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BLOCH AND GAP SUBHARMONIC
FUNCTIONS

Abstract

For subharmonic functions w > 0 in the unit ball By of RY, the
paper characterizes this kind of growth: sup,cp (1 — |z|*)*u(z) < 400
(given a > 0), through criteria involving such integrals as [ u(z)dz or
Ju(x)(1 — |z[*)*~N dz over balls centered at points a € By. Given
p € R and w some non—negative function, this article compares sub-
harmonic functions with the previous kind of growth to subharmonic
functions satisfying: sup,cp, fBN w(z)(1 — |z]?)Pw(|pa(z)]) dz < 400,
where ¢, are Mobius transformations. The paper also studies subhar-
monic functions which are sums of lacunary series and their links with
both previous kinds of subharmonic functions.

1 Introduction.

Throughout the paper, N > 2 denotes a fixed integer and |.| the Euclidean
norm in R¥.

Definition 1. Given a > 0, let B, denote the set of all positive subharmonic
functions u in By = {z € RY : |z| < 1} such that

Go(u) == sup (1 — |z?)*u(z) < 4o0. (1)
rEBN
Remark 1. When N = 2, the holomorphic functions f in the unit disk of C

such that u = | f’| satisfies (1) form the so—called a-Bloch space (see [8, page
10)).
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396 R. SUPPER

Definition 2. For any a € By and any R € [0,1], let B(a,R) = {z €
By : |z —a| < R}, with Vol B(a, R) the volume of this ball. In particular
Vol B(a, R) = VxRN where Viy = ]\,21?(77\/,;2) is the volume of By, see [2, p.29].
1—a|?

te Ry = R———.
‘We note R R1+R|a|

Theorem 1 establishes the following characterization of B,,.

1 oF
By <= s _— d 2
e abequN <VOIB(G'7 Ra)) /B(a,Rn,) U(x) e ( )

whatever R €]0,1[. In Theorem 2 and Proposition 1, we observe that only
implication <= still holds when the ball B(a, R,) is replaced by an ellipsoid
E(a,R) = {x € By : |pa(z)| < R}, the transformation ¢, being defined by:

1 —|al*Qa(2)
a = N By,
Pa(T) 1— (z,a) T € DN
where (z,a) = Zévzl zja; for x = (x1,72,...,25), a = (a1,a2,...,ax) € RY,

P,(z) = <|9;’|a2>a and Q,(z) = x — P,(x), with P,(z) = 0 if a = 0. This points
out a significant difference with the a—Bloch space of holomorphic functions
in the unit disk of C. This space is characterized ([9]) by a property similar
to (2), with B(a, R,) replaced by E(a, R) which happens to be an Euclidean
disk when ¢,(2) = == for all a and z in the unit disk of C. Another
difference with the case of C is outlined in Section 2. Our set B, is not
invariant under the map ¢, (¢ € By, a # 0). From now on, ¢, will always
denote this more general automorphism defined above. This transformation
¢4 is an automorphism of the unit ball of CV (cf. [1, p.115] or [5, pp.25-30]).
In this paper, we work on the unit ball of RY, but many interesting properties
of ¢, carry over to the real case.

Theorem 3 sets forth another characterization of B,; namely for all R €

10,11,

u € By <= sup / u(z)(1 = |z*)* N de < +oo.
a€BN JB(a,R,)

Definition 3. Given p € R and w : [0, 1[— [0, +00[ a measurable function, let
SH(p,w) denote the set of all non—negative subharmonic functions « in By
which satisfy

Sp.w(u) == sup / u(z)(1 — |x|2)pw(|g0a(:c)|)d:c < 4o00.
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When the function w is decreasing and such that

1 N-1
o w(r)r
Q = A m dT < +OO, (3)

Theorems 4 and 5 prove that B, C SH(p,w) C By for 0 < a < p+ % <
p+ N < ~. Propositions 4 and 5 provide counterexamples to show that the
converse inclusions do not hold.

Section 5 studies the case of gap subharmonic functions of the form u(z) =
“+ o0
Z ck|x\2k. Theorems 6, 7 and Propositions 7, 8 give several criteria for such
=1
]Eunctions to belong to B, or SH(p,w).

Technical lemmas 1-7 are postponed to the appendix (see Section 6).

Let us end Section 1 with some remarks about the significance of p and
w in Definition 3. For holomorphic functions f in the unit disk of C, let
Sp.w(]f'17) be defined, for any ¢ > 0, as in Definition 3, with ¢, replaced by
map 2z +— == where a and z belong to the unit disk of C, identified with
By. If w(r) =log 2 and p = 0, then S, (| f'|?) < 400 means that f belongs
to the space BMOA. If w(r) = (log %)s with s > 1, p > —2 and ¢ > 0, then

Spw(]f']9) < 400 means that f belongs to the ¥7Bloch space. If w =1 and

p =1, then S, ,(|f'|?) < +oc means that f belongs to the Hardy space H2. If
w=1landp>1,then S, .(|f|") < 400 means that f belongs to the Bergman
space LE. If w =1 and p > —1, then S, (| f'|?) < +00 means that f belongs
to the Dirichlet space D,. If w = 1 and p > —1, then S, ,(|f'|P™?) < +o0
means that f belongs to the (p + 2)-Besov space. More details and references
about these spaces may be found in [8].

2 The Set B, Is Not Mobius—Invariant.

Given a € By, if u € B,, is such that uo ¢, remains subharmonic in By, then
U0 P, € By.

This assertion follows from Lemma 2 (see Section 6).

Let x € By and y = ¢, (z) = ¢, 1 (x). Then 1— (z,a) > 1—|a] > 0. Hence

e a1 — (1 (a2 — (L D)1= ) u(y)
(1= a?)*ulpa(@)) = (1~ pam)?)*u(y) T

(L ) u)(d )" _ (1+]al)"
< () Gt <

<
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Remark 2. For u € B,, the function u o ¢, is not necessarily subharmonic
in BN-

Example. Given a € By, a # 0, the function u defined by u(z) =1+ (z,a)
Va € By belongs to B, (for any o > 0) but u o ¢, is not subharmonic. This
function v is subharmonic and even harmonic in RY since its Laplacian is
identically zero. Moreover u(x) > 0 Vo € By since |(z,a)| < |z|.la] < 1
Va € By Va € By. As u is bounded on By, (1) obviously holds. Now

_ B . |a|2 - <,’I,‘,a> _
o) = ulpa(@) =14 (pa(w),a) = 1+ =0 =
a2 =141 (z,a) L= laf”

1—(z,a) :271—<x,a)'

For any j € {1,2,..., N}, we have:

=1+

ov B a; 0%v _ 9 2a§
aTj(x):—(l—W )W and 57?(90)——(1—\04 >W
thus Av(z) = —w <0 Vz € By.

(1= (z,a))°

3 Averaging Over Balls and Ellipsoids

Theorem 1. Given o > 0 and R €]0,1[, a subharmonic function v > 0
belongs to B, if and only if

1
M, r(u) := su a/ u(zx) dr < 4o00.
2= S Vol Bla Rl % o "

Moreover (ﬁ) Go(u) < (ﬁ) My r(u) < (%) Go(u).
PROOF. <= Let a € By. The subharmonicity of u yields

1
S dz.
u(a) < Vol B(a, R,) /B(a,Ra) u)de

1+ R 1+ R [/Vol B(a, R,)\ "N
+T|G|Ra§ _]; ( © V(v;:’ a)) . Hence

Now 1 — |a|* =

1+R )“ 1 / ule) di
RYVy/ [VolB(a,Ra)*™ % Jp(ar.) :

u(a)(1 — [a?)* < (
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— Since u G B, we have u(z) < OCJIW Vor € By. Let a € By. By

Lemma 1, W <R iz Vo € B(a, R,). Thus

1+R>" 1
w(x) dr < Go(u - Vol B(a, R,);
/B@,Ra>” < ”(1—1% A Jap)e VolBlefe)

so that

1 wl) di o (LR “ [Vol B(a, R,)]*/N
Vol B(a, R)]~ ¥ /Bwﬂa) () do < Ga )<1—R> 0 laP)

B . 1+ R\¢ 1 a/N aw
fGa( )<1—R> (1_‘a| )aVN R (1+R\a|)

< Go(u) <1+RR\/W> 0

Corollary 1. Let a > 0 and w € B,. Then M, r(u) < +oo VR €]0,1[. If
there exist constants C > 0 and € > 0 such that M, r(u) < CR*T¢ VR €]0, 1],
then u s the function identically zero in By .

ProoOF. If G4(u) # 0, Theorem 1 implies M, g(u) ~ R“VQ/NG (u) as
R — 0%, which is a contradiction. O

Theorem 2. Let o > 0, R €]0, 1] and u a non-negative subharmonic function
in By. If

1
Ly r(u) :== sup — / u(z) dx < 400,
a€Bn [Vol E(a, R)] Sy E(a,R)

then u € By, with Go(u) < mq(R) [VNRN]PQ% Lo r(u) where mqo(R) =

(1— R2 9 200—N N )
7(1 N zf0<a<Nandma(R):(m) (= N)*Na* ifa > N,

Remark 3. When a > N and 0 < R < 2# the above upper bound of

G4 (u) still holds with m(R) = ((11 11%:) + and is even sharper.

PROOF. Let a € By. Since u > 0, Lemma 3 (Section 6) and the subhar-
monicity of u lead to

/ u(z) dr > / u(z) dx > u(a) Vol B(a, R,)
E(a,R) B(a,Rq)

_ (L —|a[*)*
= u(a)VNRNW.
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Whence

T S (R ) L S
0= )" < e s

Vol E(a, R)\ ¥
As1—|a|* = (1-R?|a|?) Vol Bla, R) according to Lemma 4, we obtain
VRN
1 N e Ny 2NV =a)
ula)(1 — oy < LD (Vi RY) v e
VNEY (1 - R2|af? )N a[vom(a R))*~ JE(@,R)

_ (L= R?aP)* (VwRN)TEES u(z) do
-~ (L= RIaDY [yol B(a, R)] ¥ /Em,m () e

Let the function g : [0,1[— [0,+oc[ be defined by g(t) = % When

0 < o < N, g is increasing on [0, 1] so that g(R|a|) < g(R) Va € By VR €
[0,1[. When a > N, a study of the derivative ¢’ shows that g is increasing

n [0,7] with 7 = 20(,]XN and decreasing on |7, 1[, with maximum ¢(7) =
2a—N

2a2_N) (@ — N)*Na2. Hence g(Rla|) < g(R) < g(7) Ya € By VR €

[0,7] and ¢g(R|a|) < g(7) Ya € By VR € [1,1] . O

Corollary 2. Given o > 0, let u > 0 be a subharmonic function in By such
that L r(u) < +00 VR €]0,1].

(i) If Lo r(v) < C(1 — R)YN*¢ VR €]0,1[ (for some constants C > 0 and
e > 0), then u is the function identically zero in By .

(i3) Let p = %ﬁ:l) — N. If Ly r(u) < CRF® VR €]0,1] (for some
constants C > 0 and € > 0), then w is the function identically zero in By.

PROOF. (i) Since G (u) < C(VyRN)~% (1—R)° YR €0, 1], the result follows
as R — 1~

(71) Since G, (u) < C(YNR)N R VR €]0,1], the result follows by letting
R— 0T . ]

The converse of Theorem 2 does not hold for all u € B,. The function
of Proposition 1 produces a counterexample.

Proposition 1. Given a > 0 and R €]0, 1], the function u defined by u(x) =
W (Vz € By ) belongs to B, but

1
sup — / (z) dx = +o0.
a€By [Vol E(a, R)*~+1 JE(a,R)
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PROOF. The subharmonicity of u follows from Au(z) = ¢"(r) + X=2L¢/(r) > 0
where r = |z| (see [2, p.26]) and g(r) = ﬁ (r e [0,1]).

Let a € By. Since ¢, is a C'-diffeomorphism of By onto itself (Lemma
2), the change of variable = ¢, (y) leads to

N+1
B 1 V1 —lal?
/E’(a,R) ul(w)dr = /B(O,R) (1 = [pa(y)]? ( —(y,a) ) A

)
:/ (1 (y,a))>*~ (N+D
i<k (1 - |a2)*= "2 (1 - |y[2)e

From the Cauchy Schwarz inequality 1—R < 1—R|a| < 1—(y,a) < 1+R|a| <
1+ R < 5. Thus (1— (y,a))?**~ V=1 > (1 - R)P*=N=1 Let do denote the

area element on the unit sphere Sy of RY. With y = rn, where r = |y| and
fo Jsu do(mr®Tdr o that

1 r2)a

n € Sn, we have fl

y|<RW
R N—-1
r dr
/ u(z)dz > (1— |af2)™F (1—R)'2C“N‘”UN/ il )
F(a,R) o (1—r12)

with oy = FQ(WTN//;) the area of Sy ([2, p-29]). Now, Lemma 4 (Section 6)
provides

N—«a
N 1 — R?[a]?
N-a
—_ 2\N— (x(VNR )2N+1
since 1—R? < 1—R%a|> < 1 < 25 implies (1—R?|a|?)V = > (1—-R?)IN -l
Finally

[Vol B(a, R)]2 ¥+

1 1
N a / u(z)de > C(N, o, R)—————
[Vol E(a, R)]*~+1 JE(a,R) (1—lal?)™=
for some constant C'(N, « R) independant of a € By. O

When Vol E(a, R) i
in Theorem 1, instead of the exponent

(aR)

N+17
Proposition 2. Let o > N and R €]0,1[. If a subharmonic function u > 0
i By satisfies

1

Py r(u) = sup cx/ u(z) de < 400, 6
R(W) = sup Vol E(a, R)] "~ Je(a,r) (@) ©
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then u € By. But the converse is not valid, the same function u as in Propo-
sition 1 also serves as a counterexample here.

ProoF. It is enough to show that

1 (a=N)(N-1) 1
oN-a < (VN) NN+ N—o
[Vol E(a, R)]*~+1 [VolE(a, R)]™~

This is a consequence of Lemma 4

2

Vol E(a, R)] V=) (%= %%7) = [Vol E(a, R)]* V) wiven =

(a—N)(N—1)
N+1‘| N(N+1)

1—|a|2 2
— |VyRN [ —— 0L
N (1—R2a|2)

2
Now, R < 1, % <1 and (¢ — N) Nj(vj\f_&l) > 0, hence the majorization

above.

On one hand, if (6) holds, then Theorem 2 applies, thus u € B,. On the
other hand, for the function u from Proposition 1, (6) does not hold: the “sup”
in (6) is infinite.

Proposition 3. Let 0 < a < N and R €]0,1[. If a subharmonic function
u > 0 in By satisfies (6), then u € B, with v = N + % But the
converse is not valid.

PRrROOF. First suppose that u satisfies (6). Let a € By. According to (4) and
Lemma 4

! / u(x) dx
[Vol E(a, R)]"~* JB(a,R)
(N+1)(ae—N)
1—la®)N a-n [ 1—]al? W
> N ( N 7
= w(a)Vn R (1+R|a|)N(VNR ) 1- R?[a]? Q
(N+12)I(\/cx—N)

o (1—a)N (1—laf?
> u(a)(VNRY)¥ ((1 +‘ B|’)2V ( 1 —|R|2 )

since 1 + Rla| <1+ R, 1 — R?|a]?* > 1 — R? and W < 0. Note that

_ N-1 N+1 ., N-1 I-N “N-1({ _ a
v="52FaS >abecause v —a = S5 fagy = 5 (1 - §) > 0.
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Next consider the function u from Proposition 1. Then u € B,. Hence
u € B, (B, C B, since a < v). Let a € By. From (5) together with

TN
N-—oa Ny Moo — |a
[VolE(a,R)]"~" = (VNR™) "~ (1_Rz|az)
L lap W) —a)
N—«a —|a 2
< N_a
= (VN) N < 1— RQ )
(since R < 1 and N — a > 0), it follows that
1 1—af2)="
e I L o U 0
[VolE(a,R)]"~ JE(a,R) (1—|a]2)~ 28—
with e = N¥L o - (WHUNVZ) __ (Ve — (1N« and K =
K(N,a, R) a constant independant of a € By. Finally
1
sup — / u(zx) de = 4o0. O
a€BN [VO]E(G,R)]T E(a,R)

Corollary 3. Given a > 0, let v be defined as in Proposition 3 and u > 0 be
a subharmonic function in By, such that Py r(u) < 400 VR €]0,1].

(i) If there exist constants C > 0 and € > 0 such that P, gp(u) < CR**¢
VR €]0,1[, then u =0 in By.

(i3) If Payr(u) < C(1 — R)IN=VI+¢ YR €]0,1[ (for some constants C > 0
and e >0), thenuw =0 in By.

PROOF. Given a € By, the first inequality of (7) is valid for all & > 0. Since

e > 1— R?|a]? > 1 - R, it follows that (1 — R?[a|*)N =" > (1— R?)IN =71,

Hence

P r(u) > u(a)(1 — |a|?)" (VN) ¥ (1—R>)IN=7l vR €)0,1].

(T+R)N

2zl

AR OR® WR €]0,1], the

PROOF OF (i). Since u(a)(1 — |a|*)”(Vy) =L

result u(a) = 0 follows when R — 0.
PROOF OF (ii). Now u(a)(1 — |a|>)"(VN)¥ R*(1 + R)IN=VI=N < C(1 — R)®
VR €]0,1[. Letting R — 1~, we obtain (ii). O

4 Another Characterization of 5,.

Theorem 3. Given o > 0 and R €0, 1], a non—negative subharmonic function
u in By belongs to B, if and only if sup fB(a R )u(x)(l—\ac|2)a_N dr < +oo.
a€Bx s fa
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1— 2
and 75”' <

PROOF. Since [Vol B(a, R,)|¥ ! = (Vy)' ¥ Rl
1—1a|* < %(1 —|z|?) Vz € B(a, R,) (Lemmas 1 and 5, Section 6), it follows

a-N {R(l—\a\z)r*N

that
(M>a_N < [VolBV(a,J%)} ag
! - N
and
(R(l +f%1(;— x|2)>azv _ [W} -
- <RZ((11_+|2|)2))Q_N when o < N.

Now u(z) > 0, so that for all x € B(a, R,),
D -u(z)(1 — |z[H)*N < [VolB(a,Ra)]%flu(x) < D au(z)(1 - |z)?)* N

where constants D = D(N,«, R) and D’ = D'(N, «, R) are independant of =
and a. Hence Theorem 3 follows from our characterization (2). O

Theorem 4. Let w : [0,1[— [0, 400 be a decreasing function. Given o > 0
and p < a — N, if a non—negative subharmonic function u in By satisfies
Spw(u) < +00, then u € By.

PROOF. Given a € By, the following holds for all R €]0,1[ since u(z) > 0
Vr € By.

| @ —RPrete@hde> [ u@)-lo?Pu(e) de

B(a,R,)
> w(@)(1 = 2| Nu(lp,(2)]) dz
/B(a,Ra) (@)1~ )™ Veo(pa (@)
(since (1 - [a2)? > (1 — [2[2)2~)

> w(R) /B( M0l

since w decreases and B(a, R,) C E(a, R) from Lemma 3; hence |¢,(z)| < R
Va € B(a, R,). With R fixed, the result “u € B,” follows from Theorem 3.

The converse of Theorem 4 is not necessarily valid.
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Proposition 4. With w as in Definition 3, « > 0 and p < o — %, the
function u from Proposition 1 belongs to By but S) o, (u) = +00.

PROOF. Given a € By, the change of variable y = ¢, (x) (see Lemma 2,
Section 6) leads to

| @ laProaade = [ 1= Py wllpa@) do
By By

_ /B (= leal) Py w(ly) (HW)') N

1—y[?
N+1

[ st

Now [(y,a)| < % < 1 if y € By satisfies |y| < . Hence 1 — (y,a) >
% < 0, we obtain

1
5 for

such y. Since p — a +

Ju@a-laPru(ena de > H(1-la )P /| AWy dy.

1
BN 3

The result “Sp, ., (u) = +00” follows from sup (1 — |a|2)p7“+¥ = +o00 (the
exponent being strictly negative). e

Theorem 5. Let function w : [0,1[— [0, +oo] satisfy (3). Given oo > 0 and
p>a— %, the inclusion B, C SH(p,w) holds.

PROOF. Let u € B,. Thus u(z) < % Va € By. Hence

/ u(@)(1 — (22w (|pa(2)]) di < G (u) / (1~ 22w (| pu(2)]) da
By

By

— G (u _ 2yp—at Mt oy 4y
=Gl [ (1= e ()= g

o) e [N
SGa(u)/BN (1—\y|2)N2+1 dy = Go(u) N/O (1—T2)N2+1 drVa € By

with the same notations and changes of variables as in the proof of Proposition
N
1. We have majorized (1 — |p,(y)|?)P~F > by 1 since p — o + NEH > 0.

Finally Sp . (u) < Go(u)on2. O

Proposition 5. With w and o > 0 as in Theorem 5, let p > o — % and
a<fB<p+ % Then the function u defined by u(zx) = ﬁilg)[, Vr € By
belongs to SH(p,w) but not to B,.
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PROOF. Since Au > 0 can be verified as in the proof of Proposition 1, u ¢ B,is

a consequence of sup (1 — |z]?)*™# = 400. Given a € By, we obtain
r€BN

[ w@a - ePpava@as = [ - a2y el g

By (I—1yl*) ™=
S ONQ
in the same way as in the previous proof. Hence S, .,(u) < +00. O

Proposition 6. If p > —&EL and the function w : [0,1[— [0, +o00[ satisfies
(3), then

N+1
max{a >0:B, C SH(p,w)} =p+ TJF

PROOF. Theorem 5 already asserts B, C SH(p,w) Va €]0,p + Y], For
a>p+ 8 B, ¢ SH(p,w) follows from Proposition 4.

5 Gap Subharmonic Functions.

Definition 4. Let G be the set of all functions u defined on By by u(z) =
f(|z|) Yz € By, where f(r) is the sum of some power series with coefficients
¢y >0 (ke N* =N\ {0}) of the kind

.
fr)= ar’ (8)
kEN*
which converges for all r € [0, 1].

Remark 4. Such functions u are non—negative and subharmonic in By since
Au(z) = f"(r)—!—%f’(r) (with r = ||, see [2, p.26]) and f'(r) >0, f"(r) >0
Vr e [0,1].

Theorem 6. Givenp > —2+2 and w : [0,1[— [0, 4+00[ @ measurable function
such that ()2
Q’::/ e dr < +oo, 9
let w € G with gap development (8). If Zci+12_2k(1’+N13) < +o0, then
keN
u € SH(p,w).

Example. The function w defined by w(r) = (log %)g with s > Y=L fulfills
condition (9).
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PrOOF. Given a € By, Cauchy—Schwarz’ inequality leads to

[ u@a = laPyralea@e = [ u(@)a - jafyrs M dx

By (1- \$|2

%
B By (1 - |zf? )
Now, the change of variable y = ¢, (z) turns the second integral into
| 2
< - |<Pa(y2)| ) ay
1—ly|

1 2
:O-N/(Mr)]lw—lNldT_O'NQ Ya € By.
0

[t [ r
By (1= [zf?)™ By (1= lpa(y)l?) %
1—1r2)

Besides that

N+1

rN"2r dr

1

/ [u(@)]? (1 — |2]?)>* 5 dx*O’N/ ()1 — )2
By 0

< UTN/O [g()](1 — t)2p+¥ dt since 1V 7% < 1

with g(t) Z ent? Z ck+1t2k. From Lemma 6 (Section 6),
kEN* kEN
with a = 2p + % +1=2p+ # >0, =2, s = cky1, the above integral

is majorized by KZ ci+12_k(2p+¥). Finally
keN

/ w(@)(1 = |z)Pw(|pa(w)]) do < \/UNQ/\/ HQ*’C(?H%),
B keN

O

Theorem 7. Given p € R, s € R satisfyingp+ s+ 1> 0 and w : [0,1][—
[0, +00] a measurable function for which there exists a constant C > 0 such
that w(r) > C(1 —r?)* Vr € [0,1], let uw € G with gap development (8). If
u € SH(p,w), then Z Crp1 27 FPTsHD « foo,

keN

Example. The function w defined by w(r) = (log %)g with s > 0 satisfies
w(r) > (1=7r)* > 3= (1—1r?)s.
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PROOF. For a = 0, we have |¢,(z)| = |x|. Hence

Spew > [ w1 lafPulie) de > € [ u@)n ey
Bn
C
—C"N/f )(1 = r?)PrepN=tdr = UN/f — )Pt dt.
—1
Let ko € N such that 4 < 2%. Hence 1+ < 2F Yk € N, in other words
ok 4 N | < ohtko Thys 2" +5-1 > tQ’”"“ vt € [0,1] and
f(\/{f)lﬁfl > h(t Z Ck+1f2k+k0 Z Ck+1—k0t2k
keN k>ko
Finally
CO’N L CO’N 3
Sp,w( ) > 5 h(t)(1 —t)p-‘rs dt > —— ¥ Z Cht1 ko2 E(p+s+1)
0 k> ko
— 9—ko(p+s+1) Con Ck+12*k(p+5+1)

2K
kEN
from Lemma 6 applied with a =p+s+1, 8 =1, s = cpt1-k, Yk > ko and
sp=0Vk €{0,1,2,..., ko — 1}. (Here, K does not have the same value as in
the previous proof. ) O

Proposition 7. Let p, s and w be defined as in Theorem 7. Then G N
SH(p,w) C By for anya >p+ s+ 1.

Example. When w is decreasing, this inclusion in B, follows from Theorem
4 for a« > p+ N, thus Proposition 7 brings some new information in the case
0<s<N-1.

PRrOOF. Let u € GNSH(p,w), with gap development (8). According to Theo-

rem 7, the series g cryp127 P+ converges. Thus klim Cry1 27 FPFs+D) —
——+o00
keN

0. For k sufficiently large, ¢j412 %P+t < 1. Now
Cpp12” D —g9=ap o7ka < g9=ap  97kpst) yi e N,
Hence sup ;2" < 0o and Lemma 7 (Section 6) implies u € B,. (It could

k>1
even be verified that . 11111 27k =0.) O
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Remark 5. Under the conditions of Theorem 7, the inclusion G N B, C
SH(p,w) does not hold for & > p+ s+ 1. For instance, the function u € G,
with development (8) defined by ¢ = 28 ¥k € N*, belongs to B, but not to
SH(p,w), since sup ;27 < 400 and

E>1
Z Chyp1 2 FPHsTD = 90 Z gkla—p=s=1) — 4
keN keN

Proposition 8. Let p and w be defined as in Theorem 6. Then G N B, C
SH(p,w) for any a < p+ 2E3.

Example. When w(r) = (log )" with &= < s < =L Theorem 5 cannot
be used because (3) does not hold, but Proposition 8 can be applied.
PROOF. Let u € G N B,, with gap development (8). Since cpy,2~FtDe =
27127k Yk € N, Lemma 7 (Section 6) leads to sup cx4127 %% < +00. The
k>1
radius of convergence of the power series Z ciﬂz% (z € C) thus is > 27>,
keN

Otherwise, the sequence (c7_,272%) would be unbounded according to

keN
N+3
Abel’s Lemma. Now 2% > 2~ (+%3) Hence Z ci+12*2k(p+7) converges

keN
and v € SH(p,w) from Theorem 6. O

Remark 6. Under the conditions of Theorem 6, the inclusion G NSH(p,w) C
B, does not hold for @ < p + %. For instance, the function u € G with
development (8) defined by c; = k28 Vk € N*, belongs to SH(p,w) but not

to Ba, since sup ¢,2 7% = 400 and
E>1

D Ry 2 HEEI = 220 3 (k4 1)%2 P < oo,
keN keN

6 Appendix: Some Technical Results

1-R
Lemma 1. Given a € By and R € [0, 1], we have 1 — |z|> > TR

(1—1al*)
for any x € B(a, R,).

la| + Rla* + R~ R|a]* _ |a[+ R
ProOF. We h < R, = = )
e have || < Jal + 1+ Rja| 1+ Rla|

since |a|] + R—1— R|a| = (1 — |a])(R — 1) < 0. Hence
2 20112 _ (1]2 2
1_|$|221_<|a+R) _ 1+ 2R|a| + R?|a]® — (|a|* + R* 4+ 2R|al)

1+Rla|) (1 + R|al)?
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(- JaP)(1 - RY)

(1—la*)d - R?)
(1+ Rlal)? '

(14 R)?

>

O

Lemma 2. Given a € By, the function ¢, : By — By is an involutive
bijection and

ooy = A=A a?)
1—[pa(@)]” = 0 (e.a)? Yz € By.

Let J,(z) stand for the determinant of matriz (&Pa,i (:E)) where pq1,
Oz 1<i,j<N
Pa,2s -, Pa,N are the N components of map ¢,. Then
N+l Nt1
J (SL’) _ (_1)N \% 1 - |a’|2 _ (_1)N 1 - |<,0a({1,‘)|2 :
“ 1—{(z,a) 1—1z|?

PROOF. See [5, pp.25-26] and [1, p.115] for properties of map ¢, and [6] for
the computation of J,(x).

Lemma 3. For any a € By and any R € [0, 1], the ellipsoid E(a, R) contains
B(a, R,), with merely E(0, R) = B(0, R) when a = 0.

PROOF. See [6]. O

Lemma 4. For any a € By and any R € [0, 1], the volume of the ellipsoid
E(a,R) is

1—|a|? 2
_ N
Vol E(a,R) = VyR <1 — R2a|2>

PROOF. The same changes of variables as in the proof of Proposition 1 lead
to

IR N+1
Vol E(a, R) :/ dz :/ Vi-laP® dy
E(a,R) B(O R)

1- < ,a)
N+1 rN=ldr
(1—lal) @ —r(n,a)) N+
SN
Without restriction, we may assume a # 0 and a = |a|(1,0,...,0). Polar

coordinates in RV provide 11 = cos#p and

do = (sin )N "2(sinfy)V 73 ... (sinOn_2)db1dbs ... dON_1
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with 61, 02, ..., On_2 €]0, 7] and On_1 €]0,27] (see [11, p.15]).
It is clear for N > 3 that (sin )Y ~3(sin03)NV =% ... (sin Oy _2)db2dbs . .. dON_1
is the area element on Sy_1. Since o1 = 2, we have for N > 3 and for N = 2

N+1 ON— 1 sm91 N- 2d91 N 1
Vol E(a, R) = (1 — |a|?) / / —rid] cosé)l)N“ dr

N+1 (N—2
=(1—a]*)"? on- 1// = a9 N+1d$dt

where s = rcosfy, t =rsinf; and H = {(s,t) e R? : t > 0,8 +t? < R%’} is a
half-disk.
Since N 4+ 1 ¢ —N, using [10, p. 53] yields

tN—2 r N+1 ,
— Z MMV%’%N_Q.

(1 —|a|s)N+1 “— nll(N +1)

This series converges normally on H, since |a| < 1. Hence [ [, % dsdt

=00 %M"Jn with J,, = [ [}, s"tY~2dsdt. Whennisodd, J, = 0.
1 N41
For even n (n = 2k) J, = R;kle F(llfz;a_)g&f) ) using Euler’s identity for the
2

Beta function (see [4, pp. 67-68]). Whence

// tN=2 ds dt RN (&t ZF(2k+N+1) L(k+3) (R[aP)*
= a
(1—lals)N+1 ~ N —1T(N +1) = D(k+ % +1) T(2k+1)
RY (g R R
= VT (N ) > g +N I )(R2Ia\2)’“:RN I
N-17"D(5+1) & k() on—1 \1— R?|af?

by the duplication formula /7T'(2z) = 2%*71[(2)I'(z + 1) for the Gamma
function ([4, p. 45]), applied successively with z =k + & + 1, 2 =k + % and

z:%. O

Lemma 5. For all a € By and R € [0,1], we have 1 — |z|?> < 2(1 — |a]?)

Va € B(a, Ry).

PROOF. If |a| < —5, then 1—2|a|2 >0. Hence 1 —[z]2 <1 <1+ (1-2[af?) =
2(1 —|al?) Vx € BN If |a| > 75, then R, < la| VR € [0, 1] since

_ lal(+ Rla)) = RA —[a]*) _ |a| + (2[a]® — 1R

R, = —
lal = 1+ R|a| 1+ R|a|

>0 VRe|[0,1].
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Thus |z| > |a| — R, > 0 for any = € B(a, R,). Hence

R(1 —|al?)]?
L= fof? <1 (= R =1 [l - S
RQ

=1 [l = B )+ (- P

1+ R|al

2alR  R*(1—la*)
=(1—la* 1 —
(1=lal )[ T TTRla T (1+ Rla])?
2|a|R
<(1—la) |14+ "] <2(1 - |af?
<-1oP) |1+ o <20 lap)
because R|a| < 1; thus 2R|a| < 1 + R|al. O

Lemma 6. (see [3]). Given a >0, B > 0 and a power series g(t) = Z bpt™

neN*
(convergent for |t| < 1) with non-negative coefficients b, (n € N* =N\ {0}),
let s =Y, cp, bn where Iy = {n € N* : 28 <n < 2"} Vk € N. There exists
a constant K, depending only on o > 0 and 8 > 0, such that

1 1
e D okl < / (1 —t)*Hg(t))Pdt < K> 2 ks
keN 0 keN

Lemma 7. Given o > 0 and a convergent power series of sum f(r) and
coefficients ¢, > 0 as in (8), we have
sup (1 —7r3)f(r) < +00 <= supcp2™ " < +oo.
0<r<1 k>1
PROOF. Since (1 —7)* < (1 —r%)* <2%(1 —r)® Vr € [0, 1], we will prove as
in [7]
G:= sup (1 —7)%f(r) < 400 <= sup ;2" < 4o0.

0<r<1 k>1
. \ : : . _ 1 f(z)
= Given k € N*, Cauchy’s formula in C yields ¢, = — “——dz
T |z|=r Zl+2
1
whatever r €]0,1[, hence: |cx| < — sup [f(2)[. Here |f(z)| < f(|2]) Vz € C,
T |z|=r

|z| < 1, since f has non—negative Taylor coefficients at the origin. Thus

0< ¢ < Fl,ef(r) < ﬁ Vr €]0, 1[. The choice r =1 — 2% leads to ¢ <

—2k 2
1 1
ko : : : —ka
G2 <1 2k> . Smcek hlf (1 2k> = 1/e, the conclusion 21;11) cp27 <

+o00 holds.
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<— There exists some corllcstant L > 0 such that ¢ < L2 ¥k € N*. Hence
0< f(r) < LY pen- 2°r% Vr € [0,1]. Besides that

1 'm+a«a) ,
W:;Wr vre [0,1]

since a ¢ —N. Stirling’s formula (see [4, p.59]) implies . n as
n — +4o00. There is thus some constant M > 1 (depending only on «) such

that n®~1 < MW Vn € N*. We will soon prove that

C(nta) | a1
!

Z okar,.2" < gotl Zno‘_lr” vr e [0,1]. (10)
kEN* n>1

This will lead to f(r) < L(Qla_tl)ﬂ/[ (o) Vr € [0, 1] and the conclusion will follow.

Let us now establish (10). With I defined as in Lemma 6, Z no iy =
n>1
Z Z n® L Since 0 < 1 < 1, 7" > 727 ¥n < 28+ and no > 2ke
k>0n€ely
Yn > 2F. Hence

_ k41 _ k41 1
2 n® 17’” > 7‘2 E ne 1 > 7,2 2k:a E -
n

nely nely nely

The last sum contains 2% terms, each of which > Tlﬂ, so that

Z I 7"2k+12k°‘1 = 11 p2 gk D
el 2 214
1 ,
Finally Zna_lr" > 5ira ZTQHIQ(’“H)Q and (10) follows.
n>1 k>0
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