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REPRESENTATION OF ABSTRACT
AFFINE FUNCTIONS

Abstract

It is known that any subspace H of the space of continuous functions
on a compact set can be represented as the space of affine continuous
functions defined on the state space of H. The aim of this paper is to
generalize this result for abstract affine functions of various descriptive
classes (Borel, Baire etc.). The important step in the proof is to derive
results on the preservation of the descriptive properties of topological
spaces under perfect mappings. The main results are applied on the
space of affine functions on compact convex sets and on approximation
of semicontinuous and Baire–one abstract affine functions.

1 Introduction

Let U be a bounded open subset of Rn and H(U) be the vector space of all
continuous functions on the closure U of U , which are harmonic on U. For a
given continuous function f defined on the boundary ∂U of U, set

f{U : x 7→
∫
∂U

f dε{U
x for each x ∈ U .

Here ε{U
x denotes the balayage of the Dirac measure εx on the complement

{U of U , so that ε{U
x is the harmonic measure at x for every x ∈ U . The

restriction of f{U to U is a harmonic function and it yields the solution Hf of
the generalized Dirichlet problem for the boundary condition f. If the set U is
not regular, the function f{U need not be continuous on U. However, according
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to [5, Proposition 7.1.4] and [8, Theorem 5] it is a Baire–one function on U.
(Recall that a real–valued function on a topological space K is said to be
a Baire–one function if it is a pointwise limit of a sequence of continuous
functions on K.)

In [12, Corollary 6.4] we answer affirmatively a natural question whether
the function f{U can be pointwise approximated by a sequence of functions
from H(U). One of the technique we used, was to represent f{U as an affine
Baire–one function F on a suitable compact convex set K and then to employ
the Mokobodzki approximation theorem (see [13] or [15, Théorème 80]) to get
a sequence of continuous affine functions on K which pointwise converges to
F.

Let us consider an abstract framework of a function space H on a compact
space K. By this we mean a linear subspace of C(K) (the space of all contin-
uous functions on K) which separates points of K and contains the constant
functions. We denote by S(H) the state space of H; i.e., the convex set of all
positive functionals ϕ in the dual space H∗ with ‖ϕ‖ = 1 endowed with the
w∗–topology. It is known that the space H can be isometrically imbedded into
the space of affine continuous functions on S(H) (see e.g. [1, Chapter 2, § 2],
[4, Chapter 1, § 4] or [6, Chapter 6, § 29]).

We denote by H⊥ the space of all signed Radon measures µ on K with
µ(h) = 0 for all h ∈ H. A bounded function f on K, measurable with respect
to any Radon measure on K, is said to be completely H–affine if µ(f) = 0 for
any µ ∈ H⊥. Clearly, any function in H is completely H–affine. In [12] we
prove that f{U is a completely H(U)–affine function and can be represented
as an affine Baire–one function on S(H(U)). A natural question arises. Is it
possible to represent any completely H–affine function as an affine function
on S(H)?

In the sequel we answer this question affirmatively. More precisely, we
construct an isometric isomorphism between the space of completely H–affine
functions and the space of affine functions on S(H) satisfying the barycen-
tric formula. Moreover, this isomorphism preserves descriptive properties of
completely H–affine functions.

The essential step is the following result. Let ϕ be a continuous mapping of
a compact space K onto a compact space L and let A ⊂ L be given. We derive
descriptive properties of the set A from properties of the set B := ϕ−1(A);
e.g. we show that A is Borel if B is Borel.

Thanks to deep theorems of J. Saint–Raymond ([17, Théorème 5]) and J.
Jayne and C. Rogers in ([16, Theorem 5.9.13]), this has been already known
for Baire sets in compact spaces. In [10, Corollary 15] we generalize their
results for Borel sets in compact spaces. Since the proof of our generalization
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is quite short and easy, we present it for reader’s convenience in Section 2 in
a simplified form, suitable for our purposes.

As a corollary we obtain that descriptive properties of an affine function
defined on a compact convex set K are determined by its behaviour on the
closure of extreme points of the set K. This generalizes Corollaire 8 in [17].

As an application of the representation theorem we obtain results on ap-
proximation of Baire–one and lower semicontinuous completely H–affine func-
tions (cf. [12, Theorem 5.1] and [1, Corollary I.1.4]).

2 Descriptive Properties of Composed Functions

All topological spaces will be Hausdorff. Let K be a topological space. We
recall that A ⊂ K is an Fσ–set if A is a countable union of closed subsets of
K. Complements of Fσ–sets are called Gδ–sets.

We denote by Borel(K) the set of all real–valued Borel functions on K.
If F is a set of real–valued functions on K, we denote by Fb the set of all
bounded functions of F . Thus the space of all bounded Borel functions on
K is denoted by Borelb(K). This space will be equipped with the sup–norm
‖f‖ = supx∈K |f(x)|. The space of all continuous real–valued functions on a
compact space K will be denoted by C(K).

The space of Baire functions on K; i.e., the smallest space of real–valued
functions closed under the process of taking pointwise limits of sequences and
containing C(K), will be denoted by Baire(K). We consider the space of
continuous functions on K as the space of functions of the Baire class 0.
Inductively, for each ordinal α less than the first uncountable ordinal ω1, we
define the space of Baire–alpha functions, or functions of the Baire class α,
to be the space of pointwise limits of sequences of functions contained in the
previous classes.

We say that a function f : K → (−∞,∞] is lower semicontinuous if
f−1(c,∞] is open for any c ∈ R. If a function f on K is a pointwise limit of an
increasing sequence of continuous functions, we say that f belongs to C↑(K).
Clearly, any function from C↑(K) is lower semicontinuous.

To verify that a lower semicontinuous function f on a normal topological
space K is in C↑(K) it is enough to check that f−1(c,∞] is an Fσ–set for every
real number c. The proof of this assertion can be found in the proof of [7,
Problem 1.7.15.(c)].

The space of all signed Radon measures on a compact space K will be
denoted by M(K). We consider the space M(K) as the dual space to C(K)
equipped with the w∗– topology. We writeM1(K) for the set of all probability
Radon measures on K. For x ∈ K we write εx for the Dirac measure at x;
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i.e., εx(f) = f(x), f ∈ C(K). For µ ∈M(K), sptµ stands for its support. For
a µ–integrable function f on K, we simply write µ(f) instead of

∫
K
f dµ.

A set A ⊂ K is called universally measurable if A is µ–measurable for
every µ ∈ M(K). Due to the Jordan decomposition of signed measures, to
verify universal measurability of A it is enough to check its measurability
with respect to probability measures. A real–valued function f on K is called
universally measurable if f−1(U) is a universally measurable subset of K for
every open set U ⊂ R.

Let ϕ : K → L be a continuous mapping of a compact space K into a
compact space L and µ be a probability Radon measure on K. Then we define
the image ϕµ ∈M1(L) of the measure µ under the continuous mapping ϕ by
the formula ϕµ(g) = µ(g ◦ϕ), g ∈ C(L). According to [11, Theorem 12.46] this
formula holds also for any bounded universally measurable function g on L.

If the mapping ϕ is onto, the induced continuous mapping (denoted like-
wise) ϕ : M1(K) → M1(L), assigning to every µ ∈ M1(K) its image
ϕµ ∈M1(L), is also onto.

Let ϕ be a continuous surjection of a compact space K onto a compact
space L and g be a real–valued function on L. The aim of this section is to
derive descriptive properties of g from the properties of the function f := g ◦ϕ
(e.g. g is Borel if and only if f is Borel). We list results needed in the next
sections in the following theorem.

Theorem 2.1. Let K,L be compact spaces and ϕ : K → L be a continuous
surjection. If g is a real–valued function on L, we set f := g ◦ ϕ. Then

i) f ∈ C↑(K) if and only if g ∈ C↑(L),

ii) f is lower semicontinuous if and only if g is lower semicontinuous,

iii) f is a Baire–alpha function if and only if g is a Baire–alpha function,

iv) f is a Borel function if and only if g is Borel,

v) f is universally measurable if and only if g is universally measurable.

Assertions i), ii) and v) of the theorem are easy to prove, assertion iii)
is a consequence of results of [17, Théorème 5] and [16, Theorem 5.9.13 and
Theorem 6.1.1].

The fourth assertion of the theorem is proved by an idea contained in
Lemma 2.2. Stronger versions of this lemma are used in [10] to prove deeper
results on preservation of Borel classes under perfect mappings. (We recall
that a closed continuous map from a topological space K to a topological
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space L is called perfect if the fiber f−1(l) is compact for every l ∈ L.) Here
we present its simplified modification sufficient for our purposes.

Its idea is to find a set-valued “selection” from the set-valued mapping
` 7→ ϕ−1(`), ` ∈ L, which satisfies some auxiliary conditions.

Lemma 2.2. Let K,L be compact topological spaces and Φ : L → K be a
set-valued mapping such that Φ(`) is nonempty compact for every ` ∈ L and

Φ−1(F ) = {` ∈ L : Φ(`) ∩ F 6= ∅}

is closed in L for each closed set F in K. Let {Fn} be a sequence of closed
subsets of K.

Then there exists a nonempty compact–valued mapping S : L → K such
that:

i) S(`) ⊂ Φ(`) for every ` ∈ L,

ii) S−1(Fn) ∩ S−1(K \ Fn) = ∅ for each n ∈ N and

iii) S−1(Fn) is Borel for each n ∈ N.

Proof. Set F0 := K. We will construct by induction a sequence {Φn}∞n=0 of
mappings from L into K such that, for every n ≥ 0:

a) Φn(`) is a nonempty compact set for each l ∈ L,

b) Φn+1(`) ⊂ Φn(`) ⊂ Φ0(`) for each ` ∈ L,

c) Φ−1
n (F ) is Borel for every closed set F ⊂ K,

d) Φ−1
n (Fn) ∩ Φ−1

n (K \ Fn) = ∅.

Thanks to the assumption, by setting Φ0 := Φ we fulfill all conditions needed
for Φ0.

Suppose that Φk satisfying the required conditions have been constructed
for all k ≤ n. Set A := Φ−1

n (Fn+1). Condition c) ensures that A is Borel. Let
Φn+1 be defined as

Φn+1(`) =

{
Φn(`) ∩ Fn+1, ` ∈ A,
Φn(`), ` ∈ L \A.

Conditions a), b) and d) are obviously satisfied. For a closed subset F of K
we have

Φ−1
n+1(F ) =

(
{l ∈ L : Φn(l) ∩ Fn+1 ∩ F 6= ∅} ∩A

)
∪(

{l ∈ L : Φn(l) ∩ F 6= ∅} ∩ (L \A)
)
,
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which yields validity of condition c). Thus the construction is complete.
Set

S(`) :=
∞⋂
n=0

Φn(`), ` ∈ L.

Since {Φn(`)} is a decreasing sequence of nonempty compact subsets of K,
S(`) is a nonempty compact set contained in Φ(`) for every ` ∈ L. Since

S−1(Fn) ⊂ Φ−1
n (Fn) and S−1(K \ Fn) ⊂ Φ−1

n (K \ Fn),

condition ii) is satisfied and S−1(Fn) = Φ−1
n (Fn). Thus iii) follows from

condition c).

Remarks. 1. We note that every selection function s : L→ K of S from the
lemma above; i.e., s(`) ∈ S(`) for ` ∈ L, fulfils ii) and iii) of the lemma. Thus
we may demand that S(`) is a singleton for every ` ∈ L.

2. The following easy fact will be used in the proof of Lemma 2.3. If a
nonempty set-valued mapping S from a set L into a set K and a set A ⊂ K is
given, then S−1(A) ∩ S−1(K \ A) = ∅ if and only if S(S−1(A)) ⊂ A. (Recall
that S(B) =

⋃
{S(b) : b ∈ B}.)

Lemma 2.3. Let S be a set-valued mapping from a set L into a set K with
S−1(K) = L and

A := {A ⊂ K : S−1(A) ∩ S−1(K \A) = ∅}.

Then A is closed with respect to complements, arbitrary intersections and ar-
bitrary unions. Moreover, for a set A ∈ A and a subfamily {Ai}i∈I of A each
of the following equalities holds:

i) L \ S−1(A) = S−1(K \A),

ii) S−1
(⋃

i∈I Ai
)

=
⋃
i∈I S

−1(Ai),

iii) S−1
(⋂

i∈I Ai
)

=
⋂
i∈I S

−1(Ai).

Proof. The family A is closed with respect to complements from the defi-
nition. Let {Ai}i∈I be a subfamily of A. From the remark above and the
equaltiy

S(S−1
⋃
i∈I

Ai) = S
(⋃
i∈I

S−1(Ai)
)

=
⋃
i∈I

S(S−1(Ai)) ⊂
⋃
i∈I

Ai

it follows that A is closed with respect to unions and consequently to inter-
sections.
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Equality i) follows from the definition and ii) holds for arbitrary sets Ai.
From i) and ii) we obtain

L \ S−1
(⋂
i∈I

Ai

)
= S−1

(
K \

⋂
i∈I

Ai

)
= S−1

(⋃
i∈I

(K \Ai)
)

=
⋃
i∈I

S−1(K \Ai)

=
⋃
i∈I

(
L \ S−1(Ai)

)
= L \

⋂
i∈I

S−1(Ai),

which proves iii).

Now we are ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. “If” parts of statements of the theorem follows
from continuity of the mapping ϕ.

Assertions i) and ii) follows from the characterization of lower semicontin-
uous functions (respectively functions from C↑(L)) via level sets and from the
fact that ϕ maps closed sets in K onto closed sets in L.

Statement iii) follows by [16, Theorem 5.9.13] and the Lebesgue–Hausdorff
characterization of Baire–alpha functions on completely regular spaces (see
[16, Theorem 6.1.1]).

To prove statement iv), it is enough to check the assertion only for the
characteristic function of a set A ⊂ L, i.e., we want to prove that A is Borel
if ϕ−1(A) is Borel. By transfinite induction, we can find a countable family
F of closed sets in K such that B := ϕ−1(A) is contained in the σ–algebra
σ(F) generated by the family F . Since the set-valued mapping Φ : l 7→ ϕ−1(l)
from L into K satisfies the assumptions of Lemma 2.2, we obtain a set-valued
mapping S such that for each ` ∈ L and F ∈ F

S(`) ⊂ Φ(`), S(S−1(F )) ⊂ F and S−1(F ) is Borel.

Let A be the family of all sets C ⊂ K with S(S−1(C)) ⊂ C. According to
Lemma 2.3, σ(F) ⊂ A. Set

B := {F ∈ σ(F) : S−1(F ) is Borel in L}.

By Lemma 2.3 the family B is a σ–algebra and F ⊂ B. Thus σ(F) ⊂ B and
S−1(B) is a Borel subset of L. Since

S−1(B) ⊂ Φ−1(B) = A and S−1(K \B) ⊂ Φ−1(K \B) = L \A,

we get S−1(B) = A. Thus A is a Borel subset of L.
The last assertion remains to be proved. As in the previous paragraph we

need to prove that A ⊂ L is universally measurable if ϕ−1(A) is universally
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measurable in K. Let ν be a probability measure on L. Since the map ϕ :
M1(K) → M1(L) is onto, we can find a measure µ ∈ M1(K) such that
ν = ϕµ. Since B := ϕ−1(A) is µ–measurable, we can write B as a disjoint
union of an Fσ–set H and a µ–zero set N. If we enlarge H by ϕ−1(ϕ(H)), we
may suppose that

N = ϕ−1(ϕ(N)) and H = ϕ−1(ϕ(H)). (1)

Find an Fσ–set F ⊂ K disjoint from N such that µ(F ) = 1. Thanks to (1),
ϕ(N) ∩ ϕ(F ) = ∅. Then

ν(ϕ(F )) = ϕµ(ϕ(F )) = µ(ϕ−1(ϕ(F ))) ≥ µ(F ) = 1.

Thus ν(ϕ(N)) = 0 and A is a disjoint union of an Fσ–set ϕ(H) and ν–zero
set ϕ(N). Hence A is ν–measurable and the proof is finished.

3 Application to Affine Functions

In this section we derive some results which are necessary for the proof of
Theorem 4.3. At the end we obtain a generalization of the result of J. Saint–
Raymond ([17, Corollaire 8]). Here we recall basic definitions and facts needed
throughout the section.

A subset L of a vector space is convex if L contains the segment joining
every pair of points of L. A point x in L is termed extreme if x does not lie
inside of any nondegenerate segment contained in L. We write extL for the
set of all extreme points of L. A real–valued function f on a convex set L
is called affine if f(λx + (1 − λ)y) = λf(x) + (1 − λ)f(y) for every x, y ∈ L
and λ ∈ [0, 1]. If L is a compact convex subset of a locally convex space, we
denote by Ac(L) the space of all continuous affine functions on L. The space
of all affine functions on L will be denoted by A(L). According to the previous
notation we write Ab(L) for the space of all bounded affine functions on L.

Let L be a compact convex subset of a locally convex space. Let us mention
that we write M1(L) for the set of all probability Radon measures on L. We
recall thatM1(L) is a convex compact subset of the space of all signed Radon
measures on L endowed with the w∗–topology.

A measure µ ∈ M1(L) is said to represent a point x ∈ L, or x is the
barycenter of µ, if µ(h) = h(x) for any continuous affine function h on L.

It is well–known that every probability measure has its barycenter. Since
affine continuous functions on L separate points of L, the barycenter is uniquely
determined. We denote the barycenter of µ by r(µ).

A bounded function f on L is said to satisfy the barycentric formula if f
is universally measurable and µ(f) = f(r(µ)) for any µ ∈M1(L).
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We write Bar(L) for the space of all (bounded) functions on L satisfying
the barycentric formula.

Remark 1. The definition of functions satisfying the barycentric formula is
standard, see e.g. [9, Section 4].

For any x ∈ L there exists a probability measure µ representing x such that
the support spt(µ) is contained in extL. Moreover, the map which assigns to
each µ ∈ M1(extL) its barycenter r(µ) is a continuous map onto L. It is the
main content of the well–known Integral representation theorem (see e.g. [4,
Theorem 5.3]).

The following proposition is a particular case of Theorem 4.3. It tells us
that any bounded universally measurable function on a compact space L may
be regarded as a function on M1(L) which satisfies the barycentric formula.

Proposition 3.1. Let f be a bounded universally mesurable function on a
compact space L. Then the function I f :M1(L)→ R,

I f(µ) := µ(f), µ ∈M1(L)

is universally measurable on M1(L) and satisfies the barycentric formula.
Moreover, if f is Borel (respectively of the Baire class α, lower semicon-

tinuous, in C↑(L)), then I f is Borel (respectively of the Baire class α, lower
semicontinuous, in C↑(M1(L))).

Proof. First we will show that the assertion is true for bounded Borel func-
tions on L. Clearly, it is enough to check it for the characteristic functions of
Borel subsets of L. Set

A := {A ⊂ L : IχA is Borel on M1(L)}.

Clearly L ∈ A. If A,B ∈ A and A ⊂ B, then B \ A ∈ A. The Levi monotone
convergence theorem implies that a countable union of an increasing sequence
of sets from A also belongs to A. Since A contains all open subsets of L,
Dynkin’s lemma (see [3, Lemma 8.10]) yields that A contains any Borel subset
of L.

Let f be a bounded Borel function on L and Λ be a probability measure
onM1(L) with the barycenter s. Define a probability measure λ on L by the
formula

λ(g) :=
∫
M1(L)

µ(g) dΛ(µ) = Λ(I g), g ∈ C(L). (2)

Since, for g ∈ C(L), the function I g is affine and continuous, definition (2)
is meaningful and λ(g) = Λ(I g) = I g(s) = s(g). Thus s = λ. The standard
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technique from the proof of Theorem 12.46 in [11] establishes the validity of
the formula (2) for any bounded Borel function on L. Hence for f ∈ Borelb(L)
we get

Λ(I f) =
∫
M1(L)

I f(µ) dΛ(µ) =
∫
M1(L)

µ(f) dΛ(µ)

= λ(f) = s(f) = I f(s),
(3)

which proves that I f satisfies the barycentric formula on M1(L).
To extend the validity of formula (3) for bounded universally measurable

functions on L, it is enough to verify it for the characteristic functions of
universally measurable subsets of L. Let A ⊂ L be universally measurable
and Λ be a probability measure on M1(L) with the barycenter λ. We will
show that Λ(IχA) = IχA(λ) = λ(A). Since A is λ–measurable, we can write
A as a disjoint union of an Fσ–set H and a set N with λ(N) = 0. Then for
µ ∈ M1(L) we have IχA(µ) = µ(H) + µ(N). Since we have already verified
(3) for bounded Borel functions, to finish the reasoning we need to prove that
the function IχN is equal to zero Λ–almost everywhere. Find a decreasing
sequence {Gn} of open subsets of L with N ⊂ Gn and λ(Gn) → 0. For a
rational number q ∈ (0, 1] and n ∈ N, set Nq := {µ ∈ M1(L) : IχN (µ) ≥ q}
and Nn

q := {µ ∈ M1(L) : IχGn(µ) ≥ q}. Then, for any n ∈ N and q ∈
(0, 1] ∩Q, formula (3) gives

Λ(Nn
q ) =

∫
Nn

q

1 dΛ(µ) ≤ 1
q

∫
M1(L)

µ(Gn) dΛ(µ) =
1
q
λ(Gn).

Since Nq ⊂ Nn
q for every n ∈ N and λ(Gn) tends to zero as n tends to infinity,

Nq is Λ–measurable and Λ(Nq) = 0. Thus

Λ{µ ∈M1(L) : µ(N) > 0} =
⋃

q∈Q∩(0,1]

Λ(Nq) = 0,

which is the desired conclusion.
For the proof of the second assertion, note that I f is continuous whenever

f is continuous. The conclusion for Baire functions now follows by transfinite
induction and the Lebesgue dominated convergence theorem. If f is lower
semicontinuous on L, then f = sup{g ∈ C(L) : g ≤ f} (see [7, Problem
1.7.15.(a)]). Thus I f is lower semicontinuous by virtue of the general version
of the Levi monotone convergence theorem for an upper directed family of
continuous functions (see [11, Theorem 9.11]). In case f is in C↑(L), we can
employ the standard Levi monotone convergence theorem.
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Proposition 3.2. Let K,L be compact convex sets and ϕ be a continuous
affine map of K onto L. Suppose that g is a real–valued bounded function on
L such that f = g ◦ϕ satisfies the barycentric formula on K. Then g satisfies
the barycentric formula on L.

Proof. Let g be a function on L as in the statement. Thanks to Theorem
2.1, the function g is universally measurable on L. It remains to prove the
validity of the barycentric formula for g.

To this end, let ν be a probability measure on L. Find a probability mea-
sure µ ∈M1(K) with ϕµ = ν. Then, for every bounded universally measurable
function h on L, we have

ν(h) = µ(h ◦ ϕ). (4)

Moreover, ϕ(r(µ)) = r(ν). Indeed, choose a continuous affine function h on L.
Then h ◦ ϕ is a continuous affine function on K. Since Ac(L) separates points
of L, the equality

h(r(ν)) = ν(h) = µ(h ◦ ϕ) = (h ◦ ϕ)(r(µ)) = h(ϕ(r(µ)))

finishes the reasoning.
Thanks to the assumption, the function f = g ◦ ϕ satisfies the barycentric

formula on K. Then the equality (4) gives

ν(g) = ϕµ(g) = µ(g ◦ ϕ) = µ(f) = f(r(µ)) = g(ϕ(r(µ))) = g(r(ν)),

which concludes the proof.

From the preceding propositions we obtain the following corollary. It turns
out that we can check the validity of the barycentric formula for a bounded
function f on a compact convex set L only by measures supported by the
closure of extreme points of L. Moreover, descriptive properties of this function
are determined by its behavior on the closure of extreme points of L. The
following theorem is a more general version of the result of J. Saint–Raymond
(see [17, Corollaire 8]).

Theorem 3.3. Let L be a compact convex set in a locally convex space and
f be a bounded function on L such that, for any µ ∈ M1(extL), f is µ–
measurable and µ(f) = f(r(µ)). Then f satisfies the barycentric formula on
L.

Moreover, such a function f is Borel (respectively Baire–alpha, lower semi-
continuous, in C↑(L)) on L, whenever f is Borel (respectively Baire–alpha,
lower semicontinuous, in C↑(extL)) on extL.
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Proof. Set K := M1(extL). Let us denote by r the barycentric map from
K onto L. Then r is an affine continuous map. The function

F : µ 7→ µ(f � extL), µ ∈ K

satisfies the barycentric formula on K due to Proposition 3.1. Pick µ ∈ K.
Thanks to the assumption we have

F (µ) = µ(f � extL) = µ(f) = f(r(µ)).

Thus F = f ◦ r. Thanks to Theorem 2.1, f is universally measurable on L and
the application of Proposition 3.2 yields validity of the barycentric formula for
f.

The second part of the statement follows by Proposition 3.1 and Theorem
2.1.

4 Function Spaces

In this section we study a representation of abstract affine functions. We
consider an abstract framework of function spaces. Let K be a compact topo-
logical space and H be a linear subspace of C(K). We say that H is a function
space, if H contains the constant functions and separates points of K. For
x ∈ K, we define the set Mx(H) of all H–representing measures for x by

Mx(H) = {µ ∈M1(K) : µ(h) = h(x) for any h ∈ H}.

Since the Dirac measure εx is contained in Mx(H), this set is nonempty
for every x ∈ K. The set of those points x of K, for which εx is the only
representing measure, is called the Choquet boundary of H. We denote it by
ChHK. A bounded universally measurable function f on K is called H–affine
if µ(f) = f(x) for every x ∈ K and µ ∈ Mx(H) . Now we exhibit the most
important examples of function spaces.

Continuous functions: Let K be a compact space. Set H = C(K). Then
the Choquet boundary of H is equal to K and any function on K is H–affine
since the only representing measures are Dirac measures.

Affine functions: Let K be a convex compact subset of a locally convex
space and H be the linear space Ac(K) of all continuous affine functions on K.
According to Bauer’s characterization of extreme points, see [14, Proposition
1.4], the Choquet boundary ChHK coincides with the set extK of all extreme
points of K.

Harmonic functions: Let U be a bounded open subset of a Euclidean space
Rn and H be the linear space H(U) of all continuous functions on U which are
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harmonic on U . Then the Choquet boundary of H(U) coincides with ∂regU ,
the set of all regular points of U .

Now we introduce a well–known concept of the state space. This notion
represents a natural and efficient link between function spaces and convex
analysis. Proofs of the properties of the state space and related notions men-
tioned in the next paragraph are classical and can be found e.g. in [1, Theorem
II.2.1], [4, Chapter 1, § 4], [6, Theorem 29.5] or [14, Chapter 6].

Let H be a function space on a compact space K. We denote by S(H) the
state space of H defined as

S(H) := {ϕ ∈ H∗ : ϕ ≥ 0, ϕ(1) = 1} .

Let φ : K → S(H) be the evaluation mapping defined as φ(x) = sx, x ∈ K
where sx(h) = h(x) for h ∈ H. Further, let Φ : H → Ac(S(H)) be the mapping
defined for h ∈ H by Φ(h)(s) := s(h), s ∈ S(H).

The state space S(H) is a convex compact subset of the dual space H∗
endowed with the w∗–topology. The space H∗ can be identified with the
quotient space (M(K), w∗)/H⊥ equipped with the quotient (locally convex)
topology.

We write π for the quotient mapping from M(K) onto H∗. A straightfor-
ward application of the Hahn-Banach theorem yields

S(H) = π(M1(K)). (5)

It can be easily verified that φ(x) = π(εx). Moreover, φ(ChHK) = ext S(H).
The mapping Φ serves as an isometric isomorphism of H into the space
Ac(S(H)), and Φ is onto if and only if the function space H is (uniformly)
closed in C(K). In this case the inverse mapping is realized by

Φ−1(F ) = F ◦ φ, F ∈ Ac(S(H)). (6)

We call a bounded universally measurable function f on K completely H-
affine if µ(f) = 0 for each µ ∈ H⊥. The space of all completely H-affine
functions on K will be denoted by A(H).

Remark 2. CompletelyH–affine functions are termed “fonctions qui vérifient
la calcul barycentrique modulo H” by M. Rogalski in [15, Définition 40]. These
functions were also considered by E. Alfsen and M. Hirsberg (see [2, Definition
2.1]).

A continuous function h is completely H-affine if and only if h ∈ H. This is
an easy consequence of the Hahn-Banach theorem. Clearly, every completely
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H–affine function is H–affine. In [12, Example 5.1] we present an example of
an H–affine function which is not completely H–affine.

The mapping Φ provides a representation of functions from H as contin-
uous affine functions on S(H). The following definition is an extension of the
mapping Φ.

Let H be a function space on a compact space K. We define a map T from
A(H) into Ab(S(H)) by the formula

T f(s) := µ(f), f ∈ A(H), µ ∈ π−1(s), s ∈ S(H).

Note that the definition of T is correct since for a completely H–affine
function f and any two measures µ1, µ2 ∈ π−1(s) holds µ1(f) = µ2(f).

In order to investigate properties of the mapping T we need some prelim-
inary results. The first one is a well–known assertion on uniform density of
functionals in the space of affine continuous functions on a compact convex
set.

Lemma 4.1. Let H be a function space on a compact space K. Then the space
Φ(H) is uniformly dense in Ac(S(H)).

Proof. See e.g. [1, Corollary I.1.5], [4, Corollary 4.8] or [14, Proposition
4.5].

Lemma 4.2. Let H be a function space on a compact space K and µ be a
probability measure on K. Then r(φµ) = π(µ).

Proof. Pick µ ∈M1(K) and h ∈ H. Then

Φ(h)
(
r(φµ)

)
=
∫
S(H)

Φ(h)(s) d(φµ)(s) =
∫
K

(
Φ(h) ◦ φ

)
(x) dµ(x)

=
∫
K

h(x) dµ(x) = π(µ)(h) = Φ(h)
(
π(µ)

)
.

(7)

Since Ac(S(H)) separates points of S(H) and Φ(H) is its dense subspace (see
Lemma 4.1), the equality (7) implies r(φµ) = π(µ).

Theorem 4.3. Let H be a function space on a compact space K. Then T is
an isometric isomorphism between A(H) and Bar(S(H)) such that T = Φ on
H. Its inverse is given by

T−1 = F ◦ φ, F ∈ Bar(S(H)). (8)

This isomorphism T maps the space of completely H–affine Borel (respectively
Baire–alpha, lower semicontinuous or C↑(K)) functions onto the space of all
bounded Borel (respectively Baire–alpha, lower semicontinuous or C↑(S(H)))
functions on S(H) satisfying the barycentric formula.
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Proof. Linearity of T is obvious. Let f be a completely H–affine function
on K. According to Lemma 3.1, the function I f : M1(K) → R defined as
I f(µ) := µ(f), µ ∈M1(K) inherits descriptive properties from the function f
and satisfies the barycentric formula on M1(K). Notice that for µ ∈ M1(K)
we have I f(µ) = T f(π(µ)). Thus T f is contained in Bar(S(H)) thanks to
Proposition 3.2 (put K := M1(K), L := S(H), ϕ := π, g := T(f) and
f := I f).

Let F ∈ Bar(S(H)) be given. Set f(x) := F (φ(x)), x ∈ K.We want to show
that f ∈ A(H) and T f = F. It is easy to see that f is universally measurable.
Pick µ1, µ2 ∈M1(K) such that µ1−µ2 ∈ H⊥. Then π(µ1) = π(µ2). According
to Lemma 4.2, r(φµ1) = r(φµ2). Hence we obtain

µ1(f) = µ1(F ◦ φ) = φµ1(F ) = F
(
r(φµ1)

)
= F

(
r(φµ2)

)
= φµ2(F ) = µ2(F ◦ φ) = µ2(f)

and f is completely H–affine. Further, for µ ∈M1(K) we get

T f(π(µ)) = µ(f) = µ(F ◦ φ) = φµ(F ) = F
(
r(φµ)

)
= F (π(µ)),

which proves the formula (8). For h ∈ H, the equality

Th(π(µ)) = µ(h) = π(µ)(h) = Φ(h)
(
π(µ)

)
gives T = Φ on H.

To check that T is an isometry, it is enough to verify

‖T f‖ = sup
s∈S(H)

|T f(s)| = sup
µ∈M1(K)

|T f(π(µ))| = sup
µ∈M1(K)

|µ(f)|

= sup
x∈K
|f(x)| = ‖f‖.

Since for µ ∈ M1(K) we have T f(π(µ)) = I f(µ), preservation of the de-
scriptive properties of f follows by Theorem 2.1 and Proposition 3.1. Surjec-
tivity of T on coresponding classes of functions easily follows from the inverse
formula (8) and the fact that φ is a homeomorphism. This observation finishes
the proof.

Since we have obtained a representation of lower semicontinuous (respec-
tively Baire–one) completely H–affine functions as lower semicontinuous (re-
spectively Baire–one) affine functions on S(H), we can employ known results
on approximation of affine functions on a compact convex set to obtain anal-
ogous assertions for completely H–affine functions. The next theorem collects
the results for affine functions on a compact convex set.
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Theorem 4.4. Let f be an affine function on a compact convex set K.

i) If f is a Baire–one function, then there exists a bounded sequence {hn}
of continuous affine functions on K such that f = lim

n→∞
hn.

ii) If f is lower semicontinuous function, then f is bounded and

f = sup{h : h < f, h ∈ Ac(K)}

where the set {h : h < f, h ∈ Ac(K)} is upward directed.

iii) If f ∈ C↑(K), then there exists a bounded increasing sequence {hn} of
affine continuous functions on K such that f = lim

n→∞
hn.

Proof. The proof of the first assertion depends on Choquet’s theorem on
validity of the barycenytric formula for affine Baire–one functions. G. Moko-
bodzki in [13] used it for the proof of i). This result can be also found in [15,
Théorème 80]. Assertions ii) and iii) are well–known. Their proofs only need
the Hahn–Banach separation theorem, see e.g. [1, Corollary I.1.4].

For function spaces we cannot use the previous methods, namely it is
impossible to deal with the Hahn–Banach separation theorem. However, The-
orem 4.3 allows us to avoid this difficulty. Precise statements are listed below.

Theorem 4.5. Let H be a function space on a compact space K and f be a
completely H–affine function on K.

i) If f is of the first Baire class, then there exists a bounded sequence {hn}
of functions from H such that f = lim

n→∞
hn.

ii) If f is lower semicontinuous, then

f = sup{h : h < f, h ∈ H}

where the set {h : h < f, h ∈ H} is upward directed.

iii) If f ∈ C↑(K), then there exists a bounded increasing sequence {hn} of
functions from H such that f = lim

n→∞
hn.

Proof. The first assertion can be found in [12, Theorem 5.1]. We prove it
for the sake of completness.

i) Let f be a Baire–one completely H–affine function on K. According
to Theorem 4.3, T f is an affine Baire–one function on S(H). An appeal to
Theorem 4.4 i) yields the existence of a bounded sequence {Fn} of affine
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continuous functions on S(H) such that Fn → T f. Since Φ(H) is dense in
Ac(S(H)) (see Lemma 4.1), we may find functions Fn ∈ Φ(H) converging
pointwise to T f. Set hn := T−1(Fn) = Fn ◦φ. Then {hn} is bounded sequence
of functions from H and for x ∈ K,

f(x) = T f(π(εx)) = T f(φ(x)) = lim
n→∞

Φ(hn)(φ(x)) = lim
n→∞

φ(x)(hn)

= lim
n→∞

hn(x).

ii) Let f be a lower semicontinuous completelyH–affine function onK. Due
to Theorem 4.4 ii), T f = sup{H : H ∈ Ac(S(H)), H < T f}. Using density
of Φ(H) in Ac(S(H)), we obtain that T f = sup{Φ(h) : h ∈ H,Φ(h) < T f}.
Thus f = sup{h : h ∈ H, h < f}. It remains to prove that the set A :=
{h : h ∈ H, h < f} is upward directed. Let h1, h2 ∈ A be given. It follows
from the definition of T that Thi < T f, i = 1, 2 on S(H). Theorem 4.4
ii) ensures the existence of an affine continuous function H on S(H) such
that sup(Th1,Th2) ≤ H < T f. By adding an appropriate constant we may
achieve that sup(Th1,Th2) < H < T f. Moreover, using density of Φ(H) in
Ac(S(H)) and lower semicontinuity of T f, we may suppose that H = Φ(h)
for some h ∈ H. Then sup(h1, h2) < h < f and we are done.

iii) The proof of the last assertion is similar. For f ∈ A(H) ∩ C↑(K), the
function T f is in C↑(S(H)). Theorem 4.4 iii) yields the existence of a bounded
sequence {Fn} of affine continuous functions on S(H) such that {Fn} converge
pointwise to T f and Fn < Fn+1 for every n ∈ N. Again, by an application of
a density argument we may find functions Hn ∈ Φ(H) with Fn < Hn < Fn+1

for every n ∈ N. By setting hn := T−1(Hn) = Hn ◦ φ we finish the proof.
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