R. Supper,

Université Louis Pasteur, UFR de Mathématique et Informatique, URA CNRS 001, 7 rue René Descartes, F-67 084 Strasbourg Cedex, France. e-mail: supper@math.u-strasbg.fr

BLOCH AND GAP SUBHARMONIC FUNCTIONS

Abstract

For subharmonic functions $u \ge 0$ in the unit ball B_N of \mathbb{R}^N , the paper characterizes this kind of growth: $\sup_{x\in B_N}(1-|x|^2)^{\alpha}u(x) < +\infty$ (given $\alpha > 0$), through criteria involving such integrals as $\int u(x) dx$ or $\int u(x)(1-|x|^2)^{\alpha-N} dx$ over balls centered at points $a \in B_N$. Given $p \in \mathbb{R}$ and ω some non-negative function, this article compares subharmonic functions with the previous kind of growth to subharmonic functions satisfying: $\sup_{a\in B_N} \int_{B_N} u(x)(1-|x|^2)^p \omega(|\varphi_a(x)|) dx < +\infty$, where φ_a are Möbius transformations. The paper also studies subharmonic functions which are sums of lacunary series and their links with both previous kinds of subharmonic functions.

1 Introduction.

Throughout the paper, $N \geq 2$ denotes a fixed integer and |.| the Euclidean norm in \mathbb{R}^N .

Definition 1. Given $\alpha > 0$, let \mathcal{B}_{α} denote the set of all positive subharmonic functions u in $B_N = \{x \in \mathbb{R}^N : |x| < 1\}$ such that

$$G_{\alpha}(u) := \sup_{x \in B_N} (1 - |x|^2)^{\alpha} u(x) < +\infty.$$
(1)

Remark 1. When N = 2, the holomorphic functions f in the unit disk of \mathbb{C} such that u = |f'| satisfies (1) form the so-called α -Bloch space (see [8, page 10]).

Key Words: subharmonic function, unit ball, ellipsoid, Möbius transformation, gap

series Mathematical Reviews subject classification: 31B05, 30B10, 26B10, 26D15, 30D45 Received by the editors September 10, 2002

³⁹⁵

Definition 2. For any $a \in B_N$ and any $R \in [0,1[$, let $B(a,R) = \{x \in B_N : |x-a| < R\}$, with $\operatorname{Vol} B(a,R)$ the volume of this ball. In particular $\operatorname{Vol} B(a,R) = V_N R^N$ where $V_N = \frac{2\pi^{N/2}}{N \cdot \Gamma(N/2)}$ is the volume of B_N , see [2, p.29]. We note $R_a = R \frac{1-|a|^2}{1+R|a|}$.

Theorem 1 establishes the following characterization of \mathcal{B}_{α} .

$$u \in \mathcal{B}_{\alpha} \iff \sup_{a \in B_{N}} \left(\frac{1}{\operatorname{Vol} B(a, R_{a})} \right)^{1 - \frac{\alpha}{N}} \int_{B(a, R_{a})} u(x) \, dx < +\infty$$
(2)

whatever $R \in [0, 1[$. In Theorem 2 and Proposition 1, we observe that only implication \Leftarrow still holds when the ball $B(a, R_a)$ is replaced by an ellipsoid $E(a, R) = \{x \in B_N : |\varphi_a(x)| < R\}$, the transformation φ_a being defined by:

$$\varphi_a(x) = \frac{a - P_a(x) - \sqrt{1 - |a|^2} Q_a(x)}{1 - \langle x, a \rangle} \ \forall x \in B_N,$$

where $\langle x, a \rangle = \sum_{j=1}^{N} x_j a_j$ for $x = (x_1, x_2, \dots, x_N)$, $a = (a_1, a_2, \dots, a_N) \in \mathbb{R}^N$, $P_a(x) = \frac{\langle x, a \rangle}{|a|^2} a$ and $Q_a(x) = x - P_a(x)$, with $P_a(x) = 0$ if a = 0. This points out a significant difference with the α -Bloch space of holomorphic functions in the unit disk of \mathbb{C} . This space is characterized ([9]) by a property similar to (2), with $B(a, R_a)$ replaced by E(a, R) which happens to be an Euclidean disk when $\varphi_a(z) = \frac{a-z}{1-\overline{a}z}$ for all a and z in the unit disk of \mathbb{C} . Another difference with the case of \mathbb{C} is outlined in Section 2. Our set \mathcal{B}_{α} is not invariant under the map φ_a ($a \in B_N$, $a \neq 0$). From now on, φ_a will always denote this more general automorphism defined above. This transformation φ_a is an automorphism of the unit ball of \mathbb{C}^N (cf. [1, p.115] or [5, pp.25–30]). In this paper, we work on the unit ball of \mathbb{R}^N , but many interesting properties of φ_a carry over to the real case.

Theorem 3 sets forth another characterization of \mathcal{B}_{α} ; namely for all $R \in [0, 1[$,

$$u \in \mathcal{B}_{\alpha} \iff \sup_{a \in B_N} \int_{B(a,R_a)} u(x)(1-|x|^2)^{\alpha-N} dx < +\infty.$$

Definition 3. Given $p \in \mathbb{R}$ and $\omega : [0, 1[\to [0, +\infty[$ a measurable function, let $S\mathcal{H}(p,\omega)$ denote the set of all non-negative subharmonic functions u in B_N which satisfy

$$S_{p,\omega}(u) := \sup_{a \in B_N} \int_{B_N} u(x)(1 - |x|^2)^p \omega(|\varphi_a(x)|) \, dx < +\infty.$$

When the function ω is decreasing and such that

$$\Omega := \int_0^1 \frac{\omega(r)r^{N-1}}{(1-r^2)^{\frac{N+1}{2}}} \, dr < +\infty,\tag{3}$$

Theorems 4 and 5 prove that $\mathcal{B}_{\alpha} \subset \mathcal{SH}(p,\omega) \subset \mathcal{B}_{\gamma}$ for $0 < \alpha < p + \frac{N+1}{2} < p + N \leq \gamma$. Propositions 4 and 5 provide counterexamples to show that the converse inclusions do not hold.

Section 5 studies the case of gap subharmonic functions of the form $u(x) = \sum_{k=1}^{+\infty} c_k |x|^{2^k}$. Theorems 6, 7 and Propositions 7, 8 give several criteria for such

 $\sum_{k=1}^{\infty} \mathcal{S}_{k}(p,\omega) = \mathcal{S}_{k}(p,\omega)$ functions to belong to \mathcal{B}_{α} or $\mathcal{SH}(p,\omega)$.

Technical lemmas 1–7 are postponed to the appendix (see Section 6).

Let us end Section 1 with some remarks about the significance of p and ω in Definition 3. For holomorphic functions f in the unit disk of \mathbb{C} , let $S_{p,\omega}(|f'|^q)$ be defined, for any q > 0, as in Definition 3, with φ_a replaced by map $z \mapsto \frac{a-z}{1-\bar{a}z}$ where a and z belong to the unit disk of \mathbb{C} , identified with B_2 . If $\omega(r) = \log \frac{1}{r}$ and p = 0, then $S_{p,\omega}(|f'|^2) < +\infty$ means that f belongs to the space BMOA. If $\omega(r) = \left(\log \frac{1}{r}\right)^s$ with s > 1, p > -2 and q > 0, then $S_{p,\omega}(|f'|^2) < +\infty$ means that f belongs to the $\frac{p+2}{q}$ -Bloch space. If $\omega \equiv 1$ and p = 1, then $S_{p,\omega}(|f'|^2) < +\infty$ means that f belongs to the Hardy space H^2 . If $\omega \equiv 1$ and $p \ge 1$, then $S_{p,\omega}(|f'|^p) < +\infty$ means that f belongs to the Bergman space L_a^p . If $\omega \equiv 1$ and p > -1, then $S_{p,\omega}(|f'|^2) < +\infty$ means that f belongs to the Gramma space L_a^p . If $\omega \equiv 1$ and p > -1, then $S_{p,\omega}(|f'|^2) < +\infty$ means that f belongs to the Bergman space L_a^p . If $\omega \equiv 1$ and p > -1, then $S_{p,\omega}(|f'|^2) < +\infty$ means that f belongs to the Bergman space L_a^p . If $\omega \equiv 1$ and p > -1, then $S_{p,\omega}(|f'|^2) < +\infty$ means that f belongs to the Bergman space L_a^p . If $\omega \equiv 1$ and p > -1, then $S_{p,\omega}(|f'|^p) < +\infty$ means that f belongs to the Bergman space L_a^p . If $\omega \equiv 1$ and p > -1, then $S_{p,\omega}(|f'|^p) < +\infty$ means that f belongs to the (p + 2)-Besov space. More details and references about these spaces may be found in [8].

2 The Set \mathcal{B}_{α} Is Not Möbius–Invariant.

Given $a \in B_N$, if $u \in \mathcal{B}_{\alpha}$ is such that $u \circ \varphi_a$ remains subharmonic in B_N , then $u \circ \varphi_a \in \mathcal{B}_{\alpha}$.

This assertion follows from Lemma 2 (see Section 6).

Let $x \in B_N$ and $y = \varphi_a(x) = \varphi_a^{-1}(x)$. Then $1 - \langle x, a \rangle \ge 1 - |a| > 0$. Hence

$$(1 - |x|^2)^{\alpha} u(\varphi_a(x)) = (1 - |\varphi_a(y)|^2)^{\alpha} u(y) = \frac{(1 - |y|^2)^{\alpha} (1 - |a|^2)^{\alpha} u(y)}{(1 - \langle y, a \rangle)^{2\alpha}}$$
$$\leq \frac{(1 - |y|^2)^{\alpha} u(y)(1 - |a|^2)^{\alpha}}{(1 - |a|)^{2\alpha}} \leq \left(\frac{1 + |a|}{1 - |a|}\right)^{\alpha} G_{\alpha}(u) < +\infty$$

Remark 2. For $u \in \mathcal{B}_{\alpha}$, the function $u \circ \varphi_a$ is not necessarily subharmonic in B_N .

Example. Given $a \in B_N$, $a \neq 0$, the function u defined by $u(x) = 1 + \langle x, a \rangle$ $\forall x \in B_N$ belongs to \mathcal{B}_{α} (for any $\alpha > 0$) but $u \circ \varphi_a$ is not subharmonic. This function u is subharmonic and even harmonic in \mathbb{R}^N since its Laplacian is identically zero. Moreover $u(x) \geq 0$ $\forall x \in B_N$ since $|\langle x, a \rangle| \leq |x| |.|a| < 1$ $\forall x \in B_N \ \forall a \in B_N$. As u is bounded on B_N , (1) obviously holds. Now

$$\begin{split} v(x) &:= u(\varphi_a(x)) = 1 + \langle \varphi_a(x), a \rangle = 1 + \frac{|a|^2 - \langle x, a \rangle}{1 - \langle x, a \rangle} = \\ &= 1 + \frac{|a|^2 - 1 + 1 - \langle x, a \rangle}{1 - \langle x, a \rangle} = 2 - \frac{1 - |a|^2}{1 - \langle x, a \rangle}. \end{split}$$

For any $j \in \{1, 2, ..., N\}$, we have:

$$\frac{\partial v}{\partial x_j}(x) = -(1-|a|^2)\frac{a_j}{(1-\langle x,a\rangle)^2} \quad \text{and} \quad \frac{\partial^2 v}{\partial x_j^2}(x) = -(1-|a|^2)\frac{2a_j^2}{(1-\langle x,a\rangle)^3}$$

thus $\Delta v(x) = -\frac{2(1-|a|^2)|a|^2}{(1-\langle x,a\rangle)^3} < 0 \ \forall x \in B_N.$

3 Averaging Over Balls and Ellipsoids

Theorem 1. Given $\alpha > 0$ and $R \in]0,1[$, a subharmonic function $u \ge 0$ belongs to \mathcal{B}_{α} if and only if

$$M_{\alpha,R}(u) := \sup_{a \in B_N} \frac{1}{[\operatorname{Vol} B(a, R_a)]^{1-\frac{\alpha}{N}}} \int_{B(a, R_a)} u(x) \, dx < +\infty.$$

 $Moreover\left(\frac{1}{1+R}\right)^{\alpha}G_{\alpha}(u) \leq \left(\frac{1}{R\sqrt[N]{V_N}}\right)^{\alpha}M_{\alpha,R}(u) \leq \left(\frac{1+R}{1-R}\right)^{\alpha}G_{\alpha}(u).$

PROOF. \leftarrow Let $a \in B_N$. The subharmonicity of u yields

$$u(a) \le \frac{1}{\operatorname{Vol} B(a, R_a)} \int_{B(a, R_a)} u(x) \, dx.$$

Now $1 - |a|^2 = \frac{1 + R|a|}{R} R_a \le \frac{1 + R}{R} \left(\frac{\operatorname{Vol} B(a, R_a)}{V_N}\right)^{1/N}$. Hence

$$u(a)(1-|a|^2)^{\alpha} \le \left(\frac{1+R}{R\sqrt[N]{V_N}}\right)^{\alpha} \frac{1}{[\operatorname{Vol} B(a,R_a)]^{1-\frac{\alpha}{N}}} \int_{B(a,R_a)} u(x) \, dx.$$

 $\implies \text{Since } u \in \mathcal{B}_{\alpha}, \text{ we have } u(x) \leq \frac{G_{\alpha}(u)}{(1-|x|^2)^{\alpha}} \quad \forall x \in B_N. \text{ Let } a \in B_N. \text{ By Lemma } 1, \frac{1}{1-|x|^2} \leq \frac{1+R}{1-R} \frac{1}{1-|a|^2} \quad \forall x \in B(a, R_a). \text{ Thus}$

$$\int_{B(a,R_a)} u(x) \, dx \le G_\alpha(u) \left(\frac{1+R}{1-R}\right)^\alpha \frac{1}{(1-|a|^2)^\alpha} \cdot \operatorname{Vol} B(a,R_a);$$

so that

$$\begin{split} &\frac{1}{[\operatorname{Vol} B(a,R_a)]^{1-\frac{\alpha}{N}}} \int_{B(a,R_a)} u(x) \, dx \leq G_\alpha(u) \left(\frac{1+R}{1-R}\right)^\alpha \frac{[\operatorname{Vol} B(a,R_a)]^{\alpha/N}}{(1-|a|^2)^\alpha} \\ &= G_\alpha(u) \left(\frac{1+R}{1-R}\right)^\alpha \frac{1}{(1-|a|^2)^\alpha} V_N^{\alpha/N} R^\alpha \frac{(1-|a|^2)^\alpha}{(1+R|a|)^\alpha} \\ &\leq G_\alpha(u) \left(\frac{1+R}{1-R} R \sqrt[N]{V_N}\right)^\alpha. \end{split}$$

Corollary 1. Let $\alpha > 0$ and $u \in \mathcal{B}_{\alpha}$. Then $M_{\alpha,R}(u) < +\infty \forall R \in]0,1[$. If there exist constants C > 0 and $\varepsilon > 0$ such that $M_{\alpha,R}(u) \leq CR^{\alpha+\varepsilon} \forall R \in]0,1[$, then u is the function identically zero in B_N .

PROOF. If $G_{\alpha}(u) \neq 0$, Theorem 1 implies $M_{\alpha,R}(u) \sim R^{\alpha} V_N^{\alpha/N} G_{\alpha}(u)$ as $R \to 0^+$, which is a contradiction.

Theorem 2. Let $\alpha > 0$, $R \in]0,1[$ and u a non-negative subharmonic function in B_N . If

$$L_{\alpha,R}(u) := \sup_{a \in B_N} \frac{1}{[\operatorname{Vol} E(a,R)]^{2\frac{N-\alpha}{N+1}}} \int_{E(a,R)} u(x) \, dx < +\infty,$$

then $u \in \mathcal{B}_{\alpha}$, with $G_{\alpha}(u) \leq m_{\alpha}(R) \left[V_N R^N\right]^{1-2\frac{\alpha+1}{N+1}} L_{\alpha,R}(u)$ where $m_{\alpha}(R) = \frac{(1-R^2)^{\alpha}}{(1-R)^N}$ if $0 < \alpha \leq N$ and $m_{\alpha}(R) = \left(\frac{2}{2\alpha-N}\right)^{2\alpha-N} (\alpha-N)^{\alpha-N} \alpha^{\alpha}$ if $\alpha > N$.

Remark 3. When $\alpha > N$ and $0 < R \leq \frac{N}{2\alpha - N}$, the above upper bound of $G_{\alpha}(u)$ still holds with $m_{\alpha}(R) = \frac{(1-R^2)^{\alpha}}{(1-R)^N}$ and is even sharper.

PROOF. Let $a \in B_N$. Since $u \ge 0$, Lemma 3 (Section 6) and the subharmonicity of u lead to

$$\int_{E(a,R)} u(x) \, dx \ge \int_{B(a,R_a)} u(x) \, dx \ge u(a) \operatorname{Vol} B(a,R_a)$$

$$= u(a) V_N R^N \frac{(1-|a|^2)^N}{(1+R|a|)^N}.$$
(4)

Whence

$$u(a)(1-|a|^2)^{\alpha} \le \frac{1}{V_N R^N} \frac{(1+R|a|)^N}{(1-|a|^2)^{N-\alpha}} \int_{E(a,R)} u(x) \, dx$$

As $1-|a|^2 = (1-R^2|a|^2) \left(\frac{\operatorname{Vol} E(a,R)}{V_N R^N}\right)^{\frac{2}{N+1}}$ according to Lemma 4, we obtain

$$u(a)(1-|a|^{2})^{\alpha} \leq \frac{(1+R|a|)^{N}}{V_{N}R^{N}} \frac{(V_{N}R^{N})^{\frac{2(N-\alpha)}{N+1}}}{(1-R^{2}|a|^{2})^{N-\alpha}} [\operatorname{Vol} E(a,R)]^{\frac{2(N-\alpha)}{N+1}} \int_{E(a,R)} u(x) \, dx$$
$$= \frac{(1-R^{2}|a|^{2})^{\alpha}}{(1-R|a|)^{N}} \frac{(V_{N}R^{N})^{\frac{N-1-2\alpha}{N+1}}}{[\operatorname{Vol} E(a,R)]^{\frac{2(N-\alpha)}{N+1}}} \int_{E(a,R)} u(x) \, dx.$$

Let the function $g : [0,1[\rightarrow [0,+\infty[$ be defined by $g(t) = \frac{(1-t^2)^{\alpha}}{(1-t)^N}$. When $0 < \alpha \le N$, g is increasing on [0,1[so that $g(R|a|) \le g(R) \ \forall a \in B_N \ \forall R \in [0,1[$. When $\alpha > N$, a study of the derivative g' shows that g is increasing on $[0,\tau[$ with $\tau = \frac{N}{2\alpha - N}$ and decreasing on $]\tau,1[$, with maximum $g(\tau) = \left(\frac{2}{2\alpha - N}\right)^{2\alpha - N} (\alpha - N)^{\alpha - N} \alpha^{\alpha}$. Hence $g(R|a|) \le g(R) \le g(\tau) \ \forall a \in B_N \ \forall R \in [0,\tau]$ and $g(R|a|) \le g(\tau) \ \forall a \in B_N \ \forall R \in [\tau,1[$.

Corollary 2. Given $\alpha > 0$, let $u \ge 0$ be a subharmonic function in B_N such that $L_{\alpha,R}(u) < +\infty \ \forall R \in]0,1[$.

(i) If $L_{\alpha,R}(u) \leq C(1-R)^{N+\varepsilon} \ \forall R \in]0,1[$ (for some constants C > 0 and $\varepsilon > 0$), then u is the function identically zero in B_N .

(ii) Let $\mu = \frac{2N(\alpha+1)}{N+1} - N$. If $L_{\alpha,R}(u) \leq CR^{\mu+\varepsilon} \forall R \in]0,1[$ (for some constants C > 0 and $\varepsilon > 0$), then u is the function identically zero in B_N .

PROOF. (i) Since $G_{\alpha}(u) \leq C(V_N R^N)^{-\frac{\mu}{N}} (1-R)^{\varepsilon} \quad \forall R \in]0,1[$, the result follows as $R \to 1^-$

(ii) Since $G_{\alpha}(u) \leq C \frac{(V_N)^{-\frac{\mu}{N}}}{(1-R)^N} R^{\varepsilon} \quad \forall R \in]0,1[$, the result follows by letting $R \to 0^+$.

The converse of Theorem 2 does not hold for all $u \in \mathcal{B}_{\alpha}$. The function u of Proposition 1 produces a counterexample.

Proposition 1. Given $\alpha > 0$ and $R \in]0,1[$, the function u defined by $u(x) = \frac{1}{(1-|x|^2)^{\alpha}}$ ($\forall x \in B_N$) belongs to \mathcal{B}_{α} but

$$\sup_{a \in B_N} \frac{1}{[\operatorname{Vol} E(a, R)]^{2\frac{N-\alpha}{N+1}}} \int_{E(a, R)} u(x) \, dx = +\infty.$$

400

PROOF. The subharmonicity of u follows from $\Delta u(x) = g''(r) + \frac{N-1}{r}g'(r) \ge 0$ where r = |x| (see [2, p.26]) and $g(r) = \frac{1}{(1-r^2)^{\alpha}}$ ($r \in [0, 1[)$).

Let $a \in B_N$. Since φ_a is a \mathcal{C}^1 -diffeomorphism of B_N onto itself (Lemma 2), the change of variable $x = \varphi_a(y)$ leads to

$$\int_{E(a,R)} u(x) \, dx = \int_{B(0,R)} \frac{1}{(1 - |\varphi_a(y)|^2)^{\alpha}} \left(\frac{\sqrt{1 - |a|^2}}{1 - \langle y, a \rangle}\right)^{N+1} \, dy$$
$$= \int_{|y| < R} \frac{(1 - \langle y, a \rangle)^{2\alpha - (N+1)}}{(1 - |a|^2)^{\alpha - \frac{N+1}{2}} (1 - |y|^2)^{\alpha}} \, dy.$$

From the Cauchy–Schwarz inequality $1-R \leq 1-R|a| \leq 1-\langle y,a \rangle \leq 1+R|a| \leq 1+R \leq \frac{1}{1-R}$. Thus $(1-\langle y,a \rangle)^{2\alpha-N-1} \geq (1-R)^{|2\alpha-N-1|}$. Let $d\sigma$ denote the area element on the unit sphere S_N of \mathbb{R}^N . With $y = r\eta$, where r = |y| and $\eta \in S_N$, we have $\int_{|y| < R} \frac{dy}{(1-|y|^2)^{\alpha}} = \int_0^R \int_{S_N} \frac{d\sigma(\eta)r^{N-1}dr}{(1-r^2)^{\alpha}}$, so that

$$\int_{E(a,R)} u(x) \, dx \ge (1-|a|^2)^{\frac{N+1}{2}-\alpha} (1-R)^{|2\alpha-N-1|} \sigma_N \int_0^R \frac{r^{N-1} \, dr}{(1-r^2)^\alpha} \tag{5}$$

with $\sigma_N = \frac{2\pi^{N/2}}{\Gamma(N/2)}$ the area of S_N ([2, p.29]). Now, Lemma 4 (Section 6) provides

$$\begin{aligned} [\operatorname{Vol} E(a, R)]^{2\frac{N-\alpha}{N+1}} &= (V_N R^N)^{2\frac{N-\alpha}{N+1}} \left(\frac{1-|a|^2}{1-R^2|a|^2}\right)^{N-\alpha} \\ &\leq (1-|a|^2)^{N-\alpha} \frac{(V_N R^N)^{2\frac{N-\alpha}{N+1}}}{(1-R^2)^{|N-\alpha|}} \end{aligned}$$

since $1-R^2 \leq 1-R^2 |a|^2 \leq 1 \leq \frac{1}{1-R^2}$ implies $(1-R^2|a|^2)^{N-\alpha} \geq (1-R^2)^{|N-\alpha|}.$ Finally

$$\frac{1}{\left[\operatorname{Vol} E(a,R)\right]^{2\frac{N-\alpha}{N+1}}} \int_{E(a,R)} u(x) \, dx \ge C(N,\alpha,R) \frac{1}{(1-|a|^2)^{\frac{N-1}{2}}}$$

for some constant $C(N, \alpha, R)$ independent of $a \in B_N$.

When Vol E(a, R) is considered with the same exponent $\frac{N-\alpha}{N}$ as Vol $B(a, R_a)$ in Theorem 1, instead of the exponent $2\frac{N-\alpha}{N+1}$, we also obtain the next assertion.

Proposition 2. Let $\alpha \geq N$ and $R \in]0,1[$. If a subharmonic function $u \geq 0$ in B_N satisfies

$$P_{\alpha,R}(u) = \sup_{a \in B_N} \frac{1}{\left[\operatorname{Vol} E(a,R)\right]^{\frac{N-\alpha}{N}}} \int_{E(a,R)} u(x) \, dx < +\infty, \tag{6}$$

then $u \in \mathcal{B}_{\alpha}$. But the converse is not valid, the same function u as in Proposition 1 also serves as a counterexample here.

PROOF. It is enough to show that

$$\frac{1}{\left[\operatorname{Vol} E(a,R)\right]^{2\frac{N-\alpha}{N+1}}} \le (V_N)^{\frac{(\alpha-N)(N-1)}{N(N+1)}} \frac{1}{\left[\operatorname{Vol} E(a,R)\right]^{\frac{N-\alpha}{N}}}$$

This is a consequence of Lemma 4

$$[\operatorname{Vol} E(a, R)]^{(N-\alpha)\left(\frac{1}{N} - \frac{2}{N+1}\right)} = [\operatorname{Vol} E(a, R)]^{(\alpha-N)\frac{N-1}{N(N+1)}} = \\ = \left[V_N R^N \left(\frac{1-|a|^2}{1-R^2|a|^2} \right)^{\frac{N+1}{2}} \right]^{\frac{(\alpha-N)(N-1)}{N(N+1)}}.$$

Now, R < 1, $\frac{1-|a|^2}{1-R^2|a|^2} \le 1$ and $(\alpha - N)\frac{N-1}{N(N+1)} \ge 0$, hence the majorization above.

On one hand, if (6) holds, then Theorem 2 applies, thus $u \in \mathcal{B}_{\alpha}$. On the other hand, for the function u from Proposition 1, (6) does not hold: the "sup" in (6) is infinite.

Proposition 3. Let $0 < \alpha < N$ and $R \in]0,1[$. If a subharmonic function $u \ge 0$ in B_N satisfies (6), then $u \in \mathcal{B}_{\nu}$ with $\nu = N + \frac{(\alpha - N)(N+1)}{2N}$. But the converse is not valid.

PROOF. First suppose that u satisfies (6). Let $a \in B_N$. According to (4) and Lemma 4

$$\frac{1}{\left[\operatorname{Vol} E(a,R)\right]^{\frac{N-\alpha}{N}}} \int_{E(a,R)} u(x) \, dx$$

$$\geq u(a) V_N R^N \frac{(1-|a|^2)^N}{(1+R|a|)^N} (V_N R^N)^{\frac{\alpha-N}{N}} \left(\frac{1-|a|^2}{1-R^2|a|^2}\right)^{\frac{(N+1)(\alpha-N)}{2N}} \qquad (7)$$

$$\geq u(a) (V_N R^N)^{\frac{\alpha}{N}} \frac{(1-|a|^2)^N}{(1+R)^N} \left(\frac{1-|a|^2}{1-R^2}\right)^{\frac{(N+1)(\alpha-N)}{2N}}$$

since $1 + R|a| \le 1 + R$, $1 - R^2|a|^2 \ge 1 - R^2$ and $\frac{(N+1)(\alpha - N)}{2N} < 0$. Note that $\nu = \frac{N-1}{2} + \alpha \frac{N+1}{2N} > \alpha$ because $\nu - \alpha = \frac{N-1}{2} + \alpha \frac{1-N}{2N} = \frac{N-1}{2}(1 - \frac{\alpha}{N}) > 0$.

Next consider the function u from Proposition 1. Then $u \in \mathcal{B}_{\alpha}$. Hence $u \in \mathcal{B}_{\nu}$ ($\mathcal{B}_{\alpha} \subset \mathcal{B}_{\nu}$ since $\alpha \leq \nu$). Let $a \in B_N$. From (5) together with

$$\begin{aligned} \left[\operatorname{Vol} E(a, R) \right]^{\frac{N-\alpha}{N}} &= (V_N R^N)^{\frac{N-\alpha}{N}} \left(\frac{1-|a|^2}{1-R^2 |a|^2} \right)^{\frac{(N+1)(N-\alpha)}{2N}} \\ &\leq (V_N)^{\frac{N-\alpha}{N}} \left(\frac{1-|a|^2}{1-R^2} \right)^{\frac{(N+1)(N-\alpha)}{2N}} \end{aligned}$$

(since R < 1 and $N - \alpha \ge 0$), it follows that

$$\frac{1}{\left[\operatorname{Vol} E(a,R)\right]^{\frac{N-\alpha}{N}}} \int_{E(a,R)} u(x) \, dx \ge K \frac{(1-|a|^2)^{\frac{N+1}{2}-\alpha}}{(1-|a|^2)^{\frac{(N+1)(N-\alpha)}{2N}}} = K(1-|a|^2)^{\varepsilon}$$

with $\varepsilon = \frac{N+1}{2} - \alpha - \frac{(N+1)(N-\alpha)}{2N} = -\alpha + \frac{(N+1)\alpha}{2N} = \alpha \frac{1-N}{2N} < 0$ and $K = K(N, \alpha, R)$ a constant independant of $a \in B_N$. Finally

$$\sup_{a \in B_N} \frac{1}{\left[\operatorname{Vol} E(a, R)\right]^{\frac{N-\alpha}{N}}} \int_{E(a, R)} u(x) \, dx = +\infty.$$

Corollary 3. Given $\alpha > 0$, let ν be defined as in Proposition 3 and $u \ge 0$ be a subharmonic function in B_N , such that $P_{\alpha,R}(u) < +\infty \ \forall R \in]0,1[$.

(i) If there exist constants C > 0 and $\varepsilon > 0$ such that $P_{\alpha,R}(u) \leq CR^{\alpha+\varepsilon}$ $\forall R \in]0,1[$, then $u \equiv 0$ in B_N .

(ii) If $P_{\alpha,R}(u) \leq C(1-R)^{|N-\nu|+\varepsilon} \quad \forall R \in]0,1[$ (for some constants C > 0and $\varepsilon > 0$), then $u \equiv 0$ in B_N .

PROOF. Given $a \in B_N$, the first inequality of (7) is valid for all $\alpha > 0$. Since $\frac{1}{1-R^2} \ge 1-R^2|a|^2 \ge 1-R^2$, it follows that $(1-R^2|a|^2)^{N-\nu} \ge (1-R^2)^{|N-\nu|}$. Hence

$$P_{\alpha,R}(u) \ge u(a)(1-|a|^2)^{\nu} (V_N)^{\frac{\alpha}{N}} \frac{R^{\alpha}}{(1+R)^N} (1-R^2)^{|N-\nu|} \quad \forall R \in]0,1[.$$

PROOF OF (i). Since $u(a)(1-|a|^2)^{\nu}(V_N)^{\frac{\alpha}{N}}\frac{(1-R^2)^{|N-\nu|}}{(1+R)^N} \leq CR^{\varepsilon} \quad \forall R \in]0,1[$, the result u(a) = 0 follows when $R \to 0^+$.

PROOF OF (*ii*). Now $u(a)(1-|a|^2)^{\nu}(V_N)^{\frac{\alpha}{N}}R^{\alpha}(1+R)^{|N-\nu|-N} \leq C(1-R)^{\varepsilon}$ $\forall R \in]0,1[$. Letting $R \to 1^-$, we obtain (*ii*).

4 Another Characterization of \mathcal{B}_{α} .

Theorem 3. Given $\alpha > 0$ and $R \in]0,1[$, a non-negative subharmonic function u in B_N belongs to \mathcal{B}_{α} if and only if $\sup_{a \in B_N} \int_{B(a,R_a)} u(x)(1-|x|^2)^{\alpha-N} dx < +\infty$.

PROOF. Since $[\operatorname{Vol} B(a, R_a)]^{\frac{\alpha}{N}-1} = (V_N)^{\frac{\alpha-N}{N}} \left[\frac{R(1-|a|^2)}{1+R|a|}\right]^{\alpha-N}$ and $\frac{1-|x|^2}{2} \leq 1-|a|^2 \leq \frac{1+R}{1-R}(1-|x|^2) \ \forall x \in B(a, R_a)$ (Lemmas 1 and 5, Section 6), it follows that

$$\left(\frac{R(1-|x|^2)}{2(1+R)}\right)^{\alpha-N} \leq \left[\frac{\operatorname{Vol} B(a,R_a)}{V_N}\right]^{\frac{\alpha-N}{N}}$$
$$\leq \left(\frac{R(1+R)(1-|x|^2)}{1-R}\right)^{\alpha-N} \text{ when } \alpha \geq N$$

and

$$\begin{split} \left(\frac{R(1+R)(1-|x|^2)}{1-R}\right)^{\alpha-N} &\leq \left[\frac{\operatorname{Vol}B(a,R_a)}{V_N}\right]^{\frac{\alpha-N}{N}} \\ &\leq \left(\frac{R(1-|x|^2)}{2(1+R)}\right)^{\alpha-N} \text{ when } \alpha < N. \end{split}$$

Now $u(x) \ge 0$, so that for all $x \in B(a, R_a)$,

$$D \cdot u(x)(1 - |x|^2)^{\alpha - N} \le [\operatorname{Vol} B(a, R_a)]^{\frac{\alpha}{N} - 1} u(x) \le D' \cdot u(x)(1 - |x|^2)^{\alpha - N}$$

where constants $D = D(N, \alpha, R)$ and $D' = D'(N, \alpha, R)$ are independent of x and a. Hence Theorem 3 follows from our characterization (2).

Theorem 4. Let $\omega : [0,1[\rightarrow [0,+\infty[$ be a decreasing function. Given $\alpha > 0$ and $p \leq \alpha - N$, if a non-negative subharmonic function u in B_N satisfies $S_{p,\omega}(u) < +\infty$, then $u \in \mathcal{B}_{\alpha}$.

PROOF. Given $a \in B_N$, the following holds for all $R \in]0,1[$ since $u(x) \ge 0$ $\forall x \in B_N$.

$$\begin{split} \int_{B_N} u(x)(1-|x|^2)^p \omega(|\varphi_a(x)|) \, dx &\geq \int_{B(a,R_a)} u(x)(1-|x|^2)^p \omega(|\varphi_a(x)|) \, dx \\ &\geq \int_{B(a,R_a)} u(x)(1-|x|^2)^{\alpha-N} \omega(|\varphi_a(x)|) \, dx \\ &(\text{since } (1-|x|^2)^p \geq (1-|x|^2)^{\alpha-N}) \\ &\geq \omega(R) \int_{B(a,R_a)} u(x)(1-|x|^2)^{\alpha-N} \, dx \end{split}$$

since ω decreases and $B(a, R_a) \subset E(a, R)$ from Lemma 3; hence $|\varphi_a(x)| < R$ $\forall x \in B(a, R_a)$. With R fixed, the result " $u \in \mathcal{B}_{\alpha}$ " follows from Theorem 3.

The converse of Theorem 4 is not necessarily valid.

BLOCH AND GAP SUBHARMONIC FUNCTIONS

Proposition 4. With ω as in Definition 3, $\alpha > 0$ and $p < \alpha - \frac{N+1}{2}$, the function u from Proposition 1 belongs to \mathcal{B}_{α} but $S_{p,\omega}(u) = +\infty$.

PROOF. Given $a \in B_N$, the change of variable $y = \varphi_a(x)$ (see Lemma 2, Section 6) leads to

$$\begin{split} \int_{B_N} u(x)(1-|x|^2)^p \omega(|\varphi_a(x)|) \, dx &= \int_{B_N} (1-|x|^2)^{p-\alpha} \omega(|\varphi_a(x)|) \, dx \\ &= \int_{B_N} (1-|\varphi_a(y)|^2)^{p-\alpha} \omega(|y|) \left(\frac{1-|\varphi_a(y)|^2}{1-|y|^2}\right)^{\frac{N+1}{2}} \, dy \\ &= \int_{B_N} \left[\frac{1-|a|^2}{(1-\langle y,a\rangle)^2}\right]^{p-\alpha+\frac{N+1}{2}} (1-|y|^2)^{p-\alpha} \omega(|y|) \, dy. \end{split}$$

Now $|\langle y, a \rangle| \leq \frac{|a|}{2} < \frac{1}{2}$ if $y \in B_N$ satisfies $|y| \leq \frac{1}{2}$. Hence $1 - \langle y, a \rangle \geq \frac{1}{2}$ for such y. Since $p - \alpha + \frac{N+1}{2} < 0$, we obtain

The result " $S_{p,\omega}(u) = +\infty$ " follows from $\sup_{a \in B_N} (1 - |a|^2)^{p-\alpha + \frac{N+1}{2}} = +\infty$ (the exponent being strictly negative).

Theorem 5. Let function $\omega : [0,1[\rightarrow [0,+\infty[\text{ satisfy } (3). Given <math>\alpha > 0 \text{ and } p \ge \alpha - \frac{N+1}{2}$, the inclusion $\mathcal{B}_{\alpha} \subset \mathcal{SH}(p,\omega)$ holds.

PROOF. Let $u \in \mathcal{B}_{\alpha}$. Thus $u(x) \leq \frac{G_{\alpha}(u)}{(1-|x|^2)^{\alpha}} \quad \forall x \in B_N$. Hence

$$\begin{split} \int_{B_N} u(x)(1-|x|^2)^p \omega(|\varphi_a(x)|) \, dx &\leq G_\alpha(u) \int_{B_N} (1-|x|^2)^{p-\alpha} \omega(|\varphi_a(x)|) \, dx \\ &= G_\alpha(u) \int_{B_N} (1-|\varphi_a(y)|^2)^{p-\alpha+\frac{N+1}{2}} \omega(|y|) \frac{dy}{(1-|y|^2)^{\frac{N+1}{2}}} \\ &\leq G_\alpha(u) \int_{B_N} \frac{\omega(|y|)}{(1-|y|^2)^{\frac{N+1}{2}}} \, dy = G_\alpha(u) \sigma_N \int_0^1 \frac{\omega(r)r^{N-1}}{(1-r^2)^{\frac{N+1}{2}}} \, dr \, \forall a \in B_N \end{split}$$

with the same notations and changes of variables as in the proof of Proposition 1. We have majorized $(1 - |\varphi_a(y)|^2)^{p-\alpha + \frac{N+1}{2}}$ by 1 since $p - \alpha + \frac{N+1}{2} \ge 0$. Finally $S_{p,\omega}(u) \le G_{\alpha}(u)\sigma_N\Omega$.

Proposition 5. With ω and $\alpha > 0$ as in Theorem 5, let $p > \alpha - \frac{N+1}{2}$ and $\alpha < \beta \leq p + \frac{N+1}{2}$. Then the function u defined by $u(x) = \frac{1}{(1-|x|^2)^{\beta}} \quad \forall x \in B_N$ belongs to $\mathcal{SH}(p,\omega)$ but not to \mathcal{B}_{α} .

PROOF. Since $\Delta u \ge 0$ can be verified as in the proof of Proposition 1, $u \notin \mathcal{B}_{\alpha}$ is a consequence of $\sup_{x \in B_N} (1 - |x|^2)^{\alpha - \beta} = +\infty$. Given $a \in B_N$, we obtain

$$\int_{B_N} u(x)(1-|x|^2)^p \omega(|\varphi_a(x)|) \, dx = \int_{B_N} (1-|\varphi_a(y)|^2)^{p-\beta+\frac{N+1}{2}} \frac{\omega(|y|)}{(1-|y|^2)^{\frac{N+1}{2}}} \, dy$$
$$\leq \sigma_N \Omega$$

in the same way as in the previous proof. Hence $S_{p,\omega}(u) < +\infty$.

Proposition 6. If $p > -\frac{N+1}{2}$ and the function $\omega : [0, 1[\rightarrow [0, +\infty[$ satisfies (3), then

$$\max\{\alpha > 0 : \mathcal{B}_{\alpha} \subset \mathcal{SH}(p,\omega)\} = p + \frac{N+1}{2}.$$

PROOF. Theorem 5 already asserts $\mathcal{B}_{\alpha} \subset \mathcal{SH}(p,\omega) \ \forall \alpha \in]0, p + \frac{N+1}{2}]$. For $\alpha > p + \frac{N+1}{2}, \ \mathcal{B}_{\alpha} \not\subset \mathcal{SH}(p,\omega)$ follows from Proposition 4.

5 Gap Subharmonic Functions.

Definition 4. Let \mathcal{G} be the set of all functions u defined on B_N by $u(x) = f(|x|) \quad \forall x \in B_N$, where f(r) is the sum of some power series with coefficients $c_k \geq 0 \ (k \in \mathbb{N}^* = \mathbb{N} \setminus \{0\})$ of the kind

$$f(r) = \sum_{k \in \mathbb{N}^*} c_k r^{2^k} \tag{8}$$

which converges for all $r \in [0, 1[$.

Remark 4. Such functions u are non–negative and subharmonic in B_N since $\Delta u(x) = f''(r) + \frac{N-1}{r}f'(r)$ (with r = |x|, see [2, p.26]) and $f'(r) \ge 0$, $f''(r) \ge 0$, f''(r

Theorem 6. Given $p > -\frac{N+3}{4}$ and $\omega : [0, 1[\rightarrow [0, +\infty[$ a measurable function such that

$$\Omega' := \int_0^1 \frac{[\omega(r)]^2 r^{N-1}}{(1-r^2)^{\frac{N+1}{2}}} \, dr < +\infty,\tag{9}$$

let $u \in \mathcal{G}$ with gap development (8). If $\sum_{k \in \mathbb{N}} c_{k+1}^2 2^{-2k(p+\frac{N+3}{4})} < +\infty$, then

 $u\in\mathcal{SH}(p,\omega).$

Example. The function ω defined by $\omega(r) = \left(\log \frac{1}{r}\right)^s$ with $s > \frac{N-1}{4}$ fulfills condition (9).

PROOF. Given $a \in B_N$, Cauchy–Schwarz' inequality leads to

$$\int_{B_N} u(x)(1-|x|^2)^p \omega(|\varphi_a(x)|) \, dx = \int_{B_N} u(x)(1-|x|^2)^{p+\frac{N+1}{4}} \frac{\omega(|\varphi_a(x)|)}{(1-|x|^2)^{\frac{N+1}{4}}} \, dx$$
$$\leq \left(\int_{B_N} [u(x)]^2 (1-|x|^2)^{2p+\frac{N+1}{2}} \, dx\right)^{\frac{1}{2}} \left(\int_{B_N} \frac{[\omega(|\varphi_a(x)|)]^2}{(1-|x|^2)^{\frac{N+1}{2}}} \, dx\right)^{\frac{1}{2}}.$$

Now, the change of variable $y = \varphi_a(x)$ turns the second integral into

$$\int_{B_N} \frac{[\omega(|\varphi_a(x)|)]^2}{(1-|x|^2)^{\frac{N+1}{2}}} dx = \int_{B_N} \frac{[\omega(|y|)]^2}{(1-|\varphi_a(y)|^2)^{\frac{N+1}{2}}} \left(\frac{1-|\varphi_a(y)|^2}{1-|y|^2}\right)^{\frac{N+1}{2}} dy$$
$$= \sigma_N \int_0^1 \frac{[\omega(r)]^2}{(1-r^2)^{\frac{N+1}{2}}} r^{N-1} dr = \sigma_N \Omega' \quad \forall a \in B_N.$$

Besides that

$$\int_{B_N} [u(x)]^2 (1 - |x|^2)^{2p + \frac{N+1}{2}} dx = \sigma_N \int_0^1 [f(r)]^2 (1 - r^2)^{2p + \frac{N+1}{2}} r^{N-2} r dr$$
$$\leq \frac{\sigma_N}{2} \int_0^1 [g(t)]^2 (1 - t)^{2p + \frac{N+1}{2}} dt \text{ since } r^{N-2} \leq 1$$

with $g(t) = f(\sqrt{t}) = \sum_{k \in \mathbb{N}^*} c_k t^{2^{k-1}} = \sum_{k \in \mathbb{N}} c_{k+1} t^{2^k}$. From Lemma 6 (Section 6), with $\alpha = 2p + \frac{N+1}{2} + 1 = 2p + \frac{N+3}{2} > 0$, $\beta = 2$, $s_k = c_{k+1}$, the above integral is majorized by $K \sum_{k \in \mathbb{N}} c_{k+1}^2 2^{-k(2p + \frac{N+3}{2})}$. Finally

$$\int_{B_N} u(x)(1-|x|^2)^p \omega(|\varphi_a(x)|) \, dx \le \sqrt{\sigma_N \Omega'} \sqrt{\frac{\sigma_N}{2} K} \sqrt{\sum_{k \in \mathbb{N}} c_{k+1}^2 2^{-k(2p+\frac{N+3}{2})}}.$$

Theorem 7. Given $p \in \mathbb{R}$, $s \in \mathbb{R}$ satisfying p + s + 1 > 0 and $\omega : [0, 1[\rightarrow [0, +\infty[a measurable function for which there exists a constant <math>C > 0$ such that $\omega(r) \geq C(1 - r^2)^s \quad \forall r \in [0, 1[, let \ u \in \mathcal{G} with gap development (8). If <math>u \in S\mathcal{H}(p, \omega)$, then $\sum_{k \in \mathbb{N}} c_{k+1} 2^{-k(p+s+1)} < +\infty$.

Example. The function ω defined by $\omega(r) = \left(\log \frac{1}{r}\right)^s$ with $s \ge 0$ satisfies $\omega(r) \ge (1-r)^s \ge \frac{1}{2^s}(1-r^2)^s$.

PROOF. For a = 0, we have $|\varphi_a(x)| = |x|$. Hence

$$S_{p,\omega}(u) \ge \int_{B_N} u(x)(1-|x|^2)^p \omega(|x|) \, dx \ge C \int_{B_N} u(x)(1-|x|^2)^{p+s} \, dx$$
$$= C\sigma_N \int_0^1 f(r)(1-r^2)^{p+s} r^{N-1} \, dr = \frac{C\sigma_N}{2} \int_0^1 f(\sqrt{t}) t^{\frac{N}{2}-1} (1-t)^{p+s} \, dt.$$

Let $k_0 \in \mathbb{N}$ such that $\frac{N}{2} \leq 2^{k_0}$. Hence $1 + \frac{\frac{N}{2} - 1}{2^k} \leq 2^{k_0} \forall k \in \mathbb{N}$, in other words $2^k + \frac{N}{2} - 1 \leq 2^{k+k_0}$. Thus $t^{2^k + \frac{N}{2} - 1} \geq t^{2^{k+k_0}} \forall t \in [0, 1]$ and

$$f(\sqrt{t})t^{\frac{N}{2}-1} \ge h(t) := \sum_{k \in \mathbb{N}} c_{k+1}t^{2^{k+k_0}} = \sum_{k \ge k_0} c_{k+1-k_0}t^{2^k}.$$

Finally

$$S_{p,\omega}(u) \ge \frac{C\sigma_N}{2} \int_0^1 h(t)(1-t)^{p+s} dt \ge \frac{C\sigma_N}{2K} \sum_{k\ge k_0} c_{k+1-k_0} 2^{-k(p+s+1)}$$
$$= 2^{-k_0(p+s+1)} \frac{C\sigma_N}{2K} \sum_{k\in\mathbb{N}} c_{k+1} 2^{-k(p+s+1)}$$

from Lemma 6 applied with $\alpha = p + s + 1$, $\beta = 1$, $s_k = c_{k+1-k_0} \forall k \ge k_0$ and $s_k = 0 \forall k \in \{0, 1, 2, \dots, k_0 - 1\}$. (Here, K does not have the same value as in the previous proof.)

Proposition 7. Let p, s and ω be defined as in Theorem 7. Then $\mathcal{G} \cap \mathcal{SH}(p,\omega) \subset \mathcal{B}_{\alpha}$ for any $\alpha \geq p + s + 1$.

Example. When ω is decreasing, this inclusion in \mathcal{B}_{α} follows from Theorem 4 for $\alpha \geq p + N$, thus Proposition 7 brings some new information in the case $0 \leq s < N - 1$.

PROOF. Let $u \in \mathcal{G} \cap \mathcal{SH}(p, \omega)$, with gap development (8). According to Theorem 7, the series $\sum_{k \in \mathbb{N}} c_{k+1} 2^{-k(p+s+1)}$ converges. Thus $\lim_{k \to +\infty} c_{k+1} 2^{-k(p+s+1)} =$

0. For k sufficiently large, $c_{k+1}2^{-k(p+s+1)} \leq 1$. Now

$$c_{k+1}2^{-(k+1)\alpha} = 2^{-\alpha}c_{k+1}2^{-k\alpha} \le 2^{-\alpha}c_{k+1}2^{-k(p+s+1)} \quad \forall k \in \mathbb{N}.$$

Hence $\sup_{k\geq 1} c_k 2^{-k\alpha} < \infty$ and Lemma 7 (Section 6) implies $u \in \mathcal{B}_{\alpha}$. (It could

even be verified that $\lim_{k \to +\infty} c_k 2^{-k\alpha} = 0.$

408

Remark 5. Under the conditions of Theorem 7, the inclusion $\mathcal{G} \cap \mathcal{B}_{\alpha} \subset$ $\mathcal{SH}(p,\omega)$ does not hold for $\alpha \geq p+s+1$. For instance, the function $u \in \mathcal{G}$, with development (8) defined by $c_k = 2^{k\alpha} \ \forall k \in \mathbb{N}^*$, belongs to \mathcal{B}_{α} but not to $\mathcal{SH}(p,\omega)$, since $\sup c_k 2^{-k\alpha} < +\infty$ and $k \ge 1$

$$\sum_{k \in \mathbb{N}} c_{k+1} 2^{-k(p+s+1)} = 2^{\alpha} \sum_{k \in \mathbb{N}} 2^{k(\alpha-p-s-1)} = +\infty.$$

Proposition 8. Let p and ω be defined as in Theorem 6. Then $\mathcal{G} \cap \mathcal{B}_{\alpha} \subset$ $\mathcal{SH}(p,\omega)$ for any $\alpha .$

Example. When $\omega(r) = \left(\log \frac{1}{r}\right)^s$ with $\frac{N-1}{4} < s \leq \frac{N-1}{2}$, Theorem 5 cannot be used because (3) does not hold, but Proposition 8 can be applied.

PROOF. Let $u \in \mathcal{G} \cap \mathcal{B}_{\alpha}$, with gap development (8). Since $c_{k+1}2^{-(k+1)\alpha} =$ $2^{-\alpha}c_{k+1}2^{-k\alpha} \forall k \in \mathbb{N}$, Lemma 7 (Section 6) leads to $\sup_{k \ge 1} c_{k+1}2^{-k\alpha} < +\infty$. The radius of convergence of the power series $\sum_{k\in\mathbb{N}}c_{k+1}^2z^{2k}$ $(z\in\mathbb{C})$ thus is $\geq 2^{-\alpha}$.

Otherwise, the sequence $(c_{k+1}^2 2^{-2k\alpha})_{k \in \mathbb{N}}$ would be unbounded according to Abel's Lemma. Now $2^{-\alpha} > 2^{-(p+\frac{N+3}{4})}$. Hence $\sum_{k \in \mathbb{N}} c_{k+1}^2 2^{-2k(p+\frac{N+3}{4})}$ converges

and $u \in \mathcal{SH}(p, \omega)$ from Theorem 6.

Remark 6. Under the conditions of Theorem 6, the inclusion $\mathcal{G} \cap \mathcal{SH}(p, \omega) \subset$ \mathcal{B}_{α} does not hold for $\alpha . For instance, the function <math>u \in \mathcal{G}$ with development (8) defined by $c_k = k^{4} 2^{k\alpha} \quad \forall k \in \mathbb{N}^*$, belongs to $\mathcal{SH}(p,\omega)$ but not to \mathcal{B}_{α} , since $\sup c_k 2^{-k\alpha} = +\infty$ and $k \ge 1$

$$\sum_{k\in\mathbb{N}}c_{k+1}^22^{-2k(p+\frac{N+3}{4})}=2^{2\alpha}\sum_{k\in\mathbb{N}}(k+1)^22^{-2k(p+\frac{N+3}{4}-\alpha)}<+\infty.$$

Appendix: Some Technical Results 6

Lemma 1. Given $a \in B_N$ and $R \in [0, 1[$, we have $1 - |x|^2 \ge \frac{1-R}{1+R}(1-|a|^2)$ for any $x \in B(a, R_a)$.

PROOF. We have $|x| \le |a| + R_a = \frac{|a| + R|a|^2 + R - R|a|^2}{1 + R|a|} = \frac{|a| + R}{1 + R|a|} < 1$, since |a| + R - 1 - R|a| = (1 - |a|)(R - 1) < 0. Hence

$$1 - |x|^2 \ge 1 - \left(\frac{|a| + R}{1 + R|a|}\right)^2 = \frac{1 + 2R|a| + R^2|a|^2 - (|a|^2 + R^2 + 2R|a|)}{(1 + R|a|)^2} =$$

R. Supper

$$=\frac{(1-|a|^2)(1-R^2)}{(1+R|a|)^2} \ge \frac{(1-|a|^2)(1-R^2)}{(1+R)^2}.$$

Lemma 2. Given $a \in B_N$, the function $\varphi_a : B_N \to B_N$ is an involutive bijection and

$$1 - |\varphi_a(x)|^2 = \frac{(1 - |x|^2)(1 - |a|^2)}{(1 - \langle x, a \rangle)^2} \quad \forall x \in B_N.$$

Let $J_a(x)$ stand for the determinant of matrix $\left(\frac{\partial \varphi_{a,i}}{\partial x_j}(x)\right)_{1 \le i,j \le N}$ where $\varphi_{a,1}$, $\varphi_{a,2}, \ldots, \varphi_{a,N}$ are the N components of map φ_a . Then

$$J_a(x) = (-1)^N \left(\frac{\sqrt{1-|a|^2}}{1-\langle x,a\rangle}\right)^{N+1} = (-1)^N \left(\frac{1-|\varphi_a(x)|^2}{1-|x|^2}\right)^{\frac{N+1}{2}}.$$

PROOF. See [5, pp.25–26] and [1, p.115] for properties of map φ_a and [6] for the computation of $J_a(x)$.

Lemma 3. For any $a \in B_N$ and any $R \in [0, 1[$, the ellipsoid E(a, R) contains $B(a, R_a)$, with merely E(0, R) = B(0, R) when a = 0.

Proof. See [6].

Lemma 4. For any $a \in B_N$ and any $R \in [0, 1[$, the volume of the ellipsoid E(a, R) is

Vol
$$E(a, R) = V_N R^N \left(\frac{1 - |a|^2}{1 - R^2 |a|^2}\right)^{\frac{N+1}{2}}.$$

PROOF. The same changes of variables as in the proof of Proposition 1 lead to

$$\operatorname{Vol} E(a, R) = \int_{E(a, R)} dx = \int_{B(0, R)} \left(\frac{\sqrt{1 - |a|^2}}{1 - \langle y, a \rangle} \right)^{N+1} dy$$
$$= (1 - |a|^2)^{\frac{N+1}{2}} \int_0^R \int_{S_N} \frac{d\sigma(\eta) r^{N-1} dr}{(1 - r\langle \eta, a \rangle)^{N+1}}.$$

Without restriction, we may assume $a \neq 0$ and a = |a|(1, 0, ..., 0). Polar coordinates in \mathbb{R}^N provide $\eta_1 = \cos \theta_1$ and

$$d\sigma = (\sin\theta_1)^{N-2} (\sin\theta_2)^{N-3} \dots (\sin\theta_{N-2}) d\theta_1 d\theta_2 \dots d\theta_{N-1}$$

410

with $\theta_1, \theta_2, \ldots, \theta_{N-2} \in]0, \pi[$ and $\theta_{N-1} \in]0, 2\pi[$ (see [11, p.15]). It is clear for $N \ge 3$ that $(\sin \theta_2)^{N-3} (\sin \theta_3)^{N-4} \ldots (\sin \theta_{N-2}) d\theta_2 d\theta_3 \ldots d\theta_{N-1}$ is the area element on S_{N-1} . Since $\sigma_1 = 2$, we have for $N \ge 3$ and for N = 2

$$\operatorname{Vol} E(a, R) = (1 - |a|^2)^{\frac{N+1}{2}} \int_0^R \int_0^\pi \frac{\sigma_{N-1}(\sin\theta_1)^{N-2} d\theta_1}{(1 - r|a|\cos\theta_1)^{N+1}} r^{N-1} dr$$
$$= (1 - |a|^2)^{\frac{N+1}{2}} \sigma_{N-1} \int \int_H \frac{t^{N-2}}{(1 - |a|s)^{N+1}} ds dt$$

where $s = r \cos \theta_1$, $t = r \sin \theta_1$ and $H = \{(s, t) \in \mathbb{R}^2 : t \ge 0, s^2 + t^2 \le R^2\}$ is a half-disk.

Since $N + 1 \notin -\mathbb{N}$, using [10, p. 53] yields

$$\frac{t^{N-2}}{(1-|a|s)^{N+1}} = \sum_{n\geq 0} \frac{\Gamma(n+N+1)}{n!\Gamma(N+1)} |a|^n s^n t^{N-2}.$$

This series converges normally on H, since |a| < 1. Hence $\int \int_H \frac{t^{N-2}}{(1-|a|s)^{N+1}} \, ds \, dt$ $=\sum_{n\geq 0}\frac{\Gamma(n+N+1)}{n!\Gamma(N+1)}|a|^nJ_n \text{ with } J_n=\int\int_H s^n t^{N-2}\,ds\,dt. \text{ When } n \text{ is odd}, J_n=0.$ For even n (n = 2k) $J_n = \frac{R^{2k+N}}{N-1} \frac{\Gamma(k+\frac{1}{2})\Gamma(\frac{N+1}{2})}{\Gamma(k+\frac{N}{2}+1)}$ using Euler's identity for the Beta function (see [4, pp. 67–68]). Whence

$$\begin{aligned} \iint_{H} \frac{t^{N-2} \, ds \, dt}{(1-|a|s)^{N+1}} &= \frac{R^{N}}{N-1} \frac{\Gamma(\frac{N+1}{2})}{\Gamma(N+1)} \sum_{k \ge 0} \frac{\Gamma(2k+N+1)}{\Gamma(k+\frac{N}{2}+1)} \frac{\Gamma(k+\frac{1}{2})}{\Gamma(2k+1)} (R^{2}|a|^{2})^{k} \\ &= \frac{R^{N}}{N-1} \sqrt{\pi} \frac{\Gamma(\frac{N+1}{2})}{\Gamma(\frac{N}{2}+1)} \sum_{k \ge 0} \frac{\Gamma(k+\frac{N+1}{2})}{k! \Gamma(\frac{N+1}{2})} (R^{2}|a|^{2})^{k} = R^{N} \frac{V_{N}}{\sigma_{N-1}} \left(\frac{1}{1-R^{2}|a|^{2}}\right)^{\frac{N+1}{2}} \end{aligned}$$

by the duplication formula $\sqrt{\pi}\Gamma(2z) = 2^{2z-1}\Gamma(z)\Gamma(z+\frac{1}{2})$ for the Gamma function ([4, p. 45]), applied successively with $z = k + \frac{N}{2} + \frac{1}{2}$, $z = k + \frac{1}{2}$ and $z = \frac{N+1}{2}.$

Lemma 5. For all $a \in B_N$ and $R \in [0,1[$, we have $1 - |x|^2 \le 2(1 - |a|^2)$ $\forall x \in B(a, R_a).$

PROOF. If $|a| \leq \frac{1}{\sqrt{2}}$, then $1-2|a|^2 \geq 0$. Hence $1-|x|^2 \leq 1 \leq 1+(1-2|a|^2) =$ $2(1-|a|^2)$ $\forall x \in B_N$. If $|a| > \frac{1}{\sqrt{2}}$, then $R_a \leq |a| \ \forall R \in [0,1[$ since

$$|a| - R_a = \frac{|a|(1+R|a|) - R(1-|a|^2)}{1+R|a|} = \frac{|a| + (2|a|^2 - 1)R}{1+R|a|} \ge 0 \quad \forall R \in [0,1[.1]]$$

Thus $|x| \ge |a| - R_a \ge 0$ for any $x \in B(a, R_a)$. Hence

$$1 - |x|^{2} \leq 1 - (|a| - R_{a})^{2} = 1 - \left[|a| - \frac{R(1 - |a|^{2})}{1 + R|a|} \right]^{2}$$

$$= 1 - \left[|a|^{2} - \frac{2|a|R}{1 + R|a|} (1 - |a|^{2}) + \frac{R^{2}}{(1 + R|a|)^{2}} (1 - |a|^{2})^{2} \right]$$

$$= (1 - |a|^{2}) \left[1 + \frac{2|a|R}{1 + R|a|} - \frac{R^{2}(1 - |a|^{2})}{(1 + R|a|)^{2}} \right]$$

$$\leq (1 - |a|^{2}) \left[1 + \frac{2|a|R}{1 + R|a|} \right] \leq 2(1 - |a|^{2})$$

because $R|a| \leq 1$; thus $2R|a| \leq 1 + R|a|$.

Lemma 6. (see [3]). Given $\alpha > 0$, $\beta > 0$ and a power series $g(t) = \sum_{n \in \mathbb{N}^*} b_n t^n$ (convergent for |t| < 1) with non-negative coefficients b_n ($n \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$), let $s_k = \sum_{n \in I_k} b_n$ where $I_k = \{n \in \mathbb{N}^* : 2^k \le n < 2^{k+1}\} \forall k \in \mathbb{N}$. There exists a constant K, depending only on $\alpha > 0$ and $\beta > 0$, such that

$$\frac{1}{K}\sum_{k\in\mathbb{N}}2^{-k\alpha}s_k^\beta \le \int_0^1(1-t)^{\alpha-1}[g(t)]^\beta dt \le K\sum_{k\in\mathbb{N}}2^{-k\alpha}s_k^\beta.$$

Lemma 7. Given $\alpha > 0$ and a convergent power series of sum f(r) and coefficients $c_k \ge 0$ as in (8), we have

$$\sup_{0 \le r < 1} (1 - r^2)^{\alpha} f(r) < +\infty \quad \Longleftrightarrow \quad \sup_{k \ge 1} c_k 2^{-k\alpha} < +\infty.$$

PROOF. Since $(1-r)^{\alpha} \leq (1-r^2)^{\alpha} \leq 2^{\alpha}(1-r)^{\alpha} \quad \forall r \in [0,1[$, we will prove as in [7]

$$G := \sup_{0 \le r < 1} (1 - r)^{\alpha} f(r) < +\infty \Longleftrightarrow \sup_{k \ge 1} c_k 2^{-k\alpha} < +\infty.$$

 $\implies \text{Given } k \in \mathbb{N}^*, \text{ Cauchy's formula in } \mathbb{C} \text{ yields } c_k = \frac{1}{2i\pi} \int_{|z|=r} \frac{f(z)}{z^{1+2^k}} dz$ whatever $r \in]0,1[$, hence: $|c_k| \leq \frac{1}{r^{2^k}} \sup_{|z|=r} |f(z)|$. Here $|f(z)| \leq f(|z|) \ \forall z \in \mathbb{C},$ |z| < 1, since f has non-negative Taylor coefficients at the origin. Thus $0 \leq c_k \leq \frac{1}{r^{2^k}} f(r) \leq \frac{G}{r^{2^k}(1-r)^{\alpha}} \ \forall r \in]0,1[$. The choice $r = 1 - \frac{1}{2^k}$ leads to $c_k \leq G2^{k\alpha} \left(1 - \frac{1}{2^k}\right)^{-2^k}$. Since $\lim_{k \to +\infty} \left(1 - \frac{1}{2^k}\right)^{2^k} = 1/e$, the conclusion $\sup_{k \geq 1} c_k 2^{-k\alpha} < +\infty$ holds.
$$\frac{1}{(1-r)^{\alpha}} = \sum_{n \ge 0} \frac{\Gamma(n+\alpha)}{n! \Gamma(\alpha)} r^n \quad \forall r \in [0,1[$$

since $\alpha \notin -\mathbb{N}$. Stirling's formula (see [4, p.59]) implies $\frac{\Gamma(n+\alpha)}{n!} \sim n^{\alpha-1}$ as $n \to +\infty$. There is thus some constant M > 1 (depending only on α) such that $n^{\alpha-1} \leq M \frac{\Gamma(n+\alpha)}{n!} \quad \forall n \in \mathbb{N}^*$. We will soon prove that

$$\sum_{k \in \mathbb{N}^*} 2^{k\alpha} r^{2^k} \le 2^{\alpha+1} \sum_{n \ge 1} n^{\alpha-1} r^n \quad \forall r \in [0, 1[.$$
(10)

This will lead to $f(r) \leq \frac{L2^{\alpha+1}M}{(1-r)^{\alpha}} \Gamma(\alpha) \ \forall r \in [0, 1[$ and the conclusion will follow. Let us now establish (10). With I_k defined as in Lemma 6, $\sum_{n\geq 1} n^{\alpha-1}r^n = \sum_{k\geq 0} \sum_{n\in I_k} n^{\alpha-1}r^n$. Since $0 \leq r < 1$, $r^n \geq r^{2^{k+1}} \ \forall n < 2^{k+1}$ and $n^{\alpha} \geq 2^{k\alpha} \ \forall n \geq 2^k$. Hence

$$\sum_{n \in I_k} n^{\alpha - 1} r^n \ge r^{2^{k+1}} \sum_{n \in I_k} n^{\alpha - 1} \ge r^{2^{k+1}} 2^{k\alpha} \sum_{n \in I_k} \frac{1}{n}.$$

The last sum contains 2^k terms, each of which $\geq \frac{1}{2^{k+1}}$, so that

$$\sum_{n \in I_k} n^{\alpha - 1} r^n \ge r^{2^{k+1}} 2^{k\alpha} \frac{1}{2} = \frac{1}{2^{1+\alpha}} r^{2^{k+1}} 2^{(k+1)\alpha}.$$

Finally $\sum_{n\geq 1} n^{\alpha-1} r^n \geq \frac{1}{2^{1+\alpha}} \sum_{k\geq 0} r^{2^{k+1}} 2^{(k+1)\alpha}$ and (10) follows.

References

- A. B. Aleksandrov, Function Theory in the Ball, Several Complex Variables, Part II (G.M. Khenkin and A.G. Vitushkin Editors) Encyclopedia of Mathematical Sciences, Volume 8, Springer Verlag, 1994.
- [2] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol.I, London Mathematical Society Monographs, No. 9. Academic Press, London-New York, 1976.

- [3] M. Mateljevic and M. Pavlovic, L^p-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc., 87 (1983), 309– 316.
- [4] R. Remmert, Classical topics in complex function theory, Graduate Texts in Mathematics, 172. Springer-Verlag, New York, 1998.
- [5] W. Rudin, Function theory in the unit ball of Cⁿ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 241, Springer-Verlag, New York-Berlin, 1980.
- [6] R. Supper, Subharmonic functions with a Bloch type growth, submitted.
- [7] S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J., 28 (1980), 31–36.
- [8] R. H. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. No. 105 (1996).
- [9] R. H. Zhao, On α-Bloch functions and VMOA, Acta Math. Sci., 16 (1996), 349–360.
- [10] K. H. Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, 139, Marcel Dekker, Inc., New York, 1990.
- [11] C. Zuily, Distributions et équations aux dérivées partielles, Collection Méthodes, Hermann, Paris, 1986.