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A TYPE OF PATH DERIVATIVE

Abstract

In this paper a type of path derivative, which is not based on the
non-empty path intersection, is introduced. Such derivatives share some
basic properties with sequencial derivatives but there exist some sharp
contrasts between them. The path derivative here restricts the speed of
convergence in the definition of limits naturally and has a sharp contrast
with the classical Dini derivatives for the typical continuous function.

Path differentiation was introduced by Bruckner, O’Malley and Thomson
in [2], where many properties of functions and their derivatives were found
under the condition of nonempty path intersection. The path derivative is a
unified approach to certain generalized derivatives. In [1] (pp. 115), Bruckner
introduced a type of generalized derivative by requiring only that there exists
a sequence {hn} → 0 (hn 6= 0) such that

lim
n→0

F (x + hn)− F (x)
hn

= f(x)

for every x ∈ R. Following this he asked, given f and {hn}, under what cir-
cumstances does there exist a function F such that the above equality holds,
and also variants of this problem by letting {hn} depend on f or even on the
point x, or by requiring F to meet some extra condition such as being contin-
uous. Laczkovich and Petruska in [3] introduced the sequential derivative and
discussed the first problem deeply. Here we would like to discuss a variant of
the first problem and therefore introduce a type of path derivative which is
not based on the condition of nonempty intersection. The derivative we will
define is different from the sequential derivative though in general they have
some similar properties. The resulting derived numbers, which we will define,
of a typical continuous function have a property contrasting sharply with the
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property of classical derived numbers shown by V. Jarńık ([1]) that a typical
continuous function in the space C[0, 1] of continuous functions with the sup
norm has every extended real number as a derived number at every point of
[0, 1]. Now let us first give the definition of the restrictive derived numbers
under our conditions and their properties.

Definition 1. Let f : [0, 1] → R, {hn} and {kn} be two sequences which
are strictly decreasing to 0. A number α is called an (hn, kn)-parasequential
derived number of the function f at a point x ∈ [0, 1] if there is a sequence
{an} contained in [0, 1] such that there is a positive integer N so that an ∈
[x− hn, x− hn+1] or an ∈ [x + kn+1, x + kn] for all n > N , and

f(an)− f(x)
an − x

→ α.

(For the endpoints 0 and 1 we just consider one-sided limit.)

Theorem 1. Given any two sequences (hn, kn) which are strictly decreasing to
0, a typical continuous function in C[0, 1] has no finite (hn, kn)-parasequential
derived numbers at any point x ∈ [0, 1].

Proof. Let m and q be positive integers. Let

A−(m, q) =

f ∈ C[0, 1] :
there exist xf ∈ [0, 1] and
af ∈ [xf − hq, xf − hq+1] such that
−m ≤ f(af )−f(xf )

af−xf
≤ m.

 .

and

A+(m, q) =

f ∈ C[0, 1] :
there exist xf ∈ [0, 1] and

af ∈ [xf + kn+1, xf + kn] such that
−m ≤ f(af )−f(xf )

af−xf
≤ m.

 .

Let

A =
{

f ∈ C[0, 1] :
there exists a xf ∈ [0, 1] such that f has a finite

(hn, kn)-parasequential derived number at xf .

}
.

Then

A ⊆
∞⋃

m=1

∞⋃
l=1

∞⋂
q=l

[
A+(m, q)

⋃
A−(m, q)

]
.

In fact, for any f ∈ A, there exist a point xf and a sequence {an} contained in
[0, 1] such that there is a positive integer N so that an ∈ [xf − hn, xf − hn+1]
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or an ∈ [xf + kn+1, xf + kn] for all n ≥ N and f(an)−f(xf )
an−xf

approaches a finite
number. Thus there is an integer m such that

−m ≤ f(an)− f(xf )
an − xf

≤ m

for all sufficiently large n ≥ N and an ∈ [xf − hn, xf − hn+1] or an ∈ [xf +
kn+1, xf + kn]. Therefore

f ∈
∞⋂

q=p

[
A+(m, q)

⋃
A−(m, q)

]
where p is some number bigger than N . So

f ∈
∞⋃

m=1

∞⋃
l=1

∞⋂
q=l

[
A+(m, q)

⋃
A−(m, q)

]
.

Now we show that A+(m, q) is closed for each m and q. For any Cauchy
sequence {fi} ⊆ A+(m, q), fi → f ∈ C[0, 1]. There exist xfi

and afi
∈

[xfi + kq+1, xfi + kq] such that

−m ≤ fi(afi
)− fi(xfi

)
afi

− xfi

≤ m.

By the Borel-Bolzano Theroem there exist x0, af ∈ [0, 1] and subsequences
{xfij

}, {afij
} such that xfij

→ x0 and afij
→ af as j → ∞. Since afij

∈
[xfij

kq+1, xfij
+ kq] and bfij

∈ [xfij
+ kq+1, xfij

+ kq], we have af ∈ [x0 +
kq+1, x0 + kq]. Notice that

−m ≤
fij

(afij
)− fij

(xfij
)

afij
− xfij

≤ m.

Letting j →∞, we have

−m ≤ f(af )− f(x0)
af − x0

≤ m.

That is, f ∈ A+(m, q) and so A+(m, q) is closed. Using a similar method we
can show that A−(m, q) is also closed. Hence

⋂∞
q=l

[
A+(m, q)

⋃
A−(m, q)

]
is

closed for any positive integer l.
Now we show that the set

⋂∞
q=l

[
A+(m, q)

⋃
A−(m, q)

]
is nowhere dense

in C[0, 1] for each positive integer l. For any ball B(f, ε) ⊆ C[0, 1], we can



282 Hongjian Shi

choose a saw-like function g ∈ B(f, ε) so that all the slopes of segments of
g are bigger than m or less than −m. Then, at each point x ∈ [0, 1], for
any sequence {an} contained in [0, 1] with the condition an ∈ [x − hn, x −

hn+1] or an ∈ [x + kn+1, x + kn], we have
∣∣∣g(an)− g(x)

an − x

∣∣∣ > m for sufficiently

large n. Thus g 6∈
⋂∞

q=l

[
A+(m, q)

⋃
A−(m, q)

]
for any positive integer l.

So
⋂∞

q=l A
+(m, q)

⋃
A−(m, q) is closed and nowhere dense in C[0, 1] for any

positive integer l. Hence the set A is of the first category.

Now we are ready to give the definition of our path derivative. In the
following, unless otherwise specified, {hn} and {kn} denote any two fixed
sequences which are strictly decreasing to 0.

Definition 2. A continuous function f : [0, 1] → R is said to have an (hn, kn)-
parasequential derivative g on [0, 1] if and only for every x ∈ [0, 1] there exist
sequences {an} and {bn} contained in [0, 1] such that there is an integer N so
that an ∈ [x− hn, x− hn+1] and bn ∈ [x + kn+1, x + kn] for all n > N and

lim
n→∞

f(an)− f(x)
an − x

= lim
n→∞

f(bn)− f(x)
bn − x

= g(x).

For the endpoints 0 and 1, only one-sided limits are required.

Theorem 2. Let g be an (hn, kn)-parasequential derivative of a continuous
function f on [0, 1]. The the following properties hold.

(i) If g(x) ≥ 0, f is increasing on [0, 1].

(ii) If g(x) = 0, f is constant on [0, 1].

(iii) g possesses Darboux property.

Proof. If g(x) ≥ 0, the upper Dini derivate Df(x) ≥ 0 everywhere; so the
function f is increasing (see Theorem 7.2 in [4]). Therefore (i) holds and (ii)
is an immediate consequence. We now show (iii). From the definition of the
(hn, kn)-parasequential derivative g(x) = 0 holds at every local extremum of
f . So the standard argument applies.

Theorem 3. If a continuous function f : [0, 1] → R has an (hn, kn)-para-
sequential derivative at every point x ∈ [0, 1], then there is a dense open set V
on which f is differentiable for almost all x in V .

Proof. Let g be an (hn, kn)-parasequential derivative of the function f . Then
∞⋃

m=−∞

∞⋃
l=1

Bm,l = [0, 1],
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where

Bm,l =

x ∈ [0, 1] :

there exist sequences {an}, {bn} ⊆ [0, 1] such that
an ∈ [x− hn, x− hn+1], bn ∈ [x + kn+1, x + kn],
limn→∞

f(an)−f(x)
an−x = limn→∞

f(bn)−f(x)
bn−x = g(x)

and if n > l, f(an)−f(x)
an−x , f(bn)−f(x)

bn−x > m.

 .

The end points 0, 1 could be included in Bm,l if the corresponding conditions
are satisfied. Therefore,

∞⋃
m=−∞

∞⋃
l=1

Fm,l = [0, 1],

where Fm,l is the closure of the set Bm,l. On each set Fm,l the upper Dini
derivate D(f) ≥ m. In fact, for any x ∈ Fm,l, there exists a sequence of
points {xi} ⊆ Bm,l such that xi → x. For each xi there exist two sequences
{ai,n} and {bi,n} contained in [0, 1] such that ai,n ∈ [xi−hn, xi−hn+1], bi,n ∈
[xi + kn+1, xi + kn], and if n > l,

f(ai,n)− f(xi)
ai,n − xi

> m and
f(bi,n)− f(xi)

bi,n − xi
> m.

For any fixed n, the sequences {ai,n} and {bi,n} have subsequences that con-
verge to two numbers an and bn respectly. For convenience we still use {ai,n}
and {bi,n} to denote the two subsequences. Then an ∈ [x− hn, x− hn+1] and
bn ∈ [x + kn+1, x + kn]. Also, by the continuity of f ,

f(an)− f(x)
an − x

≥ m and
f(bn)− f(x)

bn − x
≥ m.

Thus D(f)(x) ≥ m. For any closed interval [a, b] ⊆ [0, 1], application of the
Baire category theorem to the sequence of sets Fm,l ∩ [a, b] guarantees the
existence of an open interval (c, d) and intergers M,L such that (c, d) ⊆ FM,L.
Thus for every x ∈ (c, d), the upper Dini derivate D(f)(x) ≥ M . Therefore
the function f(x) −Mx on (c, d) is increasing and f is thus differentiable at
almost all x ∈ (c, d).

Theorem 4. Let g be an (hn, kn)-parasequential derivative of a continuous
function f . If g is bounded on [0, 1], then f is a Lipchitz function.

Proof. Let M be a constant such that |g(x)| ≤ M for all x ∈ [0, 1]. Then
the upper Dini derivate of the function f(x)−Mx is less than or equal to zero
on [0, 1] and the lower Dini derivate of the function f(x) + Mx is bigger than
or equal to zero. Thus f(x) − Mx is decreasing on [0, 1] and f(x) + Mx is
increasing on [0, 1]. Therefore, for any x, y ∈ [0, 1], |f(x)− f(y)| ≤ M |x− y|.
So the function f is a Lipchitz function.
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One might expect that the (hn, kn)-parasequential derivative of a contin-
uous function is always a Baire one function. The next example below shows
that, in general, the (hn, kn)-parasequential derivative of a continuous func-
tion may not be Baire one or even Borel measurable. This contrasts sharply
with the Baire one property of the sequential derivative (see [3]).

Theorem 5. There exists a continuous function f with a ( 1
3n , 1

3n )-parasequential
derivative that is Borel measurable but not Baire one, and another ( 1

3n , 1
3n )-

parasequential derivative that is non-Borel measurable.

Proof. We will construct a continuous fuction whose ( 1
3n , 1

3n )-parasequential
derivative is not Baire one by using the structure of the Cantor ternary set C.

f(x)

(a+b)/2a+(b-a)/3
a+2(b-a)/3

b-2(b-a)/9

a+2(b-a)/9

Figure 1: The construction of the function f .

We define a fuction f that takes zero on every point of the Cantor set C.
Let (a, b) be a component interval of the complement of the Cantor set C. We
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define the function f on (a, b) as follows.

f(x) =



0 if x = a+b
2

b−a
3i if x = a + b−a

3i , i = 1, 2, · · ·
0 if x = a + 2(b−a)

3i , i = 2, 3, · · ·
− b−a

3i if x = b− b−a
3i , i = 1, 2, · · ·

0 if x = b− 2(b−a)
3i , i = 2, 3, · · ·

and then connect the above points in the graph of the function f to make f
differentiable on (a, b) and monotone on any subinterval with the projections of
two neighbouring points on the x-axis as its endpoints. A continuous function
f on [0, 1] is defined. Its graph is in Figure 1.

We will show that one ( 1
3n , 1

3n )-parasequential derivative of the function f
can take any value on any point of the Cantor set. Let x be a point of the
Cantor set. For any interval [x + 1

3n+1 , x + 1
3n ] ⊂ [0, 1] (only [x− 1

3n , x− 1
3n+1 ]

to be considered if x = 1), from the structure of the Cantor set there is a
removed interval [a, b] whose intersection [c, d] with [x + 1

3n+1 , x + 1
3n ] has

length d− c ≥ 1
3n+3 and [c, d] contains at least two zero points of the function

f . So, for 0 < α < ( 1
4 ·

1
3n+3 )/( 1

3n ) < 1
34 , a line throught the point x and

with slope α must intersect the graph of the function f on [c, d] in at least
one point because of the construction of f . Thus we can have a ( 1

3n , 1
3n )-

parasequential derivative g of the function f , which takes values 0 at endpoint
of each removed interval from the construction of the Cantor set C and 1

36 at
other points of the Cantor set C. So g is Borel measurable but not Baire one.
If we require that g take values 1

37 on a non-Borel measurable subset B of the
Cantor set and 1

38 on its complement set C \ B, the function g is non-Borel
measurable.

Remark. From the construction of the function f and the choice of the
sequences {an} and {bn} in the proof we see that the ( 1

3n , 1
3n )-parasequential

derivative of the continuous function f is not unique. In general, the (hn, kn)-
parasequential derivative of a continuous function is unique almost everywhere
on a dense open set (see the proof of Theorem 3). Further, if the (hn, kn)-
parasequential derivative g of a continuous function f is bounded, it is the
derivative of the function f almost everywhere (see Theorem 4) and so is
unique up to a set of measure zero. We do not know how large is the set of
points on which the (hn, kn)-parasequential derivative of a continuous function
is not unique.
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