
Real Analysis Exchange
Vol. 28(2), 2002/2003, pp. 269–279
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TYPICAL PROPERTIES OF CORRELATION
DIMENSION

Abstract

Let (X, ρ) be a complete separable metric space and M be the set
of all probability Borel measures on X. We show that if the space
M is equipped with the weak topology, the set of measures having the
upper (resp. lower) correlation dimension zero is residual. Moreover, the
upper correlation dimension of a typical (in the sense of Baire category)
measure is estimated by means of the local lower entropy and local upper
entropy dimensions of X.

1 Introduction

The correlation dimension introduced by Procaccia, Grassberger and Hentschel
[9] is frequently used in the theory of dynamical systems. A rigorous mathe-
matical treatment of this dimension was given by Pesin [5]. For further results
see [1, 3, 4, 6, 7, 8, 10, 11].

In this note we investigate some typical properties of the correlation di-
mension. Recall that a set in a metric space is called nowhere dense if its
closure has empty interior. A countable union of nowhere dense sets is said
to be of the first Baire category. A subset A of a complete metric space X is
said to be residual in X if its complement is of the first Baire category. If the
set of all elements of X satisfying some property P is residual in X, then the
property P is called typical or generic. We also say that a typical element of
X has property P .
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LetM be the space of all probability Borel measures on a complete separa-
ble metric space X. We show that a typical measure in the spaceM endowed
with the strong topology has upper correlation dimension zero. If the space
M is endowed with the weak topology, then a typical measure has lower cor-
relation dimension zero and upper correlation dimension no smaller than the
smallest local lower entropy dimension of X and no greater than the smallest
local upper entropy dimension of X.

These results are in the spirit of that by Gruber [2], who studied typical
properties of entropy dimension of compact subsets of X. Namely, he con-
sidered the space C of all compact subsets of X equipped with the Hausdorff
metric. He proved that a typical compact subset of X has lower entropy di-
mension zero. He also proved that if the compact subsets of X having lower
entropy dimension at least δ are dense in C, then a typical compact subset of
X has upper dimension at least δ.

The paper is divided into three sections. In Section 2 we formulate the
main results. Section 3 contains the proofs. In Section 4 we present two
examples which show that the estimation of the upper correlation dimension
given in Section 2 cannot be improved.

2 Main Result

Let (X, ρ) be a complete separable metric space and let B(x, r) denote the
open ball in X with center at x and radius r > 0. By B we denote the σ-
algebra of Borel subsets of X and by M we denote the set of all probability
Borel measures on X.

For µ1, µ2 ∈M we consider the distance d1 given by the supremum norm;
i.e.,

d1(µ1, µ2) = sup
A∈B
|µ1(A)− µ2(A)|

and the Fortet-Mourier distance d2 given by the formula

d2(µ1, µ2) = sup
{∣∣∣ ∫

X

f(x) dµ1(x)−
∫
X

f(x) dµ2(x)
∣∣∣ : f ∈ L

}
,

where L is the subset of C(X) which contains all the functions f such that
|f(x)| ≤ 1 and |f(x)− f(y)| ≤ ρ(x, y) for x, y ∈ X. It can be proved that the
sequence (µn), µn ∈M, is weakly convergent to a measure µ ∈M if and only
if limn→∞ d2(µn, µ) = 0. It is well known that the spaces (M, d1) and (M, d2)
are complete.

Let µ ∈M. The quantities

dimc µ = limr→0
1

log r
log
∫
X

µ(B(x, r)) dµ(x)



Typical Properties of Correlation Dimension 271

and
dimc µ = limr→0

1
log r

log
∫
X

µ(B(x, r)) dµ(x)

are called the upper and lower correlation dimension of µ, respectively. From
the definition of the upper correlation dimension it follows immediately that
if µ({x}) > 0 for some x ∈ X, then dimc µ = 0.

Finally we recall that the upper and lower entropy dimensions of a set
K ⊂ X are defined, respectively, by the formulae

dimK = lim sup
r→0+

logN(K, r)
log(1/r)

and dimK = lim inf
r→0+

logN(K, r)
log(1/r)

,

where N(K, r) is the least number of balls of radius r which cover the set K.
Note that if the set K is closed and non-compact, then dimK = dimK =∞.

Remark 1. In the definitions of entropy dimensions we can replace the num-
ber N(K, r) by

M(K, r) = sup{cardF : F ⊂ K and ρ(x, y) ≥ r for every x, y ∈ F , x 6= y}.

Now we are ready to formulate our main result.

Theorem 1. Let α = inf{dimB(x, a) : x ∈ X, a > 0} and β = inf{dimB(x, a) :
x ∈ X, a > 0}. Then

(a) the set M0 = {µ ∈M : dimc µ = 0} is residual in the space (M, d1),

(b) the set M0 = {µ ∈M : dimc µ = 0} is residual in the space (M, d2),

(c) The setMβ
α = {µ ∈M : α ≤ dimc µ ≤ β} is residual in the space (M, d2).

The proof of Theorem 1 is given in the next section. In the last section we
give an example of a space (X, ρ) such that the set {µ ∈ M : dimc µ = β} is
residual in (M, d2) and an example of a space (X, ρ) for which α < β and the
set {µ ∈M : dimc µ > α} is nowhere dense in (M, d2). These examples show
that the estimation α ≤ dimc µ ≤ β in Theorem 1 cannot be improved.

3 Proofs

We split the proof of Theorem 1 into a sequence of lemmas.
Let (εn) and (δn) be sequences of positive numbers convergent to zero. Let

Nn = {ν ∈M : ν({x0}) ≥ εn for some x0 ∈ X},

Gin =
⋃
ν∈Nn

{µ ∈M : di(µ, ν) < δn}, and Hi =
∞⋂
m=1

∞⋃
n=m

Gin.
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for i = 1, 2 and n ∈ N.

Lemma 1. The set Hi is residual in the space (M, di) for i = 1, 2.

Proof. Since for each m ∈ N the set
⋃∞
n=mNn is dense in M, the set⋃∞

n=m Gin is dense and open in M. This implies that the set Hi is residual in
the space (M, di) for i = 1, 2.

Lemma 2. The set M0 = {µ ∈ M : dimc µ = 0} is residual in the space
(M, d1).

Proof. Let εn = 1
n and δn = 1

2n for n ∈ N. According to Lemma 1 it is
sufficient to check that if µ ∈ H1, then dimc µ = 0. Let µ ∈ H1. For every
m ∈ N there are n ≥ m and ν ∈ Nn such that d1(µ, ν) < δn. Since ν ∈ Nn
there is a point x0 such that ν({x0}) ≥ εn. Consequently,

µ({x0}) > ν({x0})− δn ≥ εn − δn = δn

and dimc µ = 0.

Lemma 3. The set M0 = {µ ∈ M : dimc µ = 0} is residual in the space
(M, d2).

Proof. Let εn = 1
n , rn = (εn)n and δn = 1

9εnrn for n ∈ N. According to
Lemma 1 it is sufficient to check that if µ ∈ H2 then dimc µ = 0. Let µ ∈ H2.
For every m ∈ N there is n ≥ m and ν ∈ Nn such that d2(µ, ν) < δn. Since
ν ∈ Nn, there is a point x0 such that ν({x0}) ≥ εn. Fix r ∈ (0, 1] and consider
the function f : X → [0,∞) given by

f(x) =


r if ρ(x, x0) ≤ r
r − t if ρ(x, x0) = r + t, 0 < t < r

0 if ρ(x, x0) ≥ 2r.
(1)

Clearly f ∈ L. From the definition of the function f and inequality d2(µ, ν) <
δn it follows that for every y ∈ B(x0, r) we have

rµ(B(y, 3r)) ≥
∫
X

f(x) dµ(x) ≥ −δn +
∫
X

f(x) dν(x).

Since f(x0) = r and ν({x0}) ≥ εn, the last inequality implies

µ(B(y, 3r)) ≥ −δn
r

+ εn.
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By a similar calculation, using a function f given by (1) with r/2 in the place
of r, we can show that µ(B(x0, r)) ≥ −2δn

r + εn. Substituting r = rn/3 we
obtain

µ(B(y, rn)) ≥ −3δn
rn

+ εn =
2εn
3

for every y ∈ B(x0, rn/3) (2)

and
µ(B(x0, rn/3)) ≥ εn

3
. (3)

Using (2) and (3) we have∫
X

µ(B(y, rn)) dµ(y) ≥
∫
B(x0,rn/3)

µ(B(y, rn)) dµ(y) ≥ 2ε2
n

9
.

Hence

dimc µ ≤ lim
n→∞

1
log rn

log
∫
X

µ(B(y, rn)) dµ(y)

≤ lim
n→∞

log(2ε2
n/9)

log rn
= lim
n→∞

2 log n− log(2/9)
n log n

= 0,

Recall that for given µ ∈M we define the support of µ by the formula

suppµ = {x ∈ X : µ(B(x, r)) > 0 for every r > 0}.

Lemma 4. Assume that dim(B(x0, a)) > d for some point x0 ∈ X and some
constants a, d > 0. Then there exists C > 0 such that for every r > 0 there
exists a measure µr with suppµr ⊂ B(x0, a) such that

µr(B(x, r)) ≤ Crd for every x ∈ X. (4)

Proof. Since dimB(x0, a) > d, by virtue of Remark 1, there is 0 < r0 < 1
such that M(B(x0, a), r) > r−d for every 0 < r ≤ r0. Put C = 2d/rd0 . If
r ≥ r0/2 then Crd ≥ 1 and (4) is obviously true for every measure µ ∈M.

Suppose now that 0 < r < r0/2. Let m be an integer such that

M(B(x0, a), 2r) ≥ m > (2r)−d.

By the definition of M(B(x0, a), 2r) we can find in the ball B(x0, a) the points
x1, . . . , xm such that ρ(xi, xj) ≥ 2r for i, j ∈ {1, . . . ,m}, i 6= j. Set µr =
1
m

∑m
i=1 δxi

, where δxi
denotes the delta Dirac measure supported at point xi.

Since for arbitrary x ∈ X the ball B(x, r) contains at most one point from the
set {x1, . . . , xm}, we have µr(B(x, r)) ≤ 1

m < (2r)d ≤ Crd.
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Lemma 5. Assume that there is a constant d > 0 such that dimB(x, a) > d
for every x ∈ X and every a > 0. Then the set Md = {µ ∈ M : dimc µ ≥ d}
is residual in the space (M, d2).

Proof. Let {x1, x2, . . . } be a dense subset of X. Fix n ∈ N and define

an = min
{

1
3
ρ(xi, xj) : for 1 ≤ i < j ≤ n

}
.

According to Lemma 4, for every i ∈ {1, . . . , n} there exists a constant Ci such
that for every r > 0 there exists a measure µr,i with suppµr,i ⊂ B(xi, an) such
that µr,i(B(x, r)) ≤ Cird for every x ∈ X. Set

C̄n = max{n,C1, . . . , Cn}, rn = 2−C̄n and δn = rd+1
n .

Now fix r = 2rn and denote by Nn the set of all measures of the form

ν = p1µr,1 + · · ·+ pnµr,n,

where (p1, . . . , pn) is any sequence of non-negative numbers such that p1 +
· · ·+ pn = 1. Clearly ν(B(x, 2rn)) ≤ 2dC̄nrdn for every ν ∈ Nn and x ∈ X. Let

Gn =
⋃
ν∈Nn

{µ ∈M : d2(µ, ν) < δn}.

Suppose that the sets Gn are constructed for every n ∈ N and define H =⋂∞
m=1

⋃∞
n=m Gn. Clearly H is a residual subset of (M, d2). Let µ ∈ H. For

every m ∈ N there are n ≥ m and ν ∈ Nn such that d2(µ, ν) < δn. Fix a point
y ∈ X and let f be the function given by (1) with y in the place of x0. Since
d2(µ, ν) < δn we have

rµ(B(y, r)) ≤
∫
X

f(x) dµ(x) ≤ δn +
∫
X

f(x) dν(x) ≤ δn + rν(B(y, 2r)). (5)

Substituting r = rn in (5) we obtain

µ(B(y, rn)) ≤ δn
rn

+ ν(B(y, 2rn)) ≤ rdn + 2dC̄nrdn < 2d+1C̄nr
d
n = 2d+1C̄n2−C̄nd.

This implies that

lim sup
n→∞

1
log rn

log
∫
X

µ(B(x, rn)) dµ(x) ≥ lim sup
n→∞

d+ 1 + log2 C̄n − C̄nd
−C̄n

= d,

which completes the proof.
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Remark 2. Assume there exist sequences (an) and (rn) of positive numbers
convergent to zero such that for each x ∈ X we have M(B(x, an), rn) ≥ r−dn
for n ∈ N. An argument similar to that of the proofs of Lemmas 4 and 5 shows
that the set Md = {µ ∈M : dimc µ ≥ d} is residual in the space (M, d2).

Lemma 6. Let K be a subset of X and let µ be a probability Borel measure
on X such that µ(K) > 0. Then dimc µ ≤ dimK.

Proof. Suppose K is relatively compact. (Otherwise there is nothing to
prove.) First assume that suppµ ⊂ K. Given an r > 0 we denote by N =
N(K, r) the least number of balls of radius r which cover the set K. Now,
denote by x1, . . . , xN the centers of the balls of such a covering. Let A1, . . . , AN
be a pairwise disjoint measurable covering of K such that Ai ⊂ B(xi, r) for
i = 1, . . . , N . If x ∈ Ai, then Ai ⊂ B(x, 2r). Consequently∫

X

µ(B(x, 2r)) dµ(x) =
N∑
i=1

∫
Ai

µ(B(x, 2r)) dµ(x) ≥
N∑
i=1

µ(Ai)2.

Using the Buniakowski-Schwarz inequality( N∑
i=1

µ(Ai)2

)( N∑
i=1

12

)
≥
( N∑
i=1

µ(Ai)
)2

we obtain ∫
X

µ(B(x, 2r)) dµ(x) ≥ 1
N
. (6)

Let (rn) be a sequence of positive numbers convergent to zero. Then from (6)
it follows that

lim sup
n→∞

1
log 2rn

log
∫
X

µ(B(x, 2rn)) dµ(x) ≤ lim sup
n→∞

logN(K, rn)
log(1/rn)

≤ dimK.

Thus dimc µ ≤ dimK for every µ such that suppµ ⊂ K.
Now take an arbitrary µ in M such that µ(K) > 0. Set ν(A) = µ(A∩K)

µ(K) ,
A ∈ B. Since µ(A) ≥ µ(K)ν(A), we have∫

X

µ(B(x, r)) dµ(x) ≥ µ2(K)
∫
X

ν(B(x, r)) dν(x). (7)

By (7) and the fact that supp ν ⊂ K we have

dimc µ ≤ lim sup
r→0

logµ2(K)
log r

+ dimc ν = dimc ν ≤ dimK.
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Lemma 7. Assume that dimB(x0, a) < d for some point x0 ∈ X and some
constants a, d > 0. Then the set Md = {µ ∈ M : dimc µ ≥ d} is nowhere
dense in the space (M, d2).

Proof. Let D be the set of all probability measures ν such that ν(B(x0,
a
2 )) >

0. Clearly the set D is dense in M. If ν ∈ D, then let δ(ν) = 1
4aν(B(x0,

a
2 )).

The set
G =

⋃
ν∈D
{µ ∈M : d2(µ, ν) < δ(ν)}

is open and dense in M. We claim that dimc µ < d for every µ ∈ G. Indeed,
let µ ∈ G and ν ∈ D be such that d2(µ, ν) < δ(ν). Taking a function f , defined
by (1) with r = a/2, we have

a

2
µ(B(x0, a)) ≥

∫
X

f dµ ≥
∫
X

f dν − δ(ν) ≥ a

2
ν(B(x0,

a
2 ))− δ(ν) > 0.

According to Lemma 6 we have dimc µ < d. This implies that the set Md is
nowhere dense in the space (M, d2).

Proof of Theorem 1. The statement (a) of Theorem 1 follows from Lemma
2. The statement (b) follows from Lemma 3. According to Lemma 5 and
Lemma 7, for every n ∈ N the sets

M
α− 1

n
= {µ ∈M : dimc µ ≥ α− 1

n} and Mβ+
1
n = {µ ∈M : dimc µ < β+ 1

n}

are residual in the space (M, d2). From this and the equality

Mβ
α =

∞⋂
n=1

(
M

α− 1
n
∩Mβ +

1
n

)
the statement (c) follows. The proof of Theorem 1 is completed.

4 Examples

Example 1. We construct a Cantor-like set C such that dimC = 0 and
dimC = 1 and such that the set M1 = {µ ∈ M : dimc µ = 1} is residual
in the space (M, d2). Let (kn) be a strictly increasing sequence of positive
integers such that lim infn→∞ kn

n = 1 and lim supn→∞
kn

n = ∞. Let h0 = 1
and hn = 2−kn for n ∈ N. We define a sequence of sets (Cn) by induction.
Let C0 = [0, 1] and if Cn =

⋃2n

i=1[αni , β
n
i ], where βni = αni + hn ≤ αni+1,
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then Cn+1 =
⋃2n+1

i=1 [αn+1
i , βn+1

i ], where αn+1
2i−1 = αni , β

n+1
2i−1 = αni + hn+1,

αn+1
2i = βni − hn+1 and βn+1

2i = βni . Let C =
⋂∞
n=0 Cn. From the definitions of

entropy dimensions it follows easily that dimC = 0 and dimC = 1. Fix ε > 0
and n ∈ N. Let m ∈ N be such that km ≤ m−1−n

1−ε . Set an = hn and rn = hm.
Then, for each n ∈ N, we have

M(B(x, an), rn) ≥ 2m−1−n ≥ 2(1−ε)km = rε−1
n .

According to Remark 2 the setM1−ε = {µ ∈M : dimc µ ≥ 1− ε} is residual.
Since ε > 0 is arbitrary and M1 =

⋂∞
n=1M1−1/n, it follows that the set M1

is residual.

Example 2. Now we construct a set X ⊂ R such that dimB(x, r) = 1 for all
x ∈ X and r > 0 but dimc µ = 0 for µ from some open and dense subset G of
M. Let (kn) and (k′n) be two strictly increasing sequences of positive integers
such that

lim inf
n→∞

kn
n

= 1, lim inf
n→∞

k′n
n

= 1, (8)

and

lim
n→∞

max(kn, k′n)
n

=∞. (9)

As in Example 1 we construct Cantor-like sets C and C ′ corresponding to
the sequences (kn) and (k′n), respectively. Let X = C ∪ (C ′ + 2), where
C ′ + 2 = {x + 2 : x ∈ C ′}. From (8) it follows that dimB(x, r) = 1 for all
x ∈ X and r > 0. Set

G = {µ ∈M : µ(C) > 0 and µ(C ′ + 2) > 0}.

Then obviously the set G is open and dense in M. Let µ ∈ G. From (6)
applied to the measures µ1(A) = µ(A∩C)

µ(C) and µ2(A) = µ(A∩(C′+2))
µ(C′+2) it follows

that ∫
X

µ(B(x, 2r)) dµ(x) ≥ µ2(C)
N(C, r)

+
µ2(C ′ + 2)
N(C ′ + 2, r)

.

This implies that

1
log 2r

log
∫
X

µ(B(x, 2r)) dµ(x) ≤

min
{

logµ2(C)− logN(C, r)
log 2r

,
logµ2(C ′ + 2)− logN(C ′ + 2, r)

log 2r

}
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and consequently

dimc µ ≤ lim sup
r→0

min
{

logN(C, r)
log(1/r)

,
logN(C ′, r)

log(1/r)

}
. (10)

Now, for given r ∈ (0, 1) we set n(r) = min{n : 2−kn ≤ r} and n′(r) = min{n :
2−k

′
n ≤ r}. Then N(C, r) ≤ 2n(r) and N(C ′, r) ≤ 2n

′(r). Thus, for µ ∈ G, we
have

dimc µ ≤ lim sup
r→0

min{n(r), n′(r)}
log(1/r)

. (11)

By the definitions of n(r) and n′(r) we have

log(1/r) ≥ max{kn(r)−1, k
′
n′(r)−1}. (12)

From (11), (12) and (9) it follows that dimc µ = 0.
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