INROADS

Katarína Janková; Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia.

ON MEASURES OF CHAOS FOR DISTRIBUTIONALLY CHAOTIC MAPS

Abstract

Let f be a distributionally chaotic map of the interval such that the endpoints of the minimal periodic portions of any basic set are periodic. Then the principal measure of chaos, $\mu_p(f)$, is not greater than twice the spectral measure of chaos $\mu_s(f)$. This proves an assertion of Schweizer et al. in a special case.

1 Introduction.

The notion of distributional chaos was introduced by Schweizer and Smítal in [5] for continuous maps of the interval and later studied by many authors, not only on the interval. To express the size of chaos, the principal measure μ_p and the spectral measure μ_s of chaos which are based on differences between upper and lower distribution functions are useful. In [5], the following theorem is stated without a proof.

Theorem 1 ([5], Thm. 6.13). For any f in C(I, I), $\mu_s(f) \le \mu_p(f) \le 2\mu_s(f)$.

The aim of this paper is to establish this inequality in a special case, cf. our theorem below. Before stating the results, we recall some notation. For any $x, z \in I$, let

$$\xi(x, z, f, t, n) = \frac{1}{n} \# \{ 0 \le i < n : |f^i(x) - f^i(z)| < t \},\$$

Key Words: distributional chaos, principal measure of chaos, spectral measure of chaos, ω -limit set

Mathematical Reviews subject classification: 58F13, 58F08, 26A18 Received by the editors November 26, 2005

Communicated by: Zbigniew Nitecki

^{*}This research was supported in part by the Grant Agency of Slovak Republic, Grant VEGA 1/0268/03

²¹³

and define lower and upper distribution functions by

$$F_{xz}(t) = \liminf_{n \to \infty} \xi(x, z, f, t, n) \text{ and } F_{xz}^*(t) = \limsup_{n \to \infty} \xi(x, z, f, t, n),$$

respectively. The principal measure $\mu_p(f)$ of chaos generated by f is given by

$$\mu_p(f) = \sup_{x,z \in I} \mu(x,z,f), \text{ where } \mu(x,z,f) = \int_0^1 (F_{xz}^*(t) - F_{xz}(t)) \, dt.$$

The measure of chaos is closely related to the structure of ω -limit sets of f. By an ω -limit set, we mean the set of limit points of some trajectory $\{f^n(x)\}$, $x \in I$. These sets were originally studied by A. N. Sharkovsky [4], and later by A. Blokh [2], who gave characterizations of various types of ω -limit sets. According to Sharkovsky, a maximal (with respect to inclusion) ω -limit set $\tilde{\omega}$ is of the second type if it is infinite and contains a periodic point. (It is known that then the periodic points are dense in it.) In recent works [5] [6], this set has been called (similarly as in Blokh [2]) a basic set, and we shall use this terminology. Otherwise, $\tilde{\omega}$ is of the *first type*. In this case, $\tilde{\omega}$ either is a periodic orbit or it is infinite and has a periodic decomposition of arbitrarily high periods. We say that an ω -limit set $\tilde{\omega}$ has a periodic decomposition of period k if there is a minimal compact periodic interval $J \subset I$ of period k such that $\bigcup_{i=0}^{k} f^{i}(J) \supset \tilde{\omega}$. Since J is minimal, the convex hulls of the *periodic* portions $\omega_i = f^i(J) \cap \tilde{\omega}$ of $\tilde{\omega}$ are nonoverlapping, but may have endpoints in common. Recall that a basic set has a maximal decomposition into periodic portions (i.e., these portions are indecomposable). It is also known that any basic set $\tilde{\omega}$ is either a nowhere dense perfect set or a finite periodic collection of compact intervals which are such that $f \mid \tilde{\omega}$ is transitive. For other properties of maximal ω -limit sets, see, e.g., Theorem 3.7 of [6].

Two points $x, z \in I$ are *isotectic* if, for every integer n > 0, the ω -limit sets $\omega_{f^n}(x)$ and $\omega_{f^n}(z)$ are contained in the same maximal ω -limit set of f^n . By Iso(f) we shall denote the set $\{(x, y) \in I \times I : x, y \text{ are isotectic}\}$. The spectrum $\Sigma(f)$ of f is the set of all minimal elements of the set $\{F_{xz}; x, z \in Iso(f)\}$ which is a finite set. The spectral measure of chaos is given by

$$\mu_s(f) = \max \Big\{ \int_0^1 (1 - F(t)) \, dt; F \in \Sigma(f) \Big\}.$$

Since, for any $F \in \Sigma$, there are points $x, y \in I$ with $F_{xy} = F$ and $F_{xy}^* = 1$ (cf. [5] or [6]), we get $\mu_s(f) \leq \mu_p(f)$. By [6], for any two maximal ω -limit sets $\tilde{\omega}_1$ and $\tilde{\omega}_2$ there exists $\max_{x \in \tilde{\omega}_1, z \in \tilde{\omega}_2} \mu(x, z, f) =: \mu(\tilde{\omega}_1, \tilde{\omega}_2)$. In [3] it was shown that if the principal measure of chaos is positive, then it is generated by a pair of points such that at least one of them belongs to a basic set. We extend this result by showing that, in certain cases, $\mu(\tilde{\omega}_1, \tilde{\omega}_2)$ is generated by a pair of points such that one is periodic (see Lemmas 2 and 3 below). In our next proof we shall use fundamental Lemma 3.3 from [1] which we restate as follows.

Lemma 1 ([1]). Let $\tilde{\omega}$ be a nowhere dense, indecomposable basic set and $\delta > 0, \lambda > 0$. Then, there is a compact portion W of $\tilde{\omega}$ and an integer $K = K(\delta, \lambda)$ with the following properties: for any n > K and any $x \in \tilde{\omega}$, there is a compact portion U of $\tilde{\omega}$ contained in W such that:

- (i) $W \subset f^n(U)$,
- (ii) $\#\{i \leq n; |f^i(u) f^i(x)| \geq \delta\} < \lambda n \text{ for any } u \in U.$

2 Main Results.

Lemma 2. Let $\tilde{\omega}$ be a basic set and p, q be periodic points belonging to the same minimal periodic portion ω_1 of $\tilde{\omega}$. Then, for any $\varepsilon > 0$, there is an integer $K = K(\varepsilon, p, q)$ such that if $\{m_i\}_{i=1}^{\infty}$ is a sequence of nonnegative integers with $m_{i+1} - m_i > K$, then there is a $u \in \omega_1$ such that, for any $i \ge 1$:

(i)
$$\frac{1}{m_{2i}-m_{2i-1}} \#\{m_{2i-1} \le j < m_{2i} : |f^j(u) - f^j(p)| > \varepsilon\} < \varepsilon,$$

(ii) $\frac{1}{m_{2i+1}-m_{2i}} \#\{m_{2i} \le j < m_{2i+1} : |f^j(u) - f^j(q)| > \varepsilon\} < \varepsilon.$

PROOF. We may assume that p and q belong to the same periodic portion of f, say ω_1 . First, assume that ω is nowhere dense. Let $\omega_1, \omega_2, \ldots, \omega_m$ be minimal periodic portions of ω . Consider $g = f^m$. Choose $\varepsilon_1 > 0$ such that $|y_1 - y_2| < \varepsilon_1$ implies $|f^i(y_1) - f^i(y_2)| < \varepsilon$ for any $y_1, y_2 \in I$ and any $i = 1, 2, \ldots, m$. By Lemma 1, there exists a compact portion W of ω_1 and $K_1 = K(\varepsilon, p, q)$ such that for any $n > K_1$, there are U(p, n) and U(q, n)contained in W such that $g^n(U) \supset W$,

$$\frac{1}{n} \#\{0 \le i < n : |g^i(u) - g^i(p)| > \varepsilon_1\} < \varepsilon$$

$$\tag{1}$$

for $u \in U(p, n)$, and

$$\frac{1}{n} \#\{0 \le i < n : |g^i(u) - g^i(q)| > \varepsilon_1\} < \varepsilon$$
(2)

for $u \in U(q, n)$. Let $\{m_i\}$ be such that $|m_i - m_{i+1}| > mK_1$ and $r_i = [\frac{m_i}{m}]$, where [z] denotes the integer part of z. For any i let $U_{2i-1} = U(p, r_{2i} - r_{2i-1})$ and $U_{2i} = U(q, r_{2i+1} - r_{2i})$. Now we construct a sequence of sets $V_1 \supset V_2 \supset \ldots$ such that $V_1 = U_1$, and for i > 1, $V_{i+1} \subset V_i$ is such that $g^{r_{i+1}-r_i}(V_{i+1}) = U_{i+1}$. If we take $K = mK_1$ and $u \in \bigcap_{i=1}^{\infty} V_i$, then u and K have the desired properties. In the other case when $\tilde{\omega}$ is the union of finitely many compact intervals, the proof is easy and we omit it. \Box

Lemma 3. Let $\tilde{\omega}$ be basic with minimal periodic portions $\omega_0, \ldots, \omega_{n-1}$ such that the endpoints of all ω_i form one or two periodic orbits (of periods 2n or n, respectively). Let p be any of these endpoints, and let d_i be the length of ω_i . Then, there is some $u \in \tilde{\omega}$, such that u and p are isotectic and $\mu(u, p, f) \geq \frac{1}{n} \sum_{i=0}^{n-1} d_i$.

PROOF. Assume, as we may, that p and q are the endpoints of ω_0 . Let $\varepsilon > 0$ and $\{m_i\}$ an increasing sequence of positive integers divisible by n such that

$$\lim_{k \to \infty} (m_1 + \dots + m_k) / m_{k+1} = 0.$$
(3)

Then, by Lemma 1, there is a $u \in \omega_0$ such that (1) and (2) are satisfied for any $i \ge i(\varepsilon)$. Obviously, (1) implies $F_{up}^*(\varepsilon) > 1 - \varepsilon$. By (2),

$$\frac{1}{m_{2i+1} - m_{2i}} \#\{m_{2i} \le j < m_{2i+1} : |f^j(u) - f^j(p)| < d_{j(\text{mod}n)} - \varepsilon\} < \varepsilon$$

whence

$$\xi(f^{m_{2i}+j}(u), f^{j}(p), f^{n}, t, (m_{2i+1}-m_{2i})/n) =: \xi_{j}(t) < \varepsilon \text{ if } t \le d_{j(\text{mod}n)} - \varepsilon, (4)$$

and $\xi_j(t) = 1$ if $t \ge d_{j(\text{mod}n)}$. Let $\nu(t) = \#\{0 \le i < n; t \le d_i\}$; i.e., $\nu(t)$ is the number of periodic portions of diameter not less than t. Then, by (4),

$$\xi(f^{m_{2i}}(u), p, f, t, m_{2i+1} - m_{2i}) \le \frac{1}{n} (\varepsilon \nu(t+\varepsilon) + n - \nu(t+\varepsilon)).$$
(5)

Letting $\varepsilon \to 0$, since ν is right continuous by (3) and (5), we get $F_{up}(t) \leq 1 - \nu(t)/n$, while $F_{up}^*(\varepsilon) > 1 - \varepsilon$ yields $F_{up}^* \equiv 1$. Thus, $\mu(u, p, f) \geq \frac{1}{n} \int_0^1 \nu(t) dt$. It is easy to verify that $\frac{1}{n} \int_0^1 \nu(t) dt = \frac{1}{n} \sum_{i=0}^{n-1} d_i$.

The following lemma shows that the principal measure of chaos generated by points u and p in the preceding proof is the greatest possible in the sense that any two points x and y lying in the same portion of ω generate a measure of chaos less than $\frac{1}{n} \sum_{k=0}^{n} d_k$. **Lemma 4.** Let ω^1, ω^2 be basic sets with minimal periodic portions of periods m, r and lengths d_0^1, \ldots, d_{m-1}^1 and d_0^2, \ldots, d_{r-1}^2 , respectively. Then, for any $x \in \omega^1$ and $y \in \omega^2$,

$$\mu(x, y, f) \le \frac{1}{m} \sum_{k=0}^{m-1} d_k^1 + \frac{1}{r} \sum_{k=0}^{r-1} d_k^2.$$

PROOF. We may assume that $f^i(x)$ belongs to the periodic portion ω_i^1 of ω^1 of length d_i^1 , $0 \le i < m$. Similarly, $f^j(y) \in \omega_j^2 \subset \omega_2$, where ω_j^2 is a periodic portion of the length d_j^2 if $0 \le j < r$. Thus, for any $k \ge 0$,

$$l_k \le |f^k(x) - f^k(y)| \le d^1_{k \pmod{m}} + d^2_{k \pmod{r}} + l_k,$$

where l_k is the distance between the portions $\omega_{k(\text{mod }m)}^1$ and $\omega_{k(\text{mod }r)}^2$. Then, obviously, $\xi(f^k(x), f^k(y), f^{mr}, t) = 0$ if $t < l_k$, and $\xi(f^k(x), f^k(y), f^{mr}, t) = 1$ if $t > l_k + d_{k(\text{mod }m)}^1 + d_{k(\text{mod }r)}^2$. This implies

$$\mu(f^k(x), f^k(y), f^{mr}) \le d^1_{k(\text{mod } m)} + d^2_{k(\text{mod } r)},$$

and hence,

$$\mu(x, y, f) \le \frac{1}{mr} \sum_{k=0}^{mr-1} \mu(f^k(x), f^k(y), f^{mr}) \le \frac{1}{m} \sum_{k=0}^m d_k^1 + \frac{1}{r} \sum_{k=0}^r d_k^2. \qquad \Box$$

Lemma 5. If u, p, f are as in Lemma 3, then $\mu(u, p, f) = \frac{1}{n} \sum_{i=0}^{n-1} d_i$.

PROOF. As in the preceding proof, we obtain the inequality

$$\mu(f^k(u), f^k(p), f^m) \le d_{k(\text{mod}m)},$$

where d_k denotes the length of the periodic portion ω_k , and consequently

$$\mu(u, p, f) \le \frac{1}{mr} \sum_{k=0}^{mr-1} \mu(f^k(u), f^k(p), f^{mr}) \le \frac{1}{m} \sum_{k=0}^m d_k,$$

which, together with Lemma 3, gives the equality.

Lemma 6. Let ω -limit sets ω^1 , ω^2 of f be maximal and such that if ω^i (i = 1, 2) is basic. Then the set of endpoints of its minimal periodic portions consist of one or two periodic orbits. If $\mu_p(f) = \mu(x, y, f)$, for some $x \in \omega^1$ and $y \in \omega^2$, then $\mu_p(f) \leq 2\mu_s(f)$.

PROOF. The assertion is trivial if $\mu(f) = 0$. So we may assume that ω^1 is a basic set, with minimal periodic portions of period m and lengths d_0^1, \ldots, d_{m-1}^1 . Consider three cases.

(i) Let ω^2 be basic, with minimal periodic portions of period r and lengths d_0^2, \ldots, d_{r-1}^2 . Applying Lemmas 3 and 4, we obtain $u_1, v_1 \in \omega_1^1$ and $u_2, v_2 \in \omega_1^2$ such that

$$\mu(x,y,f) \le \frac{1}{m} \sum_{j=0}^{m-1} d_j^1 + \frac{1}{r} \sum_{j=0}^{r-1} d_j^2 = \mu(u_1,v_1,p) + \mu(u_2,v_2,f) \le 2\mu_s(f).$$
(6)

The second inequality follows since the pairs (u_1, v_1) and (u_2, v_2) are isotectic.

- (ii) Let ω^2 be the orbit of a periodic point of period $r \ge 1$. Then, the inequality follows by (6), where we have $d_i^2 = 0, 0 \le j < r$, and $u_2 = v_2$.
- (iii) If ω^2 is an infinite maximal ω limit set of the first type, then for any $\varepsilon > 0$ and any $y \in \omega^2$, there is a periodic point p of sufficiently large period r such that

$$\frac{1}{r}\#\{0 \le j < r; |f^j(y) - f^j(p)| > \varepsilon\} < \varepsilon$$

which for $\varepsilon \to 0$, reduces this case to case (ii).

Our main result, the next theorem, follows from Lemma 6.

Theorem 2. Let f be a continuous map of the interval such that endpoints of minimal periodic portions of any basic set of f form periodic orbits. Then, $\mu_p(f) \leq 2\mu_s(f)$.

References

- F. Balibrea, B. Schweizer, A. Sklar and J. Smítal, Generalized Specification Property and Distributional Chaos, Int. Jour. Bifurcation and Chaos, 13 (2003), 1683–1694.
- [2] A. M. Blokh, The Spectral Decomposition for One Dimensional Maps, Dynamics Reported, 4 (1995), 1–59.
- [3] K. Janková, Points Generating Principal Measure of Chaos, Real Anal. Exchange, 26 (2000/2001), 1–9.

- [4] A. N. Sharkovsky, The Partially Ordered System of Attracting Sets, Soviet Math. Dokl., 7 (1966), 1384–1386.
- [5] B. Schweizer, A. Sklar and J. Smítal, Distributional (and Other) Chaos and its Measurement, Real Anal. Exchange, 26 (2000/2001), 495–524.
- [6] B. Schweizer and J. Smítal, Measures of Chaos and Spectral Decomposition of Dynamical Systems on the Interval, Trans. Amer. Math. Soc., 344 (1994), 737–754.