1-|x|^{2}\right)}{1-R}\right)^{\alpha-N} \quad \text { when } \alpha \geq N
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\frac{R(1+R)\left(1-|x|^{2}\right)}{1-R}\right)^{\alpha-N} & \leq\left[\frac{\operatorname{Vol} B\left(a, R_{a}\right)}{V_{N}}\right]^{\frac{\alpha-N}{N}} \\
& \leq\left(\frac{R\left(1-|x|^{2}\right)}{2(1+R)}\right)^{\alpha-N} \quad \text { when } \alpha<N
\end{aligned}
$$

Now $u(x) \geq 0$, so that for all $x \in B\left(a, R_{a}\right)$,

$$
D \cdot u(x)\left(1-|x|^{2}\right)^{\alpha-N} \leq\left[\operatorname{Vol} B\left(a, R_{a}\right)\right]^{\frac{\alpha}{N}-1} u(x) \leq D^{\prime} \cdot u(x)\left(1-|x|^{2}\right)^{\alpha-N}
$$

where constants $D=D(N, \alpha, R)$ and $D^{\prime}=D^{\prime}(N, \alpha, R)$ are independant of x and a. Hence Theorem 3 follows from our characterization (2).
Theorem 4. Let $\omega:[0,1[\rightarrow[0,+\infty[$ be a decreasing function. Given $\alpha>0$ and $p \leq \alpha-N$, if a non-negative subharmonic function u in B_{N} satisfies $S_{p, \omega}(u)<+\infty$, then $u \in \mathcal{B}_{\alpha}$.
Proof. Given $a \in B_{N}$, the following holds for all $\left.R \in\right] 0,1[$ since $u(x) \geq 0$ $\forall x \in B_{N}$.

$$
\begin{aligned}
\int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p} \omega\left(\left|\varphi_{a}(x)\right|\right) d x & \geq \int_{B\left(a, R_{a}\right)} u(x)\left(1-|x|^{2}\right)^{p} \omega\left(\left|\varphi_{a}(x)\right|\right) d x \\
& \geq \int_{B\left(a, R_{a}\right)} u(x)\left(1-|x|^{2}\right)^{\alpha-N} \omega\left(\left|\varphi_{a}(x)\right|\right) d x \\
& \left(\text { since }\left(1-|x|^{2}\right)^{p} \geq\left(1-|x|^{2}\right)^{\alpha-N}\right) \\
& \geq \omega(R) \int_{B\left(a, R_{a}\right)} u(x)\left(1-|x|^{2}\right)^{\alpha-N} d x
\end{aligned}
$$

since ω decreases and $B\left(a, R_{a}\right) \subset E(a, R)$ from Lemma 3; hence $\left|\varphi_{a}(x)\right|<R$ $\forall x \in B\left(a, R_{a}\right)$. With R fixed, the result " $u \in \mathcal{B}_{\alpha}$ " follows from Theorem 3.

The converse of Theorem 4 is not necessarily valid.

Proposition 4. With ω as in Definition 3, $\alpha>0$ and $p<\alpha-\frac{N+1}{2}$, the function u from Proposition 1 belongs to \mathcal{B}_{α} but $S_{p, \omega}(u)=+\infty$.

Proof. Given $a \in B_{N}$, the change of variable $y=\varphi_{a}(x)$ (see Lemma 2, Section 6) leads to

$$
\begin{aligned}
\int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p} \omega & \left(\left|\varphi_{a}(x)\right|\right) d x=\int_{B_{N}}\left(1-|x|^{2}\right)^{p-\alpha} \omega\left(\left|\varphi_{a}(x)\right|\right) d x \\
& =\int_{B_{N}}\left(1-\left|\varphi_{a}(y)\right|^{2}\right)^{p-\alpha} \omega(|y|)\left(\frac{1-\left|\varphi_{a}(y)\right|^{2}}{1-|y|^{2}}\right)^{\frac{N+1}{2}} d y \\
& =\int_{B_{N}}\left[\frac{1-|a|^{2}}{(1-\langle y, a\rangle)^{2}}\right]^{p-\alpha+\frac{N+1}{2}}\left(1-|y|^{2}\right)^{p-\alpha} \omega(|y|) d y
\end{aligned}
$$

Now $|\langle y, a\rangle| \leq \frac{|a|}{2}<\frac{1}{2}$ if $y \in B_{N}$ satisfies $|y| \leq \frac{1}{2}$. Hence $1-\langle y, a\rangle \geq \frac{1}{2}$ for such y. Since $p-\alpha+\frac{N+1}{2}<0$, we obtain
$\int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p} \omega\left(\left|\varphi_{a}(x)\right|\right) d x \geq\left[4\left(1-|a|^{2}\right)\right]^{p-\alpha+\frac{N+1}{2}} \int_{|y| \leq \frac{1}{2}}\left(1-|y|^{2}\right)^{p-\alpha} \omega(|y|) d y$.
The result " $S_{p, \omega}(u)=+\infty$ " follows from $\sup _{a \in B_{N}}\left(1-|a|^{2}\right)^{p-\alpha+\frac{N+1}{2}}=+\infty$ (the exponent being strictly negative).
Theorem 5. Let function $\omega:[0,1[\rightarrow[0,+\infty[$ satisfy (3). Given $\alpha>0$ and $p \geq \alpha-\frac{N+1}{2}$, the inclusion $\mathcal{B}_{\alpha} \subset \mathcal{S H}(p, \omega)$ holds.
Proof. Let $u \in \mathcal{B}_{\alpha}$. Thus $u(x) \leq \frac{G_{\alpha}(u)}{\left(1-|x|^{2}\right)^{\alpha}} \forall x \in B_{N}$. Hence

$$
\begin{aligned}
& \int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p} \omega\left(\left|\varphi_{a}(x)\right|\right) d x \leq G_{\alpha}(u) \int_{B_{N}}\left(1-|x|^{2}\right)^{p-\alpha} \omega\left(\left|\varphi_{a}(x)\right|\right) d x \\
& \quad=G_{\alpha}(u) \int_{B_{N}}\left(1-\left|\varphi_{a}(y)\right|^{2}\right)^{p-\alpha+\frac{N+1}{2}} \omega(|y|) \frac{d y}{\left(1-|y|^{2}\right)^{\frac{N+1}{2}}} \\
& \quad \leq G_{\alpha}(u) \int_{B_{N}} \frac{\omega(|y|)}{\left(1-|y|^{2}\right)^{\frac{N+1}{2}}} d y=G_{\alpha}(u) \sigma_{N} \int_{0}^{1} \frac{\omega(r) r^{N-1}}{\left(1-r^{2}\right)^{\frac{N+1}{2}}} d r \forall a \in B_{N}
\end{aligned}
$$

with the same notations and changes of variables as in the proof of Proposition 1. We have majorized $\left(1-\left|\varphi_{a}(y)\right|^{2}\right)^{p-\alpha+\frac{N+1}{2}}$ by 1 since $p-\alpha+\frac{N+1}{2} \geq 0$. Finally $S_{p, \omega}(u) \leq G_{\alpha}(u) \sigma_{N} \Omega$.
Proposition 5. With ω and $\alpha>0$ as in Theorem 5, let $p>\alpha-\frac{N+1}{2}$ and $\alpha<\beta \leq p+\frac{N+1}{2}$. Then the function u defined by $u(x)=\frac{1}{\left(1-|x|^{2}\right)^{\beta}} \forall x \in B_{N}$ belongs to $\mathcal{S H}(p, \omega)$ but not to \mathcal{B}_{α}.

Proof. Since $\Delta u \geq 0$ can be verified as in the proof of Proposition $1, u \notin \mathcal{B}_{\alpha}$ is a consequence of $\sup _{x \in B_{N}}\left(1-|x|^{2}\right)^{\alpha-\beta}=+\infty$. Given $a \in B_{N}$, we obtain

$$
\begin{aligned}
\int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p} \omega\left(\left|\varphi_{a}(x)\right|\right) d x & =\int_{B_{N}}\left(1-\left|\varphi_{a}(y)\right|^{2}\right)^{p-\beta+\frac{N+1}{2}} \frac{\omega(|y|)}{\left(1-|y|^{2}\right)^{\frac{N+1}{2}}} d y \\
& \leq \sigma_{N} \Omega
\end{aligned}
$$

in the same way as in the previous proof. Hence $S_{p, \omega}(u)<+\infty$.
Proposition 6. If $p>-\frac{N+1}{2}$ and the function $\omega:[0,1[\rightarrow[0,+\infty[$ satisfies (3), then

$$
\max \left\{\alpha>0: \mathcal{B}_{\alpha} \subset \mathcal{S H}(p, \omega)\right\}=p+\frac{N+1}{2}
$$

Proof. Theorem 5 already asserts $\left.\left.\mathcal{B}_{\alpha} \subset \mathcal{S H}(p, \omega) \forall \alpha \in\right] 0, p+\frac{N+1}{2}\right]$. For $\alpha>p+\frac{N+1}{2}, \mathcal{B}_{\alpha} \not \subset \mathcal{S} \mathcal{H}(p, \omega)$ follows from Proposition 4.

5 Gap Subharmonic Functions.

Definition 4. Let \mathcal{G} be the set of all functions u defined on B_{N} by $u(x)=$ $f(|x|) \forall x \in B_{N}$, where $f(r)$ is the sum of some power series with coefficients $c_{k} \geq 0\left(k \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}\right)$ of the kind

$$
\begin{equation*}
f(r)=\sum_{k \in \mathbb{N}^{*}} c_{k} r^{2^{k}} \tag{8}
\end{equation*}
$$

which converges for all $r \in[0,1[$.
Remark 4. Such functions u are non-negative and subharmonic in B_{N} since $\Delta u(x)=f^{\prime \prime}(r)+\frac{N-1}{r} f^{\prime}(r)\left(\right.$ with $r=|x|$, see [2, p.26]) and $f^{\prime}(r) \geq 0, f^{\prime \prime}(r) \geq 0$ $\forall r \in[0,1[$.

Theorem 6. Given $p>-\frac{N+3}{4}$ and $\omega:[0,1[\rightarrow[0,+\infty[$ a measurable function such that

$$
\begin{equation*}
\Omega^{\prime}:=\int_{0}^{1} \frac{[\omega(r)]^{2} r^{N-1}}{\left(1-r^{2}\right)^{\frac{N+1}{2}}} d r<+\infty \tag{9}
\end{equation*}
$$

let $u \in \mathcal{G}$ with gap development (8). If $\sum_{k \in \mathbb{N}} c_{k+1}^{2} 2^{-2 k\left(p+\frac{N+3}{4}\right)}<+\infty$, then $u \in \mathcal{S H}(p, \omega)$.
Example. The function ω defined by $\omega(r)=\left(\log \frac{1}{r}\right)^{s}$ with $s>\frac{N-1}{4}$ fulfills condition (9).

Proof. Given $a \in B_{N}$, Cauchy-Schwarz' inequality leads to

$$
\begin{aligned}
& \int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p} \omega\left(\left|\varphi_{a}(x)\right|\right) d x=\int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p+\frac{N+1}{4}} \frac{\omega\left(\left|\varphi_{a}(x)\right|\right)}{\left(1-|x|^{2}\right)^{\frac{N+1}{4}}} d x \\
& \leq\left(\int_{B_{N}}[u(x)]^{2}\left(1-|x|^{2}\right)^{2 p+\frac{N+1}{2}} d x\right)^{\frac{1}{2}}\left(\int_{B_{N}} \frac{\left[\omega\left(\left|\varphi_{a}(x)\right|\right)\right]^{2}}{\left(1-|x|^{2}\right)^{\frac{N+1}{2}}} d x\right)^{\frac{1}{2}} .
\end{aligned}
$$

Now, the change of variable $y=\varphi_{a}(x)$ turns the second integral into

$$
\begin{aligned}
\int_{B_{N}} \frac{\left[\omega\left(\left|\varphi_{a}(x)\right|\right)\right]^{2}}{\left(1-|x|^{2}\right)^{\frac{N+1}{2}}} d x & =\int_{B_{N}} \frac{[\omega(|y|)]^{2}}{\left(1-\left|\varphi_{a}(y)\right|^{2}\right)^{\frac{N+1}{2}}}\left(\frac{1-\left|\varphi_{a}(y)\right|^{2}}{1-|y|^{2}}\right)^{\frac{N+1}{2}} d y \\
& =\sigma_{N} \int_{0}^{1} \frac{[\omega(r)]^{2}}{\left(1-r^{2}\right)^{\frac{N+1}{2}}} r^{N-1} d r=\sigma_{N} \Omega^{\prime} \quad \forall a \in B_{N} .
\end{aligned}
$$

Besides that

$$
\begin{array}{r}
\int_{B_{N}}[u(x)]^{2}\left(1-|x|^{2}\right)^{2 p+\frac{N+1}{2}} d x=\sigma_{N} \int_{0}^{1}[f(r)]^{2}\left(1-r^{2}\right)^{2 p+\frac{N+1}{2}} r^{N-2} r d r \\
\leq \frac{\sigma_{N}}{2} \int_{0}^{1}[g(t)]^{2}(1-t)^{2 p+\frac{N+1}{2}} d t \text { since } r^{N-2} \leq 1
\end{array}
$$

with $g(t)=f(\sqrt{t})=\sum_{k \in \mathbb{N}^{*}} c_{k} t^{2^{k-1}}=\sum_{k \in \mathbb{N}} c_{k+1} t^{2^{k}}$. From Lemma 6 (Section 6), with $\alpha=2 p+\frac{N+1}{2}+1=2 p+\frac{N+3}{2}>0, \beta=2, s_{k}=c_{k+1}$, the above integral is majorized by $K \sum_{k \in \mathbb{N}} c_{k+1}^{2} 2^{-k\left(2 p+\frac{N+3}{2}\right)}$. Finally

$$
\int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p} \omega\left(\left|\varphi_{a}(x)\right|\right) d x \leq \sqrt{\sigma_{N} \Omega^{\prime}} \sqrt{\frac{\sigma_{N}}{2} K} \sqrt{\sum_{k \in \mathbb{N}} c_{k+1}^{2} 2^{-k\left(2 p+\frac{N+3}{2}\right)}}
$$

Theorem 7. Given $p \in \mathbb{R}, s \in \mathbb{R}$ satisfying $p+s+1>0$ and $\omega:[0,1[\rightarrow$ $[0,+\infty[$ a measurable function for which there exists a constant $C>0$ such that $\omega(r) \geq C\left(1-r^{2}\right)^{s} \forall r \in[0,1[$, let $u \in \mathcal{G}$ with gap development (8). If $u \in \mathcal{S H}(p, \omega)$, then $\sum_{k \in \mathbb{N}} c_{k+1} 2^{-k(p+s+1)}<+\infty$.

Example. The function ω defined by $\omega(r)=\left(\log \frac{1}{r}\right)^{s}$ with $s \geq 0$ satisfies $\omega(r) \geq(1-r)^{s} \geq \frac{1}{2^{s}}\left(1-r^{2}\right)^{s}$.

Proof. For $a=0$, we have $\left|\varphi_{a}(x)\right|=|x|$. Hence

$$
\begin{aligned}
S_{p, \omega}(u) & \geq \int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p} \omega(|x|) d x \geq C \int_{B_{N}} u(x)\left(1-|x|^{2}\right)^{p+s} d x \\
& =C \sigma_{N} \int_{0}^{1} f(r)\left(1-r^{2}\right)^{p+s} r^{N-1} d r=\frac{C \sigma_{N}}{2} \int_{0}^{1} f(\sqrt{t}) t^{\frac{N}{2}-1}(1-t)^{p+s} d t
\end{aligned}
$$

Let $k_{0} \in \mathbb{N}$ such that $\frac{N}{2} \leq 2^{k_{0}}$. Hence $1+\frac{\frac{N}{2}-1}{2^{k}} \leq 2^{k_{0}} \forall k \in \mathbb{N}$, in other words $2^{k}+\frac{N}{2}-1 \leq 2^{k+k_{0}}$. Thus $t^{2^{k}+\frac{N}{2}-1} \geq t^{2^{k+k_{0}}} \forall t \in[0,1[$ and

$$
f(\sqrt{t}) t^{\frac{N}{2}-1} \geq h(t):=\sum_{k \in \mathbb{N}} c_{k+1} t^{2^{k+k_{0}}}=\sum_{k \geq k_{0}} c_{k+1-k_{0}} t^{2^{k}}
$$

Finally

$$
\begin{aligned}
S_{p, \omega}(u) & \geq \frac{C \sigma_{N}}{2} \int_{0}^{1} h(t)(1-t)^{p+s} d t \geq \frac{C \sigma_{N}}{2 K} \sum_{k \geq k_{0}} c_{k+1-k_{0}} 2^{-k(p+s+1)} \\
& =2^{-k_{0}(p+s+1)} \frac{C \sigma_{N}}{2 K} \sum_{k \in \mathbb{N}} c_{k+1} 2^{-k(p+s+1)}
\end{aligned}
$$

from Lemma 6 applied with $\alpha=p+s+1, \beta=1, s_{k}=c_{k+1-k_{0}} \forall k \geq k_{0}$ and $s_{k}=0 \forall k \in\left\{0,1,2, \ldots, k_{0}-1\right\}$. (Here, K does not have the same value as in the previous proof.)

Proposition 7. Let p, s and ω be defined as in Theorem 7. Then $\mathcal{G} \cap$ $\mathcal{S H}(p, \omega) \subset \mathcal{B}_{\alpha}$ for any $\alpha \geq p+s+1$.

Example. When ω is decreasing, this inclusion in \mathcal{B}_{α} follows from Theorem 4 for $\alpha \geq p+N$, thus Proposition 7 brings some new information in the case $0 \leq s<N-1$.

Proof. Let $u \in \mathcal{G} \cap \mathcal{S H}(p, \omega)$, with gap development (8). According to Theorem 7, the series $\sum_{k \in \mathbb{N}} c_{k+1} 2^{-k(p+s+1)}$ converges. Thus $\lim _{k \rightarrow+\infty} c_{k+1} 2^{-k(p+s+1)}=$ 0 . For k sufficiently large, $c_{k+1} 2^{-k(p+s+1)} \leq 1$. Now

$$
c_{k+1} 2^{-(k+1) \alpha}=2^{-\alpha} c_{k+1} 2^{-k \alpha} \leq 2^{-\alpha} c_{k+1} 2^{-k(p+s+1)} \forall k \in \mathbb{N} .
$$

Hence $\sup _{k \geq 1} c_{k} 2^{-k \alpha}<\infty$ and Lemma 7 (Section 6) implies $u \in \mathcal{B}_{\alpha}$. (It could even be verified that $\lim _{k \rightarrow+\infty} c_{k} 2^{-k \alpha}=0$.)

Remark 5. Under the conditions of Theorem 7, the inclusion $\mathcal{G} \cap \mathcal{B}_{\alpha} \subset$ $\mathcal{S H}(p, \omega)$ does not hold for $\alpha \geq p+s+1$. For instance, the function $u \in \mathcal{G}$, with development (8) defined by $c_{k}=2^{k \alpha} \forall k \in \mathbb{N}^{*}$, belongs to \mathcal{B}_{α} but not to $\mathcal{S H}(p, \omega)$, since $\sup _{k>1} c_{k} 2^{-k \alpha}<+\infty$ and

$$
\sum_{k \in \mathbb{N}} c_{k+1} 2^{-k(p+s+1)}=2^{\alpha} \sum_{k \in \mathbb{N}} 2^{k(\alpha-p-s-1)}=+\infty
$$

Proposition 8. Let p and ω be defined as in Theorem 6. Then $\mathcal{G} \cap \mathcal{B}_{\alpha} \subset$ $\mathcal{S H}(p, \omega)$ for any $\alpha<p+\frac{N+3}{4}$.
Example. When $\omega(r)=\left(\log \frac{1}{r}\right)^{s}$ with $\frac{N-1}{4}<s \leq \frac{N-1}{2}$, Theorem 5 cannot be used because (3) does not hold, but Proposition 8 can be applied.
Proof. Let $u \in \mathcal{G} \cap \mathcal{B}_{\alpha}$, with gap development (8). Since $c_{k+1} 2^{-(k+1) \alpha}=$ $2^{-\alpha} c_{k+1} 2^{-k \alpha} \forall k \in \mathbb{N}$, Lemma 7 (Section 6) leads to $\sup _{k \geq 1} c_{k+1} 2^{-k \alpha}<+\infty$. The radius of convergence of the power series $\sum_{k \in \mathbb{N}} c_{k+1}^{2} z^{2 k}(z \in \mathbb{C})$ thus is $\geq 2^{-\alpha}$. Otherwise, the sequence $\left(c_{k+1}^{2} 2^{-2 k \alpha}\right)_{k \in \mathbb{N}}$ would be unbounded according to Abel's Lemma. Now $2^{-\alpha}>2^{-\left(p+\frac{N+3}{4}\right)}$. Hence $\sum_{k \in \mathbb{N}} c_{k+1}^{2} 2^{-2 k\left(p+\frac{N+3}{4}\right)}$ converges and $u \in \mathcal{S H}(p, \omega)$ from Theorem 6.
Remark 6. Under the conditions of Theorem 6, the inclusion $\mathcal{G} \cap \mathcal{S H}(p, \omega) \subset$ \mathcal{B}_{α} does not hold for $\alpha<p+\frac{N+3}{4}$. For instance, the function $u \in \mathcal{G}$ with development (8) defined by $c_{k}=k 2^{k \alpha} \forall k \in \mathbb{N}^{*}$, belongs to $\mathcal{S H}(p, \omega)$ but not to \mathcal{B}_{α}, since $\sup _{k \geq 1} c_{k} 2^{-k \alpha}=+\infty$ and

$$
\sum_{k \in \mathbb{N}} c_{k+1}^{2} 2^{-2 k\left(p+\frac{N+3}{4}\right)}=2^{2 \alpha} \sum_{k \in \mathbb{N}}(k+1)^{2} 2^{-2 k\left(p+\frac{N+3}{4}-\alpha\right)}<+\infty
$$

6 Appendix: Some Technical Results

Lemma 1. Given $a \in B_{N}$ and $R \in\left[0,1\left[\right.\right.$, we have $1-|x|^{2} \geq \frac{1-R}{1+R}\left(1-|a|^{2}\right)$ for any $x \in B\left(a, R_{a}\right)$.
Proof. We have $|x| \leq|a|+R_{a}=\frac{|a|+R|a|^{2}+R-R|a|^{2}}{1+R|a|}=\frac{|a|+R}{1+R|a|}<1$, since $|a|+R-1-R|a|=(1-|a|)(R-1)<0$. Hence

$$
1-|x|^{2} \geq 1-\left(\frac{|a|+R}{1+R|a|}\right)^{2}=\frac{1+2 R|a|+R^{2}|a|^{2}-\left(|a|^{2}+R^{2}+2 R|a|\right)}{(1+R|a|)^{2}}=
$$

$$
=\frac{\left(1-|a|^{2}\right)\left(1-R^{2}\right)}{(1+R|a|)^{2}} \geq \frac{\left(1-|a|^{2}\right)\left(1-R^{2}\right)}{(1+R)^{2}} .
$$

Lemma 2. Given $a \in B_{N}$, the function $\varphi_{a}: B_{N} \rightarrow B_{N}$ is an involutive bijection and

$$
1-\left|\varphi_{a}(x)\right|^{2}=\frac{\left(1-|x|^{2}\right)\left(1-|a|^{2}\right)}{(1-\langle x, a\rangle)^{2}} \forall x \in B_{N}
$$

Let $J_{a}(x)$ stand for the determinant of matrix $\left(\frac{\partial \varphi_{a, i}}{\partial x_{j}}(x)\right)_{1 \leq i, j \leq N}$ where $\varphi_{a, 1}$, $\varphi_{a, 2}, \ldots, \varphi_{a, N}$ are the N components of map φ_{a}. Then

$$
J_{a}(x)=(-1)^{N}\left(\frac{\sqrt{1-|a|^{2}}}{1-\langle x, a\rangle}\right)^{N+1}=(-1)^{N}\left(\frac{1-\left|\varphi_{a}(x)\right|^{2}}{1-|x|^{2}}\right)^{\frac{N+1}{2}}
$$

Proof. See [5, pp.25-26] and [1, p.115] for properties of map φ_{a} and [6] for the computation of $J_{a}(x)$.

Lemma 3. For any $a \in B_{N}$ and any $R \in[0,1[$, the ellipsoid $E(a, R)$ contains $B\left(a, R_{a}\right)$, with merely $E(0, R)=B(0, R)$ when $a=0$.

Proof. See [6].
Lemma 4. For any $a \in B_{N}$ and any $R \in[0,1[$, the volume of the ellipsoid $E(a, R)$ is

$$
\operatorname{Vol} E(a, R)=V_{N} R^{N}\left(\frac{1-|a|^{2}}{1-R^{2}|a|^{2}}\right)^{\frac{N+1}{2}}
$$

Proof. The same changes of variables as in the proof of Proposition 1 lead to

$$
\begin{aligned}
\operatorname{Vol} E(a, R) & =\int_{E(a, R)} d x=\int_{B(0, R)}\left(\frac{\sqrt{1-|a|^{2}}}{1-\langle y, a\rangle}\right)^{N+1} d y \\
& =\left(1-|a|^{2}\right)^{\frac{N+1}{2}} \int_{0}^{R} \int_{S_{N}} \frac{d \sigma(\eta) r^{N-1} d r}{(1-r\langle\eta, a\rangle)^{N+1}} .
\end{aligned}
$$

Without restriction, we may assume $a \neq 0$ and $a=|a|(1,0, \ldots, 0)$. Polar coordinates in \mathbb{R}^{N} provide $\eta_{1}=\cos \theta_{1}$ and

$$
d \sigma=\left(\sin \theta_{1}\right)^{N-2}\left(\sin \theta_{2}\right)^{N-3} \ldots\left(\sin \theta_{N-2}\right) d \theta_{1} d \theta_{2} \ldots d \theta_{N-1}
$$

with $\left.\theta_{1}, \theta_{2}, \ldots, \theta_{N-2} \in\right] 0, \pi\left[\right.$ and $\left.\theta_{N-1} \in\right] 0,2 \pi[($ see $[11$, p.15]).
It is clear for $N \geq 3$ that $\left(\sin \theta_{2}\right)^{N-3}\left(\sin \theta_{3}\right)^{N-4} \ldots\left(\sin \theta_{N-2}\right) d \theta_{2} d \theta_{3} \ldots d \theta_{N-1}$ is the area element on S_{N-1}. Since $\sigma_{1}=2$, we have for $N \geq 3$ and for $N=2$

$$
\begin{aligned}
\operatorname{Vol} E(a, R) & =\left(1-|a|^{2}\right)^{\frac{N+1}{2}} \int_{0}^{R} \int_{0}^{\pi} \frac{\sigma_{N-1}\left(\sin \theta_{1}\right)^{N-2} d \theta_{1}}{\left(1-r|a| \cos \theta_{1}\right)^{N+1}} r^{N-1} d r \\
& =\left(1-|a|^{2}\right)^{\frac{N+1}{2}} \sigma_{N-1} \iint_{H} \frac{t^{N-2}}{(1-|a| s)^{N+1}} d s d t
\end{aligned}
$$

where $s=r \cos \theta_{1}, t=r \sin \theta_{1}$ and $H=\left\{(s, t) \in \mathbb{R}^{2}: t \geq 0, s^{2}+t^{2} \leq R^{2}\right\}$ is a half-disk.

Since $N+1 \notin-\mathbb{N}$, using [10, p. 53] yields

$$
\frac{t^{N-2}}{(1-|a| s)^{N+1}}=\sum_{n \geq 0} \frac{\Gamma(n+N+1)}{n!\Gamma(N+1)}|a|^{n} s^{n} t^{N-2}
$$

This series converges normally on H, since $|a|<1$. Hence $\iint_{H} \frac{t^{N-2}}{(1-|a| s)^{N+1}} d s d t$ $=\sum_{n \geq 0} \frac{\Gamma(n+N+1)}{n!\Gamma(N+1)}|a|^{n} J_{n}$ with $J_{n}=\iint_{H} s^{n} t^{N-2} d s d t$. When n is odd, $J_{n}=0$. For even $n(n=2 k) J_{n}=\frac{R^{2 k+N}}{N-1} \frac{\Gamma\left(k+\frac{1}{2}\right) \Gamma\left(\frac{N+1}{2}\right)}{\Gamma\left(k+\frac{N}{2}+1\right)}$ using Euler's identity for the Beta function (see [4, pp. 67-68]). Whence

$$
\begin{aligned}
& \iint_{H} \frac{t^{N-2} d s d t}{(1-|a| s)^{N+1}}=\frac{R^{N}}{N-1} \frac{\Gamma\left(\frac{N+1}{2}\right)}{\Gamma(N+1)} \sum_{k \geq 0} \frac{\Gamma(2 k+N+1)}{\Gamma\left(k+\frac{N}{2}+1\right)} \frac{\Gamma\left(k+\frac{1}{2}\right)}{\Gamma(2 k+1)}\left(R^{2}|a|^{2}\right)^{k} \\
& =\frac{R^{N}}{N-1} \sqrt{\pi} \frac{\Gamma\left(\frac{N+1}{2}\right)}{\Gamma\left(\frac{N}{2}+1\right)} \sum_{k \geq 0} \frac{\Gamma\left(k+\frac{N+1}{2}\right)}{k!\Gamma\left(\frac{N+1}{2}\right)}\left(R^{2}|a|^{2}\right)^{k}=R^{N} \frac{V_{N}}{\sigma_{N-1}}\left(\frac{1}{1-R^{2}|a|^{2}}\right)^{\frac{N+1}{2}}
\end{aligned}
$$

by the duplication formula $\sqrt{\pi} \Gamma(2 z)=2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right)$ for the Gamma function ([4, p. 45]), applied successively with $z=k+\frac{N}{2}+\frac{1}{2}, z=k+\frac{1}{2}$ and $z=\frac{N+1}{2}$.

Lemma 5. For all $a \in B_{N}$ and $R \in\left[0,1\left[\right.\right.$, we have $1-|x|^{2} \leq 2\left(1-|a|^{2}\right)$ $\forall x \in B\left(a, R_{a}\right)$.

Proof. If $|a| \leq \frac{1}{\sqrt{2}}$, then $1-2|a|^{2} \geq 0$. Hence $1-|x|^{2} \leq 1 \leq 1+\left(1-2|a|^{2}\right)=$ $2\left(1-|a|^{2}\right) \forall x \in B_{N}$. If $|a|>\frac{1}{\sqrt{2}}$, then $R_{a} \leq|a| \forall R \in[0,1[$ since

$$
|a|-R_{a}=\frac{|a|(1+R|a|)-R\left(1-|a|^{2}\right)}{1+R|a|}=\frac{|a|+\left(2|a|^{2}-1\right) R}{1+R|a|} \geq 0 \quad \forall R \in[0,1[
$$

Thus $|x| \geq|a|-R_{a} \geq 0$ for any $x \in B\left(a, R_{a}\right)$. Hence

$$
\begin{aligned}
1-|x|^{2} & \leq 1-\left(|a|-R_{a}\right)^{2}=1-\left[|a|-\frac{R\left(1-|a|^{2}\right)}{1+R|a|}\right]^{2} \\
& =1-\left[|a|^{2}-\frac{2|a| R}{1+R|a|}\left(1-|a|^{2}\right)+\frac{R^{2}}{(1+R|a|)^{2}}\left(1-|a|^{2}\right)^{2}\right] \\
& =\left(1-|a|^{2}\right)\left[1+\frac{2|a| R}{1+R|a|}-\frac{R^{2}\left(1-|a|^{2}\right)}{(1+R|a|)^{2}}\right] \\
& \leq\left(1-|a|^{2}\right)\left[1+\frac{2|a| R}{1+R|a|}\right] \leq 2\left(1-|a|^{2}\right)
\end{aligned}
$$

because $R|a| \leq 1$; thus $2 R|a| \leq 1+R|a|$.
Lemma 6. (see [3]). Given $\alpha>0, \beta>0$ and a power series $g(t)=\sum_{n \in \mathbb{N}^{*}} b_{n} t^{n}$ (convergent for $|t|<1$) with non-negative coefficients $b_{n}\left(n \in \mathbb{N}^{*}=\mathbb{N} \backslash\{0\}\right)$, let $s_{k}=\sum_{n \in I_{k}} b_{n}$ where $I_{k}=\left\{n \in \mathbb{N}^{*}: 2^{k} \leq n<2^{k+1}\right\} \forall k \in \mathbb{N}$. There exists a constant K, depending only on $\alpha>0$ and $\beta>0$, such that

$$
\frac{1}{K} \sum_{k \in \mathbb{N}} 2^{-k \alpha} s_{k}^{\beta} \leq \int_{0}^{1}(1-t)^{\alpha-1}[g(t)]^{\beta} d t \leq K \sum_{k \in \mathbb{N}} 2^{-k \alpha} s_{k}^{\beta} .
$$

Lemma 7. Given $\alpha>0$ and a convergent power series of sum $f(r)$ and coefficients $c_{k} \geq 0$ as in (8), we have

$$
\sup _{0 \leq r<1}\left(1-r^{2}\right)^{\alpha} f(r)<+\infty \Longleftrightarrow \sup _{k \geq 1} c_{k} 2^{-k \alpha}<+\infty .
$$

Proof. Since $(1-r)^{\alpha} \leq\left(1-r^{2}\right)^{\alpha} \leq 2^{\alpha}(1-r)^{\alpha} \forall r \in[0,1[$, we will prove as in [7]

$$
G:=\sup _{0 \leq r<1}(1-r)^{\alpha} f(r)<+\infty \Longleftrightarrow \sup _{k \geq 1} c_{k} 2^{-k \alpha}<+\infty .
$$

\Longrightarrow Given $k \in \mathbb{N}^{*}$, Cauchy's formula in \mathbb{C} yields $c_{k}=\frac{1}{2 i \pi} \int_{|z|=r} \frac{f(z)}{z^{1+2^{k}}} d z$ whatever $r \in] 0,1\left[\right.$, hence: $\left|c_{k}\right| \leq \frac{1}{r^{2^{k}}} \sup _{|z|=r}|f(z)|$. Here $|f(z)| \leq f(|z|) \forall z \in \mathbb{C}$, $|z|<1$, since f has non-negative Taylor coefficients at the origin. Thus $\left.0 \leq c_{k} \leq \frac{1}{r^{2^{k}}} f(r) \leq \frac{G}{r^{2^{k}(1-r)^{\alpha}}} \forall r \in\right] 0,1\left[\right.$. The choice $r=1-\frac{1}{2^{k}}$ leads to $c_{k} \leq$ $G 2^{k \alpha}\left(1-\frac{1}{2^{k}}\right)^{-2^{k}}$. Since $\lim _{k \rightarrow+\infty}\left(1-\frac{1}{2^{k}}\right)^{2^{k}}=1 / e$, the conclusion $\sup _{k \geq 1} c_{k} 2^{-k \alpha}<$ $+\infty$ holds.
\Longleftarrow There exists some constant $L \geq 0$ such that $c_{k} \leq L 2^{k \alpha} \forall k \in \mathbb{N}^{*}$. Hence $0 \leq f(r) \leq L \sum_{k \in \mathbb{N}^{*}} 2^{k \alpha} r^{2^{k}} \forall r \in[0,1[$. Besides that

$$
\frac{1}{(1-r)^{\alpha}}=\sum_{n \geq 0} \frac{\Gamma(n+\alpha)}{n!\Gamma(\alpha)} r^{n} \forall r \in[0,1[
$$

since $\alpha \notin-\mathbb{N}$. Stirling's formula (see [4, p.59]) implies $\frac{\Gamma(n+\alpha)}{n!} \sim n^{\alpha-1}$ as $n \rightarrow+\infty$. There is thus some constant $M>1$ (depending only on α) such that $n^{\alpha-1} \leq M \frac{\Gamma(n+\alpha)}{n!} \forall n \in \mathbb{N}^{*}$. We will soon prove that

$$
\begin{equation*}
\sum_{k \in \mathbb{N}^{*}} 2^{k \alpha} r^{2^{k}} \leq 2^{\alpha+1} \sum_{n \geq 1} n^{\alpha-1} r^{n} \forall r \in[0,1[\tag{10}
\end{equation*}
$$

This will lead to $f(r) \leq \frac{L 2^{\alpha+1} M}{(1-r)^{\alpha}} \Gamma(\alpha) \forall r \in[0,1[$ and the conclusion will follow.
Let us now establish (10). With I_{k} defined as in Lemma 6, $\sum_{n \geq 1} n^{\alpha-1} r^{n}=$ $\sum_{k \geq 0} \sum_{n \in I_{k}} n^{\alpha-1} r^{n}$. Since $0 \leq r<1, r^{n} \geq r^{2^{k+1}} \forall n<2^{k+1}$ and $n^{\alpha} \geq 2^{k \alpha}$ $\forall n \geq 2^{k}$. Hence

$$
\sum_{n \in I_{k}} n^{\alpha-1} r^{n} \geq r^{2^{k+1}} \sum_{n \in I_{k}} n^{\alpha-1} \geq r^{2^{k+1}} 2^{k \alpha} \sum_{n \in I_{k}} \frac{1}{n}
$$

The last sum contains 2^{k} terms, each of which $\geq \frac{1}{2^{k+1}}$, so that

$$
\sum_{n \in I_{k}} n^{\alpha-1} r^{n} \geq r^{2^{k+1}} 2^{k \alpha} \frac{1}{2}=\frac{1}{2^{1+\alpha}} r^{2^{k+1}} 2^{(k+1) \alpha}
$$

Finally $\sum_{n \geq 1} n^{\alpha-1} r^{n} \geq \frac{1}{2^{1+\alpha}} \sum_{k \geq 0} r^{2^{k+1}} 2^{(k+1) \alpha}$ and (10) follows.

References

[1] A. B. Aleksandrov, Function Theory in the Ball, Several Complex Variables, Part II (G.M. Khenkin and A.G. Vitushkin Editors) Encyclopedia of Mathematical Sciences, Volume 8, Springer Verlag, 1994.
[2] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol.I, London Mathematical Society Monographs, No. 9. Academic Press, London-New York, 1976.
[3] M. Mateljevic and M. Pavlovic, L^{p}-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc., 87 (1983), 309316.
[4] R. Remmert, Classical topics in complex function theory, Graduate Texts in Mathematics, 172. Springer-Verlag, New York, 1998.
[5] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 241, Springer-Verlag, New York-Berlin, 1980.
[6] R. Supper, Subharmonic functions with a Bloch type growth, submitted.
[7] S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J., 28 (1980), 31-36.
[8] R. H. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. No. 105 (1996).
[9] R. H. Zhao, On α-Bloch functions and VMOA, Acta Math. Sci., 16 (1996), 349-360.
[10] K. H. Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, 139, Marcel Dekker, Inc., New York, 1990.
[11] C. Zuily, Distributions et équations aux dérivées partielles, Collection Méthodes, Hermann, Paris, 1986.

[^0]: Key Words: subharmonic function, unit ball, ellipsoid, Möbius transformation, gap series

 Mathematical Reviews subject classification: 31B05, 30B10, 26B10, 26D15, 30D45
 Received by the editors September 10, 2002

