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BLOCH AND GAP SUBHARMONIC
FUNCTIONS

Abstract

For subharmonic functions u ≥ 0 in the unit ball BN of RN , the
paper characterizes this kind of growth: supx∈BN (1− |x|2)αu(x) < +∞
(given α > 0), through criteria involving such integrals as

R
u(x) dx orR

u(x)(1 − |x|2)α−N dx over balls centered at points a ∈ BN . Given
p ∈ R and ω some non–negative function, this article compares sub-
harmonic functions with the previous kind of growth to subharmonic
functions satisfying: supa∈BN

R
BN

u(x)(1 − |x|2)pω(|ϕa(x)|) dx < +∞,
where ϕa are Möbius transformations. The paper also studies subhar-
monic functions which are sums of lacunary series and their links with
both previous kinds of subharmonic functions.

1 Introduction.

Throughout the paper, N ≥ 2 denotes a fixed integer and | . | the Euclidean
norm in RN .

Definition 1. Given α > 0, let Bα denote the set of all positive subharmonic
functions u in BN = {x ∈ RN : |x| < 1} such that

Gα(u) := sup
x∈BN

(1− |x|2)αu(x) < +∞. (1)

Remark 1. When N = 2, the holomorphic functions f in the unit disk of C
such that u = |f ′| satisfies (1) form the so–called α-Bloch space (see [8, page
10]).
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Definition 2. For any a ∈ BN and any R ∈ [0, 1[, let B(a,R) = {x ∈
BN : |x − a| < R}, with VolB(a,R) the volume of this ball. In particular
VolB(a,R) = VNR

N where VN = 2πN/2

N ·Γ(N/2) is the volume of BN , see [2, p.29].

We note Ra = R
1− |a|2

1 +R|a|
.

Theorem 1 establishes the following characterization of Bα.

u ∈ Bα ⇐⇒ sup
a∈BN

(
1

VolB(a,Ra)

)1− α
N
∫
B(a,Ra)

u(x) dx < +∞ (2)

whatever R ∈]0, 1[. In Theorem 2 and Proposition 1, we observe that only
implication ⇐= still holds when the ball B(a,Ra) is replaced by an ellipsoid
E(a,R) = {x ∈ BN : |ϕa(x)| < R}, the transformation ϕa being defined by:

ϕa(x) =
a− Pa(x)−

√
1− |a|2Qa(x)

1− 〈x, a〉
∀x ∈ BN ,

where 〈x, a〉 =
∑N
j=1 xjaj for x = (x1, x2, . . . , xN ), a = (a1, a2, . . . , aN ) ∈ RN ,

Pa(x) = 〈x,a〉
|a|2 a and Qa(x) = x − Pa(x), with Pa(x) = 0 if a = 0. This points

out a significant difference with the α–Bloch space of holomorphic functions
in the unit disk of C. This space is characterized ([9]) by a property similar
to (2), with B(a,Ra) replaced by E(a,R) which happens to be an Euclidean
disk when ϕa(z) = a−z

1−az for all a and z in the unit disk of C. Another
difference with the case of C is outlined in Section 2. Our set Bα is not
invariant under the map ϕa (a ∈ BN , a 6= 0). From now on, ϕa will always
denote this more general automorphism defined above. This transformation
ϕa is an automorphism of the unit ball of CN (cf. [1, p.115] or [5, pp.25–30]).
In this paper, we work on the unit ball of RN , but many interesting properties
of ϕa carry over to the real case.

Theorem 3 sets forth another characterization of Bα; namely for all R ∈
]0, 1[,

u ∈ Bα ⇐⇒ sup
a∈BN

∫
B(a,Ra)

u(x)(1− |x|2)α−N dx < +∞.

Definition 3. Given p ∈ R and ω : [0, 1[→ [0,+∞[ a measurable function, let
SH(p, ω) denote the set of all non–negative subharmonic functions u in BN
which satisfy

Sp,ω(u) := sup
a∈BN

∫
BN

u(x)(1− |x|2)pω(|ϕa(x)|) dx < +∞.
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When the function ω is decreasing and such that

Ω :=
∫ 1

0

ω(r)rN−1

(1− r2)
N+1

2

dr < +∞, (3)

Theorems 4 and 5 prove that Bα ⊂ SH(p, ω) ⊂ Bγ for 0 < α < p + N+1
2 <

p + N ≤ γ. Propositions 4 and 5 provide counterexamples to show that the
converse inclusions do not hold.

Section 5 studies the case of gap subharmonic functions of the form u(x) =
+∞∑
k=1

ck|x|2
k

. Theorems 6, 7 and Propositions 7, 8 give several criteria for such

functions to belong to Bα or SH(p, ω).
Technical lemmas 1–7 are postponed to the appendix (see Section 6).
Let us end Section 1 with some remarks about the significance of p and

ω in Definition 3. For holomorphic functions f in the unit disk of C, let
Sp,ω(|f ′|q) be defined, for any q > 0, as in Definition 3, with ϕa replaced by
map z 7→ a−z

1−az where a and z belong to the unit disk of C, identified with
B2. If ω(r) = log 1

r and p = 0, then Sp,ω(|f ′|2) < +∞ means that f belongs
to the space BMOA. If ω(r) =

(
log 1

r

)s with s > 1, p > −2 and q > 0, then
Sp,ω(|f ′|q) < +∞ means that f belongs to the p+2

q –Bloch space. If ω ≡ 1 and
p = 1, then Sp,ω(|f ′|2) < +∞ means that f belongs to the Hardy space H2. If
ω ≡ 1 and p ≥ 1, then Sp,ω(|f ′|p) < +∞ means that f belongs to the Bergman
space Lpa. If ω ≡ 1 and p > −1, then Sp,ω(|f ′|2) < +∞ means that f belongs
to the Dirichlet space Dp. If ω ≡ 1 and p > −1, then Sp,ω(|f ′|p+2) < +∞
means that f belongs to the (p+ 2)–Besov space. More details and references
about these spaces may be found in [8].

2 The Set Bα Is Not Möbius–Invariant.

Given a ∈ BN , if u ∈ Bα is such that u ◦ϕa remains subharmonic in BN , then
u ◦ ϕa ∈ Bα.

This assertion follows from Lemma 2 (see Section 6).
Let x ∈ BN and y = ϕa(x) = ϕ−1

a (x). Then 1−〈x, a〉 ≥ 1−|a| > 0. Hence

(1− |x|2)αu(ϕa(x)) = (1− |ϕa(y)|2)αu(y) =
(1− |y|2)α(1− |a|2)αu(y)

(1− 〈y, a〉)2α

≤ (1− |y|2)αu(y)(1− |a|2)α

(1− |a|)2α
≤
(

1 + |a|
1− |a|

)α
Gα(u) < +∞.
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Remark 2. For u ∈ Bα, the function u ◦ ϕa is not necessarily subharmonic
in BN .

Example. Given a ∈ BN , a 6= 0, the function u defined by u(x) = 1 + 〈x, a〉
∀x ∈ BN belongs to Bα (for any α > 0) but u ◦ ϕa is not subharmonic. This
function u is subharmonic and even harmonic in RN since its Laplacian is
identically zero. Moreover u(x) ≥ 0 ∀x ∈ BN since |〈x, a〉| ≤ |x|.|a| < 1
∀x ∈ BN ∀a ∈ BN . As u is bounded on BN , (1) obviously holds. Now

v(x) := u(ϕa(x)) = 1 + 〈ϕa(x), a〉 = 1 +
|a|2 − 〈x, a〉
1− 〈x, a〉

=

= 1 +
|a|2 − 1 + 1− 〈x, a〉

1− 〈x, a〉
= 2− 1− |a|2

1− 〈x, a〉
.

For any j ∈ {1, 2, ..., N}, we have:

∂v

∂xj
(x) = −(1−|a|2)

aj
(1− 〈x, a〉)2

and
∂2v

∂x2
j

(x) = −(1−|a|2)
2a2
j

(1− 〈x, a〉)3

thus ∆v(x) = −2(1− |a|2)|a|2

(1− 〈x, a〉)3
< 0 ∀x ∈ BN .

3 Averaging Over Balls and Ellipsoids

Theorem 1. Given α > 0 and R ∈]0, 1[, a subharmonic function u ≥ 0
belongs to Bα if and only if

Mα,R(u) := sup
a∈BN

1
[VolB(a,Ra)]1−

α
N

∫
B(a,Ra)

u(x) dx < +∞.

Moreover
(

1
1+R

)α
Gα(u) ≤

(
1

R N
√
VN

)α
Mα,R(u) ≤

(
1+R
1−R

)α
Gα(u).

Proof. ⇐= Let a ∈ BN . The subharmonicity of u yields

u(a) ≤ 1
VolB(a,Ra)

∫
B(a,Ra)

u(x) dx.

Now 1− |a|2 =
1 +R|a|

R
Ra ≤

1 +R

R

(
VolB(a,Ra)

VN

)1/N

. Hence

u(a)(1− |a|2)α ≤
(

1 +R

R N
√
VN

)α 1
[VolB(a,Ra)]1−

α
N

∫
B(a,Ra)

u(x) dx.
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=⇒ Since u ∈ Bα, we have u(x) ≤ Gα(u)
(1−|x|2)α ∀x ∈ BN . Let a ∈ BN . By

Lemma 1, 1
1−|x|2 ≤

1+R
1−R

1
1−|a|2 ∀x ∈ B(a,Ra). Thus∫

B(a,Ra)

u(x) dx ≤ Gα(u)
(

1 +R

1−R

)α 1
(1− |a|2)α

·VolB(a,Ra);

so that

1
[VolB(a,Ra)]1−

α
N

∫
B(a,Ra)

u(x) dx ≤ Gα(u)
(

1 +R

1−R

)α [VolB(a,Ra)]α/N

(1− |a|2)α

= Gα(u)
(

1 +R

1−R

)α 1
(1− |a|2)α

V
α/N
N Rα

(1− |a|2)α

(1 +R|a|)α

≤ Gα(u)
(

1 +R

1−R
R N
√
VN

)α
.

Corollary 1. Let α > 0 and u ∈ Bα. Then Mα,R(u) < +∞ ∀R ∈]0, 1[. If
there exist constants C > 0 and ε > 0 such that Mα,R(u) ≤ CRα+ε ∀R ∈]0, 1[,
then u is the function identically zero in BN .

Proof. If Gα(u) 6= 0, Theorem 1 implies Mα,R(u) ∼ RαV
α/N
N Gα(u) as

R→ 0+, which is a contradiction.

Theorem 2. Let α > 0, R ∈]0, 1[ and u a non–negative subharmonic function
in BN . If

Lα,R(u) := sup
a∈BN

1

[VolE(a,R)]2
N−α
N+1

∫
E(a,R)

u(x) dx < +∞,

then u ∈ Bα, with Gα(u) ≤ mα(R)
[
VNR

N
]1−2 α+1

N+1 Lα,R(u) where mα(R) =
(1−R2)α

(1−R)N
if 0 < α ≤ N and mα(R) =

(
2

2α−N

)2α−N
(α−N)α−Nαα if α > N .

Remark 3. When α > N and 0 < R ≤ N
2α−N , the above upper bound of

Gα(u) still holds with mα(R) = (1−R2)α

(1−R)N
and is even sharper.

Proof. Let a ∈ BN . Since u ≥ 0, Lemma 3 (Section 6) and the subhar-
monicity of u lead to∫

E(a,R)

u(x) dx ≥
∫
B(a,Ra)

u(x) dx ≥ u(a) VolB(a,Ra)

= u(a)VNRN
(1− |a|2)N

(1 +R|a|)N
.

(4)
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Whence

u(a)(1− |a|2)α ≤ 1
VNRN

(1 +R|a|)N

(1− |a|2)N−α

∫
E(a,R)

u(x) dx.

As 1−|a|2 = (1−R2|a|2)
(

VolE(a,R)
VNRN

) 2
N+1

according to Lemma 4, we obtain

u(a)(1− |a|2)α ≤ (1 +R|a|)N

VNRN
(VNRN )

2(N−α)
N+1

(1−R2|a|2)N−α[VolE(a,R)]
2(N−α)
N+1

∫
E(a,R)

u(x) dx

=
(1−R2|a|2)α

(1−R|a|)N
(VNRN )

N−1−2α
N+1

[VolE(a,R)]
2(N−α)
N+1

∫
E(a,R)

u(x) dx.

Let the function g : [0, 1[→ [0,+∞[ be defined by g(t) = (1−t2)α

(1−t)N . When
0 < α ≤ N , g is increasing on [0, 1[ so that g(R|a|) ≤ g(R) ∀a ∈ BN ∀R ∈
[0, 1[. When α > N , a study of the derivative g′ shows that g is increasing
on [0, τ [ with τ = N

2α−N and decreasing on ]τ, 1[, with maximum g(τ) =(
2

2α−N

)2α−N
(α − N)α−Nαα. Hence g(R|a|) ≤ g(R) ≤ g(τ) ∀a ∈ BN ∀R ∈

[0, τ ] and g(R|a|) ≤ g(τ) ∀a ∈ BN ∀R ∈ [τ, 1[ .

Corollary 2. Given α > 0, let u ≥ 0 be a subharmonic function in BN such
that Lα,R(u) < +∞ ∀R ∈]0, 1[.

(i) If Lα,R(u) ≤ C(1 − R)N+ε ∀R ∈]0, 1[ (for some constants C > 0 and
ε > 0), then u is the function identically zero in BN .

(ii) Let µ = 2N(α+1)
N+1 − N . If Lα,R(u) ≤ CRµ+ε ∀R ∈]0, 1[ (for some

constants C > 0 and ε > 0), then u is the function identically zero in BN .

Proof. (i) Since Gα(u) ≤ C(VNRN )−
µ
N (1−R)ε ∀R ∈]0, 1[, the result follows

as R→ 1−

(ii) Since Gα(u) ≤ C (VN )−
µ
N

(1−R)N
Rε ∀R ∈]0, 1[, the result follows by letting

R→ 0+.

The converse of Theorem 2 does not hold for all u ∈ Bα. The function u
of Proposition 1 produces a counterexample.

Proposition 1. Given α > 0 and R ∈]0, 1[, the function u defined by u(x) =
1

(1−|x|2)α (∀x ∈ BN ) belongs to Bα but

sup
a∈BN

1

[VolE(a,R)]2
N−α
N+1

∫
E(a,R)

u(x) dx = +∞.
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Proof. The subharmonicity of u follows from ∆u(x) = g′′(r) + N−1
r g′(r) ≥ 0

where r = |x| (see [2, p.26]) and g(r) = 1
(1−r2)α (r ∈ [0, 1[).

Let a ∈ BN . Since ϕa is a C1–diffeomorphism of BN onto itself (Lemma
2), the change of variable x = ϕa(y) leads to∫

E(a,R)

u(x) dx =
∫
B(0,R)

1
(1− |ϕa(y)|2)α

(√
1− |a|2

1− 〈y, a〉

)N+1

dy

=
∫
|y|<R

(1− 〈y, a〉)2α−(N+1)

(1− |a|2)α−
N+1

2 (1− |y|2)α
dy.

From the Cauchy–Schwarz inequality 1−R ≤ 1−R|a| ≤ 1−〈y, a〉 ≤ 1+R|a| ≤
1 +R ≤ 1

1−R . Thus (1− 〈y, a〉)2α−N−1 ≥ (1−R)|2α−N−1|. Let dσ denote the
area element on the unit sphere SN of RN . With y = rη, where r = |y| and
η ∈ SN , we have

∫
|y|<R

dy
(1−|y|2)α =

∫ R
0

∫
SN

dσ(η)rN−1 dr
(1−r2)α , so that∫

E(a,R)

u(x) dx ≥ (1− |a|2)
N+1

2 −α(1−R)|2α−N−1|σN

∫ R

0

rN−1 dr

(1− r2)α
(5)

with σN = 2πN/2

Γ(N/2) the area of SN ([2, p.29]). Now, Lemma 4 (Section 6)
provides

[VolE(a,R)]2
N−α
N+1 = (VNRN )2N−αN+1

(
1− |a|2

1−R2|a|2

)N−α
≤ (1− |a|2)N−α

(VNRN )2N−αN+1

(1−R2)|N−α|

since 1−R2 ≤ 1−R2|a|2 ≤ 1 ≤ 1
1−R2 implies (1−R2|a|2)N−α ≥ (1−R2)|N−α|.

Finally

1

[VolE(a,R)]2
N−α
N+1

∫
E(a,R)

u(x) dx ≥ C(N,α,R)
1

(1− |a|2)
N−1

2

for some constant C(N,α,R) independant of a ∈ BN .

When VolE(a,R) is considered with the same exponent N−α
N as VolB(a,Ra)

in Theorem 1, instead of the exponent 2N−αN+1 , we also obtain the next assertion.

Proposition 2. Let α ≥ N and R ∈]0, 1[. If a subharmonic function u ≥ 0
in BN satisfies

Pα,R(u) = sup
a∈BN

1

[VolE(a,R)]
N−α
N

∫
E(a,R)

u(x) dx < +∞, (6)



402 R. Supper

then u ∈ Bα. But the converse is not valid, the same function u as in Propo-
sition 1 also serves as a counterexample here.

Proof. It is enough to show that

1

[VolE(a,R)]2
N−α
N+1

≤ (VN )
(α−N)(N−1)
N(N+1)

1

[VolE(a,R)]
N−α
N

This is a consequence of Lemma 4

[VolE(a,R)](N−α)( 1
N−

2
N+1 ) = [VolE(a,R)](α−N) N−1

N(N+1) =

=

[
VNR

N

(
1− |a|2

1−R2|a|2

)N+1
2
] (α−N)(N−1)

N(N+1)

.

Now, R < 1, 1−|a|2
1−R2|a|2 ≤ 1 and (α−N) N−1

N(N+1) ≥ 0, hence the majorization
above.

On one hand, if (6) holds, then Theorem 2 applies, thus u ∈ Bα. On the
other hand, for the function u from Proposition 1, (6) does not hold: the “sup”
in (6) is infinite.

Proposition 3. Let 0 < α < N and R ∈]0, 1[. If a subharmonic function
u ≥ 0 in BN satisfies (6), then u ∈ Bν with ν = N + (α−N)(N+1)

2N . But the
converse is not valid.

Proof. First suppose that u satisfies (6). Let a ∈ BN . According to (4) and
Lemma 4

1

[VolE(a,R)]
N−α
N

∫
E(a,R)

u(x) dx

≥ u(a)VNRN
(1− |a|2)N

(1 +R|a|)N
(VNRN )

α−N
N

(
1− |a|2

1−R2|a|2

) (N+1)(α−N)
2N

≥ u(a)(VNRN )
α
N

(1− |a|2)N

(1 +R)N

(
1− |a|2

1−R2

) (N+1)(α−N)
2N

(7)

since 1 + R|a| ≤ 1 + R, 1 − R2|a|2 ≥ 1 − R2 and (N+1)(α−N)
2N < 0. Note that

ν = N−1
2 + αN+1

2N > α because ν − α = N−1
2 + α 1−N

2N = N−1
2 (1− α

N ) > 0.
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Next consider the function u from Proposition 1. Then u ∈ Bα. Hence
u ∈ Bν (Bα ⊂ Bν since α ≤ ν). Let a ∈ BN . From (5) together with

[VolE(a,R)]
N−α
N = (VNRN )

N−α
N

(
1− |a|2

1−R2|a|2

) (N+1)(N−α)
2N

≤ (VN )
N−α
N

(
1− |a|2

1−R2

) (N+1)(N−α)
2N

(since R < 1 and N − α ≥ 0), it follows that

1

[VolE(a,R)]
N−α
N

∫
E(a,R)

u(x) dx ≥ K (1− |a|2)
N+1

2 −α

(1− |a|2)
(N+1)(N−α)

2N

= K(1− |a|2)ε

with ε = N+1
2 − α − (N+1)(N−α)

2N = −α + (N+1)α
2N = α 1−N

2N < 0 and K =
K(N,α,R) a constant independant of a ∈ BN . Finally

sup
a∈BN

1

[VolE(a,R)]
N−α
N

∫
E(a,R)

u(x) dx = +∞.

Corollary 3. Given α > 0, let ν be defined as in Proposition 3 and u ≥ 0 be
a subharmonic function in BN , such that Pα,R(u) < +∞ ∀R ∈]0, 1[.

(i) If there exist constants C > 0 and ε > 0 such that Pα,R(u) ≤ CRα+ε

∀R ∈]0, 1[, then u ≡ 0 in BN .
(ii) If Pα,R(u) ≤ C(1 − R)|N−ν|+ε ∀R ∈]0, 1[ (for some constants C > 0

and ε > 0), then u ≡ 0 in BN .

Proof. Given a ∈ BN , the first inequality of (7) is valid for all α > 0. Since
1

1−R2 ≥ 1−R2|a|2 ≥ 1−R2, it follows that (1−R2|a|2)N−ν ≥ (1−R2)|N−ν|.
Hence

Pα,R(u) ≥ u(a)(1− |a|2)ν(VN )
α
N

Rα

(1 +R)N
(1−R2)|N−ν| ∀R ∈]0, 1[.

Proof of (i ). Since u(a)(1− |a|2)ν(VN )
α
N

(1−R2)|N−ν|

(1+R)N
≤ CRε ∀R ∈]0, 1[, the

result u(a) = 0 follows when R→ 0+.
Proof of (ii ). Now u(a)(1 − |a|2)ν(VN )

α
NRα(1 + R)|N−ν|−N ≤ C(1 − R)ε

∀R ∈]0, 1[. Letting R→ 1−, we obtain (ii).

4 Another Characterization of Bα.

Theorem 3. Given α > 0 and R ∈]0, 1[, a non–negative subharmonic function
u in BN belongs to Bα if and only if sup

a∈BN

∫
B(a,Ra)

u(x)(1−|x|2)α−N dx < +∞.
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Proof. Since [VolB(a,Ra)]
α
N−1 = (VN )

α−N
N

[
R(1−|a|2)

1+R|a|

]α−N
and 1−|x|2

2 ≤
1−|a|2 ≤ 1+R

1−R (1−|x|2) ∀x ∈ B(a,Ra) (Lemmas 1 and 5, Section 6), it follows
that (

R(1− |x|2)
2(1 +R)

)α−N
≤
[

VolB(a,Ra)
VN

]α−N
N

≤
(
R(1 +R)(1− |x|2)

1−R

)α−N
when α ≥ N

and(
R(1 +R)(1− |x|2)

1−R

)α−N
≤
[

VolB(a,Ra)
VN

]α−N
N

≤
(
R(1− |x|2)
2(1 +R)

)α−N
when α < N.

Now u(x) ≥ 0, so that for all x ∈ B(a,Ra),

D · u(x)(1− |x|2)α−N ≤ [VolB(a,Ra)]
α
N−1u(x) ≤ D′.u(x)(1− |x|2)α−N

where constants D = D(N,α,R) and D′ = D′(N,α,R) are independant of x
and a. Hence Theorem 3 follows from our characterization (2).

Theorem 4. Let ω : [0, 1[→ [0,+∞[ be a decreasing function. Given α > 0
and p ≤ α − N , if a non–negative subharmonic function u in BN satisfies
Sp,ω(u) < +∞, then u ∈ Bα.

Proof. Given a ∈ BN , the following holds for all R ∈]0, 1[ since u(x) ≥ 0
∀x ∈ BN .∫
BN

u(x)(1− |x|2)pω(|ϕa(x)|) dx ≥
∫
B(a,Ra)

u(x)(1− |x|2)pω(|ϕa(x)|) dx

≥
∫
B(a,Ra)

u(x)(1− |x|2)α−Nω(|ϕa(x)|) dx

(since (1− |x|2)p ≥ (1− |x|2)α−N )

≥ ω(R)
∫
B(a,Ra)

u(x)(1− |x|2)α−N dx

since ω decreases and B(a,Ra) ⊂ E(a,R) from Lemma 3; hence |ϕa(x)| < R
∀x ∈ B(a,Ra). With R fixed, the result “u ∈ Bα” follows from Theorem 3.

The converse of Theorem 4 is not necessarily valid.
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Proposition 4. With ω as in Definition 3, α > 0 and p < α − N+1
2 , the

function u from Proposition 1 belongs to Bα but Sp,ω(u) = +∞.

Proof. Given a ∈ BN , the change of variable y = ϕa(x) (see Lemma 2,
Section 6) leads to∫

BN

u(x)(1− |x|2)pω(|ϕa(x)|) dx =
∫
BN

(1− |x|2)p−αω(|ϕa(x)|) dx

=
∫
BN

(1− |ϕa(y)|2)p−αω(|y|)
(

1− |ϕa(y)|2

1− |y|2

)N+1
2

dy

=
∫
BN

[
1− |a|2

(1− 〈y, a〉)2

]p−α+N+1
2

(1− |y|2)p−αω(|y|) dy.

Now |〈y, a〉| ≤ |a|
2 < 1

2 if y ∈ BN satisfies |y| ≤ 1
2 . Hence 1 − 〈y, a〉 ≥ 1

2 for
such y. Since p− α+ N+1

2 < 0, we obtain∫
BN

u(x)(1−|x|2)pω(|ϕa(x)|) dx ≥ [4(1−|a|2)]p−α+N+1
2

∫
|y|≤ 1

2

(1−|y|2)p−αω(|y|) dy.

The result “Sp,ω(u) = +∞” follows from sup
a∈BN

(1 − |a|2)p−α+N+1
2 = +∞ (the

exponent being strictly negative).

Theorem 5. Let function ω : [0, 1[→ [0,+∞[ satisfy (3). Given α > 0 and
p ≥ α− N+1

2 , the inclusion Bα ⊂ SH(p, ω) holds.

Proof. Let u ∈ Bα. Thus u(x) ≤ Gα(u)
(1−|x|2)α ∀x ∈ BN . Hence∫

BN

u(x)(1− |x|2)pω(|ϕa(x)|) dx ≤ Gα(u)
∫
BN

(1− |x|2)p−αω(|ϕa(x)|) dx

= Gα(u)
∫
BN

(1− |ϕa(y)|2)p−α+N+1
2 ω(|y|) dy

(1− |y|2)
N+1

2

≤ Gα(u)
∫
BN

ω(|y|)
(1− |y|2)

N+1
2

dy = Gα(u)σN
∫ 1

0

ω(r)rN−1

(1− r2)
N+1

2

dr ∀a ∈ BN

with the same notations and changes of variables as in the proof of Proposition
1. We have majorized (1 − |ϕa(y)|2)p−α+N+1

2 by 1 since p − α + N+1
2 ≥ 0.

Finally Sp,ω(u) ≤ Gα(u)σNΩ.

Proposition 5. With ω and α > 0 as in Theorem 5, let p > α − N+1
2 and

α < β ≤ p + N+1
2 . Then the function u defined by u(x) = 1

(1−|x|2)β
∀x ∈ BN

belongs to SH(p, ω) but not to Bα.
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Proof. Since ∆u ≥ 0 can be verified as in the proof of Proposition 1, u /∈ Bαis
a consequence of sup

x∈BN
(1− |x|2)α−β = +∞. Given a ∈ BN , we obtain

∫
BN

u(x)(1− |x|2)pω(|ϕa(x)|) dx =
∫
BN

(1− |ϕa(y)|2)p−β+N+1
2

ω(|y|)
(1− |y|2)

N+1
2

dy

≤ σNΩ

in the same way as in the previous proof. Hence Sp,ω(u) < +∞.

Proposition 6. If p > −N+1
2 and the function ω : [0, 1[→ [0,+∞[ satisfies

(3), then

max{α > 0 : Bα ⊂ SH(p, ω)} = p+
N + 1

2
.

Proof. Theorem 5 already asserts Bα ⊂ SH(p, ω) ∀α ∈]0, p + N+1
2 ]. For

α > p+ N+1
2 , Bα 6⊂ SH(p, ω) follows from Proposition 4.

5 Gap Subharmonic Functions.

Definition 4. Let G be the set of all functions u defined on BN by u(x) =
f(|x|) ∀x ∈ BN , where f(r) is the sum of some power series with coefficients
ck ≥ 0 (k ∈ N∗ = N \ {0}) of the kind

f(r) =
∑
k∈N∗

ckr
2k (8)

which converges for all r ∈ [0, 1[.

Remark 4. Such functions u are non–negative and subharmonic in BN since
∆u(x) = f ′′(r)+N−1

r f ′(r) (with r = |x|, see [2, p.26]) and f ′(r) ≥ 0, f ′′(r) ≥ 0
∀r ∈ [0, 1[.

Theorem 6. Given p > −N+3
4 and ω : [0, 1[→ [0,+∞[ a measurable function

such that

Ω′ :=
∫ 1

0

[ω(r)]2rN−1

(1− r2)
N+1

2

dr < +∞, (9)

let u ∈ G with gap development (8). If
∑
k∈N

c2k+12−2k(p+N+3
4 ) < +∞, then

u ∈ SH(p, ω).

Example. The function ω defined by ω(r) =
(
log 1

r

)s with s > N−1
4 fulfills

condition (9).
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Proof. Given a ∈ BN , Cauchy–Schwarz’ inequality leads to∫
BN

u(x)(1− |x|2)pω(|ϕa(x)|) dx =
∫
BN

u(x)(1− |x|2)p+
N+1

4
ω(|ϕa(x)|)

(1− |x|2)
N+1

4

dx

≤
(∫

BN

[u(x)]2(1− |x|2)2p+N+1
2 dx

) 1
2
(∫

BN

[ω(|ϕa(x)|)]2

(1− |x|2)
N+1

2

dx

) 1
2

.

Now, the change of variable y = ϕa(x) turns the second integral into

∫
BN

[ω(|ϕa(x)|)]2

(1− |x|2)
N+1

2

dx =
∫
BN

[ω(|y|)]2

(1− |ϕa(y)|2)
N+1

2

(
1− |ϕa(y)|2

1− |y|2

)N+1
2

dy

= σN

∫ 1

0

[ω(r)]2

(1− r2)
N+1

2

rN−1 dr = σNΩ′ ∀a ∈ BN .

Besides that∫
BN

[u(x)]2(1− |x|2)2p+N+1
2 dx = σN

∫ 1

0

[f(r)]2(1− r2)2p+N+1
2 rN−2r dr

≤ σN
2

∫ 1

0

[g(t)]2(1− t)2p+N+1
2 dt since rN−2 ≤ 1

with g(t) = f(
√
t) =

∑
k∈N∗

ckt
2k−1

=
∑
k∈N

ck+1t
2k . From Lemma 6 (Section 6),

with α = 2p+ N+1
2 + 1 = 2p+ N+3

2 > 0 , β = 2, sk = ck+1, the above integral
is majorized by K

∑
k∈N

c2k+12−k(2p+N+3
2 ). Finally

∫
BN

u(x)(1− |x|2)pω(|ϕa(x)|) dx ≤
√
σNΩ′

√
σN
2
K

√∑
k∈N

c2k+12−k(2p+N+3
2 ).

Theorem 7. Given p ∈ R, s ∈ R satisfying p + s + 1 > 0 and ω : [0, 1[→
[0,+∞[ a measurable function for which there exists a constant C > 0 such
that ω(r) ≥ C(1 − r2)s ∀r ∈ [0, 1[, let u ∈ G with gap development (8). If
u ∈ SH(p, ω), then

∑
k∈N

ck+12−k(p+s+1) < +∞.

Example. The function ω defined by ω(r) =
(
log 1

r

)s with s ≥ 0 satisfies
ω(r) ≥ (1− r)s ≥ 1

2s (1− r2)s.
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Proof. For a = 0, we have |ϕa(x)| = |x|. Hence

Sp,ω(u) ≥
∫
BN

u(x)(1− |x|2)pω(|x|) dx ≥ C
∫
BN

u(x)(1− |x|2)p+s dx

= CσN

∫ 1

0

f(r)(1− r2)p+srN−1 dr =
CσN

2

∫ 1

0

f(
√
t)t

N
2 −1(1− t)p+s dt.

Let k0 ∈ N such that N
2 ≤ 2k0 . Hence 1+

N
2 − 1

2k
≤ 2k0 ∀k ∈ N, in other words

2k + N
2 − 1 ≤ 2k+k0 . Thus t2

k+N
2 −1 ≥ t2k+k0 ∀t ∈ [0, 1[ and

f(
√
t)t

N
2 −1 ≥ h(t) :=

∑
k∈N

ck+1t
2k+k0 =

∑
k≥k0

ck+1−k0t
2k .

Finally

Sp,ω(u) ≥ CσN
2

∫ 1

0

h(t)(1− t)p+s dt ≥ CσN
2K

∑
k≥k0

ck+1−k02−k(p+s+1)

= 2−k0(p+s+1)CσN
2K

∑
k∈N

ck+12−k(p+s+1)

from Lemma 6 applied with α = p+ s+ 1, β = 1, sk = ck+1−k0 ∀k ≥ k0 and
sk = 0 ∀k ∈ {0, 1, 2, . . . , k0 − 1}. (Here, K does not have the same value as in
the previous proof. )

Proposition 7. Let p, s and ω be defined as in Theorem 7. Then G ∩
SH(p, ω) ⊂ Bα for any α ≥ p+ s+ 1.

Example. When ω is decreasing, this inclusion in Bα follows from Theorem
4 for α ≥ p+N , thus Proposition 7 brings some new information in the case
0 ≤ s < N − 1.

Proof. Let u ∈ G ∩SH(p, ω), with gap development (8). According to Theo-
rem 7, the series

∑
k∈N

ck+12−k(p+s+1) converges. Thus lim
k→+∞

ck+12−k(p+s+1) =

0. For k sufficiently large, ck+12−k(p+s+1) ≤ 1. Now

ck+12−(k+1)α = 2−αck+12−kα ≤ 2−αck+12−k(p+s+1) ∀k ∈ N.

Hence sup
k≥1

ck2−kα < ∞ and Lemma 7 (Section 6) implies u ∈ Bα. (It could

even be verified that lim
k→+∞

ck2−kα = 0.)
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Remark 5. Under the conditions of Theorem 7, the inclusion G ∩ Bα ⊂
SH(p, ω) does not hold for α ≥ p + s + 1. For instance, the function u ∈ G,
with development (8) defined by ck = 2kα ∀k ∈ N∗, belongs to Bα but not to
SH(p, ω), since sup

k≥1
ck2−kα < +∞ and

∑
k∈N

ck+12−k(p+s+1) = 2α
∑
k∈N

2k(α−p−s−1) = +∞.

Proposition 8. Let p and ω be defined as in Theorem 6. Then G ∩ Bα ⊂
SH(p, ω) for any α < p+ N+3

4 .

Example. When ω(r) =
(
log 1

r

)s with N−1
4 < s ≤ N−1

2 , Theorem 5 cannot
be used because (3) does not hold, but Proposition 8 can be applied.
Proof. Let u ∈ G ∩ Bα, with gap development (8). Since ck+12−(k+1)α =
2−αck+12−kα ∀k ∈ N, Lemma 7 (Section 6) leads to sup

k≥1
ck+12−kα < +∞. The

radius of convergence of the power series
∑
k∈N

c2k+1z
2k (z ∈ C) thus is ≥ 2−α.

Otherwise, the sequence
(
c2k+12−2kα

)
k∈N would be unbounded according to

Abel’s Lemma. Now 2−α > 2−(p+N+3
4 ). Hence

∑
k∈N

c2k+12−2k(p+N+3
4 ) converges

and u ∈ SH(p, ω) from Theorem 6.

Remark 6. Under the conditions of Theorem 6, the inclusion G ∩SH(p, ω) ⊂
Bα does not hold for α < p + N+3

4 . For instance, the function u ∈ G with
development (8) defined by ck = k2kα ∀k ∈ N∗, belongs to SH(p, ω) but not
to Bα, since sup

k≥1
ck2−kα = +∞ and

∑
k∈N

c2k+12−2k(p+N+3
4 ) = 22α

∑
k∈N

(k + 1)22−2k(p+N+3
4 −α) < +∞.

6 Appendix: Some Technical Results

Lemma 1. Given a ∈ BN and R ∈ [0, 1[, we have 1− |x|2 ≥ 1−R
1 +R

(1− |a|2)

for any x ∈ B(a,Ra).

Proof. We have |x| ≤ |a| + Ra =
|a|+R|a|2 +R−R|a|2

1 +R|a|
=
|a|+R

1 +R|a|
< 1,

since |a|+R− 1−R|a| = (1− |a|)(R− 1) < 0. Hence

1− |x|2 ≥ 1−
(
|a|+R

1 +R|a|

)2

=
1 + 2R|a|+R2|a|2 − (|a|2 +R2 + 2R|a|)

(1 +R|a|)2
=
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=
(1− |a|2)(1−R2)

(1 +R|a|)2
≥ (1− |a|2)(1−R2)

(1 +R)2
.

Lemma 2. Given a ∈ BN , the function ϕa : BN → BN is an involutive
bijection and

1− |ϕa(x)|2 =
(1− |x|2)(1− |a|2)

(1− 〈x, a〉)2
∀x ∈ BN .

Let Ja(x) stand for the determinant of matrix
(
∂ϕa,i
∂xj

(x)
)

1≤i,j≤N
where ϕa,1,

ϕa,2, . . . , ϕa,N are the N components of map ϕa. Then

Ja(x) = (−1)N
(√

1− |a|2
1− 〈x, a〉

)N+1

= (−1)N
(

1− |ϕa(x)|2

1− |x|2

)N+1
2

.

Proof. See [5, pp.25–26] and [1, p.115] for properties of map ϕa and [6] for
the computation of Ja(x).

Lemma 3. For any a ∈ BN and any R ∈ [0, 1[, the ellipsoid E(a,R) contains
B(a,Ra), with merely E(0, R) = B(0, R) when a = 0.

Proof. See [6].

Lemma 4. For any a ∈ BN and any R ∈ [0, 1[, the volume of the ellipsoid
E(a,R) is

VolE(a,R) = VNR
N

(
1− |a|2

1−R2|a|2

)N+1
2

.

Proof. The same changes of variables as in the proof of Proposition 1 lead
to

VolE(a,R) =
∫
E(a,R)

dx =
∫
B(0,R)

(√
1− |a|2

1− 〈y, a〉

)N+1

dy

= (1− |a|2)
N+1

2

∫ R

0

∫
SN

dσ(η)rN−1 dr

(1− r〈η, a〉)N+1
.

Without restriction, we may assume a 6= 0 and a = |a|(1, 0, . . . , 0). Polar
coordinates in RN provide η1 = cos θ1 and

dσ = (sin θ1)N−2(sin θ2)N−3 . . . (sin θN−2)dθ1dθ2 . . . dθN−1
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with θ1, θ2, . . . , θN−2 ∈]0, π[ and θN−1 ∈]0, 2π[ (see [11, p.15]).
It is clear forN ≥ 3 that (sin θ2)N−3(sin θ3)N−4 . . . (sin θN−2)dθ2dθ3 . . . dθN−1

is the area element on SN−1. Since σ1 = 2, we have for N ≥ 3 and for N = 2

VolE(a,R) = (1− |a|2)
N+1

2

∫ R

0

∫ π

0

σN−1(sin θ1)N−2dθ1

(1− r|a| cos θ1)N+1
rN−1 dr

= (1− |a|2)
N+1

2 σN−1

∫ ∫
H

tN−2

(1− |a|s)N+1
ds dt

where s = r cos θ1, t = r sin θ1 and H = {(s, t) ∈ R2 : t ≥ 0, s2 + t2 ≤ R2} is a
half–disk.

Since N + 1 /∈ −N, using [10, p. 53] yields

tN−2

(1− |a|s)N+1
=
∑
n≥0

Γ(n+N + 1)
n!Γ(N + 1)

|a|nsntN−2.

This series converges normally onH, since |a| < 1. Hence
∫ ∫

H
tN−2

(1−|a|s)N+1 ds dt

=
∑
n≥0

Γ(n+N+1)
n!Γ(N+1) |a|

nJn with Jn =
∫ ∫

H
sntN−2 ds dt. When n is odd, Jn = 0.

For even n (n = 2k) Jn = R2k+N

N−1

Γ(k+ 1
2 )Γ(N+1

2 )

Γ(k+N
2 +1)

using Euler’s identity for the
Beta function (see [4, pp. 67–68]). Whence∫∫

H

tN−2 ds dt

(1− |a|s)N+1
=

RN

N − 1
Γ(N+1

2 )
Γ(N + 1)

∑
k≥0

Γ(2k +N + 1)
Γ(k + N

2 + 1)
Γ(k + 1

2 )
Γ(2k + 1)

(R2|a|2)k

=
RN

N − 1
√
π

Γ(N+1
2 )

Γ(N2 + 1)

∑
k≥0

Γ(k + N+1
2 )

k!Γ(N+1
2 )

(R2|a|2)k = RN
VN
σN−1

(
1

1−R2|a|2

)N+1
2

by the duplication formula
√
πΓ(2z) = 22z−1Γ(z)Γ(z + 1

2 ) for the Gamma
function ([4, p. 45]), applied successively with z = k + N

2 + 1
2 , z = k + 1

2 and
z = N+1

2 .

Lemma 5. For all a ∈ BN and R ∈ [0, 1[, we have 1 − |x|2 ≤ 2(1 − |a|2)
∀x ∈ B(a,Ra).

Proof. If |a| ≤ 1√
2
, then 1−2|a|2 ≥ 0. Hence 1−|x|2 ≤ 1 ≤ 1 + (1−2|a|2) =

2(1− |a|2) ∀x ∈ BN . If |a| > 1√
2
, then Ra ≤ |a| ∀R ∈ [0, 1[ since

|a| −Ra =
|a|(1 +R|a|)−R(1− |a|2)

1 +R|a|
=
|a|+ (2|a|2 − 1)R

1 +R|a|
≥ 0 ∀R ∈ [0, 1[.
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Thus |x| ≥ |a| −Ra ≥ 0 for any x ∈ B(a,Ra). Hence

1− |x|2 ≤ 1− (|a| −Ra)2 = 1−
[
|a| − R(1− |a|2)

1 +R|a|

]2

= 1−
[
|a|2 − 2|a|R

1 +R|a|
(1− |a|2) +

R2

(1 +R|a|)2
(1− |a|2)2

]
= (1− |a|2)

[
1 +

2|a|R
1 +R|a|

− R2(1− |a|2)
(1 +R|a|)2

]
≤ (1− |a|2)

[
1 +

2|a|R
1 +R|a|

]
≤ 2(1− |a|2)

because R|a| ≤ 1; thus 2R|a| ≤ 1 +R|a|.

Lemma 6. (see [3]). Given α > 0, β > 0 and a power series g(t) =
∑
n∈N∗

bnt
n

(convergent for |t| < 1) with non–negative coefficients bn (n ∈ N∗ = N \ {0}),
let sk =

∑
n∈Ik bn where Ik = {n ∈ N∗ : 2k ≤ n < 2k+1} ∀k ∈ N. There exists

a constant K, depending only on α > 0 and β > 0, such that

1
K

∑
k∈N

2−kαsβk ≤
∫ 1

0

(1− t)α−1[g(t)]βdt ≤ K
∑
k∈N

2−kαsβk .

Lemma 7. Given α > 0 and a convergent power series of sum f(r) and
coefficients ck ≥ 0 as in (8), we have

sup
0≤r<1

(1− r2)αf(r) < +∞ ⇐⇒ sup
k≥1

ck2−kα < +∞.

Proof. Since (1− r)α ≤ (1− r2)α ≤ 2α(1− r)α ∀r ∈ [0, 1[, we will prove as
in [7]

G := sup
0≤r<1

(1− r)αf(r) < +∞⇐⇒ sup
k≥1

ck2−kα < +∞.

=⇒ Given k ∈ N∗, Cauchy’s formula in C yields ck =
1

2iπ

∫
|z|=r

f(z)
z1+2k

dz

whatever r ∈]0, 1[, hence: |ck| ≤
1
r2k

sup
|z|=r

|f(z)|. Here |f(z)| ≤ f(|z|) ∀z ∈ C,

|z| < 1, since f has non–negative Taylor coefficients at the origin. Thus
0 ≤ ck ≤ 1

r2k
f(r) ≤ G

r2k (1−r)α
∀r ∈]0, 1[. The choice r = 1− 1

2k
leads to ck ≤

G2kα
(

1− 1
2k

)−2k

. Since lim
k→+∞

(
1− 1

2k

)2k

= 1/e, the conclusion sup
k≥1

ck2−kα<

+∞ holds.
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⇐= There exists some constant L ≥ 0 such that ck ≤ L2kα ∀k ∈ N∗. Hence
0 ≤ f(r) ≤ L

∑
k∈N∗ 2kαr2k ∀r ∈ [0, 1[. Besides that

1
(1− r)α

=
∑
n≥0

Γ(n+ α)
n!Γ(α)

rn ∀r ∈ [0, 1[

since α /∈ −N. Stirling’s formula (see [4, p.59]) implies Γ(n+α)
n! ∼ nα−1 as

n → +∞. There is thus some constant M > 1 (depending only on α) such
that nα−1 ≤M Γ(n+α)

n! ∀n ∈ N∗. We will soon prove that∑
k∈N∗

2kαr2k ≤ 2α+1
∑
n≥1

nα−1rn ∀r ∈ [0, 1[. (10)

This will lead to f(r) ≤ L2α+1M
(1−r)α Γ(α) ∀r ∈ [0, 1[ and the conclusion will follow.

Let us now establish (10). With Ik defined as in Lemma 6,
∑
n≥1

nα−1rn =∑
k≥0

∑
n∈Ik

nα−1rn. Since 0 ≤ r < 1, rn ≥ r2k+1 ∀n < 2k+1 and nα ≥ 2kα

∀n ≥ 2k. Hence∑
n∈Ik

nα−1rn ≥ r2k+1 ∑
n∈Ik

nα−1 ≥ r2k+1
2kα

∑
n∈Ik

1
n
.

The last sum contains 2k terms, each of which ≥ 1
2k+1 , so that∑

n∈Ik

nα−1rn ≥ r2k+1
2kα

1
2

=
1

21+α
r2k+1

2(k+1)α.

Finally
∑
n≥1

nα−1rn ≥ 1
21+α

∑
k≥0

r2k+1
2(k+1)α and (10) follows.
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