Agnieszka Małek, Department of Mathematics, pl. Weyssenhoffa 11, 85–072 Bydgoszcz, Poland. email: MalekA@ukw.edu.pl

A CLASSIFICATION OF BAIRE ONE STAR FUNCTIONS

Abstract

We present a new classification of Baire one star functions and examine sums of functions from the defined classes.

The letter \mathbb{R} denotes the real line. The symbols ω and ω_1 denote the first infinite ordinal and the first uncountable ordinal, respectively. The word *function* denotes a mapping from a subset of \mathbb{R} into \mathbb{R} . The symbol $\mathcal{C}(f)$ stands for the set of points of continuity of a function f.

Let $A \subset \mathbb{R}$. We use the symbols int A and $\operatorname{cl} A$ to denote the interior and the closure of A, respectively. If A is closed, then for each $\alpha < \omega_1$, we denote by $A^{(\alpha)}$ the α^{th} Cantor-Bendixson derivative of A; i.e.,

$$A^{(\alpha)} \stackrel{\mathrm{df}}{=} \begin{cases} A & \text{if } \alpha = 0, \\ \left(A^{(\beta)}\right)' & \text{if } \alpha = \beta + 1, \\ \bigcap_{\beta < \alpha} A^{(\beta)} & \text{if } \alpha \text{ is a limit ordinal,} \end{cases}$$

where B' is the set of all accumulation points of B. Clearly, $A^{(\alpha)} \supset A^{(\beta)}$ whenever $\alpha < \beta < \omega_1$.

If $f : \mathbb{R} \to \mathbb{R}$, then for every ordinal α , we define

$$\mathfrak{U}_{\alpha}(f) \stackrel{\mathrm{df}}{=} \operatorname{int} \Big(\bigcup_{\beta < \alpha} \mathfrak{U}_{\beta}(f) \cup \mathfrak{C} \big(f | \mathbb{R} \setminus \bigcup_{\beta < \alpha} \mathfrak{U}_{\beta}(f) \big) \Big).$$

(Clearly $\mathcal{U}_{\alpha}(f) \subset \mathcal{U}_{\beta}(f)$ for all ordinals $\alpha < \beta$.) For each $\alpha < \omega_1$, we denote

$$\mathfrak{S}_{\alpha} \stackrel{\mathrm{df}}{=} \{ f \colon \mathbb{R} \to \mathbb{R}; \mathfrak{U}_{\alpha}(f) = \mathbb{R} \}.$$

Key Words: Baire one star function, sum of functions

Mathematical Reviews subject classification: Primary 26A15; Secondary 26A21

Received by the editors June 24, 2004

Communicated by: Udayan B. Darji *Partially supported by University in Bydgoszcz.

²⁰⁵

Observe that, in particular, S_1 is the class \mathcal{B}_1^{**} defined by R.J. Pawlak [7].

We say that $f : \mathbb{R} \to \mathbb{R}$ is a *Baire one star function* [6] if for each nonempty closed set $P \subset \mathbb{R}$, there is a nonempty portion $P' \stackrel{\text{df}}{=} P \cap (a, b)$ of P such that f | P' is continuous. We denote the family of all Baire one star functions by \mathcal{B}_1^* . Recall the following theorem proved by B. Kirchheim [3, Theorem 2.3].

Theorem 1. For every function $f : \mathbb{R} \to \mathbb{R}$, the following are equivalent:

- (i) $f \in \mathcal{B}_1^*$;
- (ii) for each $a \in \mathbb{R}$, both $f^{-1}((-\infty, a])$ and $f^{-1}([a, \infty))$ are F_{σ} -sets.

The next lemma is easy to prove.

Lemma 2. Let $U \subset \mathbb{R}$ be an open set, $f : \mathbb{R} \to \mathbb{R}$, and $\alpha < \omega_1$. The following conditions are equivalent:

- (i) $U \subset \mathfrak{U}_{\alpha}(f);$
- (ii) the restriction $f \upharpoonright U \setminus \bigcup_{\beta < \alpha} \mathfrak{U}_{\beta}(f)$ is continuous.

Now we can prove the first main result.

Theorem 3. $\bigcup_{\alpha < \omega_1} \delta_\alpha = \mathcal{B}_1^*$.

PROOF. First let $f \in \mathcal{B}_1^*$, and suppose that $\mathcal{U}_{\alpha}(f) \neq \mathbb{R}$ for each $\alpha < \omega_1$. Since $\langle \mathcal{U}_{\alpha}(f); \alpha < \omega_1 \rangle$ is an ascending transfinite sequence of open subsets of \mathbb{R} , there is an $\alpha < \omega_1$ such that $\mathcal{U}_{\alpha}(f) = \mathcal{U}_{\alpha+1}(f)$. (We use the Cantor-Baire stationary principle; see, e.g., [4, Theorem 2, p. 146].) Then $P \stackrel{\text{df}}{=} \mathbb{R} \setminus \mathcal{U}_{\alpha}(f)$ is a nonempty closed set. So, by definition, there is an open interval (a, b) such that $P' \stackrel{\text{df}}{=} P \cap (a, b) \neq \emptyset$, and $f \upharpoonright P'$ is continuous. Since $P' = (a, b) \setminus \mathcal{U}_{\alpha}(f)$, by Lemma 2, we obtain $(a, b) \subset \mathcal{U}_{\alpha+1}(f)$. Hence, $P' \subset \mathcal{U}_{\alpha+1}(f) \setminus \mathcal{U}_{\alpha}(f) = \emptyset$, which is impossible.

Now let $f \in S_{\alpha}$ for some $\alpha < \omega_1$. Fix an $a \in \mathbb{R}$. We have

$$f^{-1}((-\infty,a]) = \bigcup_{\gamma \le \alpha} \left\{ x \in \mathcal{U}_{\gamma}(f) \setminus \bigcup_{\beta < \gamma} \mathcal{U}_{\beta}(f); f(x) \le a \right\} = \bigcup_{\gamma \le \alpha} K_{\gamma},$$

where

$$K_{\gamma} \stackrel{\mathrm{df}}{=} \left(f \upharpoonright \mathfrak{U}_{\gamma}(f) \setminus \bigcup_{\beta < \gamma} \mathfrak{U}_{\beta}(f) \right)^{-1} \left((-\infty, a] \right).$$

Let $\gamma \leq \alpha$. Put $V_{\gamma} \stackrel{\text{df}}{=} \mathfrak{U}_{\gamma}(f) \setminus \bigcup_{\beta < \gamma} \mathfrak{U}_{\beta}(f)$. Since $f \upharpoonright V_{\gamma}$ is continuous, the set K_{γ} is closed in V_{γ} . Let F_{γ} be a closed subset of \mathbb{R} such that $K_{\gamma} = F_{\gamma} \cap V_{\gamma}$. Then

$$f^{-1}((-\infty,a]) = \bigcup_{\gamma \le \alpha} (F_{\gamma} \cap V_{\gamma})$$

is a countable union of F_{σ} -sets, and hence, it too is an F_{σ} set. Analogously, we can show that $f^{-1}([a,\infty))$ is an F_{σ} -set. By Theorem 1, $f \in \mathcal{B}_1^*$. \Box

Theorem 4. For each $\alpha < \omega_1$, we have $\mathfrak{S}_{\alpha} \setminus \bigcup_{\beta < \alpha} \mathfrak{S}_{\beta} \neq \emptyset$.

PROOF. Let $A \subset \mathbb{R}$ be a countable, compact set such that $A^{(\alpha+1)} = \emptyset \neq A^{(\alpha)}$. (See, e.g., [8, Exercise 2.5.15].) Let f be the characteristic function of the set

$$\bigcup_{\substack{\beta \text{ odd, } \beta < \omega_1}} \left(A^{(\beta)} \setminus A^{(\beta+1)} \right).$$

One can easily verify that $\mathcal{U}_{\beta}(f) = \mathbb{R} \setminus A^{(\beta+1)}$ for each ordinal $\beta < \omega_1$. So, $f \in \mathcal{S}_{\alpha} \setminus \bigcup_{\beta < \alpha} \mathcal{S}_{\beta}$.

Now we will investigate the sums of functions from the defined classes. We will need the following theorem [5].

Theorem 5. Let $1 \leq \alpha < \omega_1$. Then α can be uniquely written in the form

$$\alpha = \omega^{\eta_0} r_0 + \dots + \omega^{\eta_n} r_n,$$

where r_0, \ldots, r_n are finite nonzero ordinals, and $\langle \eta_0, \ldots, \eta_n \rangle$ is a decreasing sequence of countable ordinals.

The notion of the natural addition was defined in 1906 by G. Hessenberg [2]. We define the natural addition for countable ordinals in the following way. If

$$\alpha = \omega^{\xi_0} p_0 + \dots + \omega^{\xi_k} p_k, \quad \beta = \omega^{\xi_0} q_0 + \dots + \omega^{\xi_k} q_k,$$

where $\xi_0 > \cdots > \xi_k$ and $p_0, \ldots, p_k, q_0, \ldots, q_k$ are finite (we allow zeros here), then we define

$$\alpha(+) \beta \stackrel{\mathrm{df}}{=} \omega^{\xi_0}(p_0 + q_0) + \dots + \omega^{\xi_k}(p_k + q_k).$$

Clearly, the natural addition is commutative.

The following lemma is quite trivial.

Lemma 6. Let $\alpha < \alpha'$ and $\beta \leq \beta'$. Then $\alpha (+) \beta < \alpha' (+) \beta'$.

Now we can prove the next main result.

Theorem 7. Let $\alpha, \beta < \omega_1, f \in S_{\alpha}$, and $g \in S_{\beta}$. Then $f + g \in S_{\alpha(+)\beta}$.

PROOF. For brevity, for each $\gamma < \omega_1$, we denote

$$U_{\gamma} \stackrel{\text{df}}{=} \mathfrak{U}_{\gamma}(f), \qquad \qquad V_{\gamma} \stackrel{\text{df}}{=} \mathfrak{U}_{\gamma}(g),$$
$$\widetilde{U}_{\gamma} \stackrel{\text{df}}{=} U_{\gamma} \setminus \bigcup_{\sigma < \gamma} U_{\sigma}, \qquad \qquad \widetilde{V}_{\gamma} \stackrel{\text{df}}{=} V_{\gamma} \setminus \bigcup_{\sigma < \gamma} V_{\sigma},$$

and

$$W_{\gamma} \stackrel{\mathrm{df}}{=} \bigcup_{\delta(+)\varepsilon = \gamma} (U_{\delta} \cap V_{\varepsilon}) = \bigcup_{\delta(+)\varepsilon = \gamma} \bigcup_{\mu \leq \delta, \nu \leq \varepsilon} (\widetilde{U}_{\mu} \cap \widetilde{V}_{\nu}).$$

Notice that each set W_{γ} is open.

We will show by transfinite induction that for each $\gamma < \omega_1$,

$$W_{\gamma} \subset \mathcal{U}_{\gamma}(f+g). \tag{1}$$

Let $\gamma < \omega_1$ and assume that $W_{\sigma} \subset \mathcal{U}_{\sigma}(f+g)$ for each $\sigma < \gamma$. Clearly, it suffices to show that $U_{\delta} \cap V_{\varepsilon} \subset \mathcal{U}_{\gamma}(f+g)$ whenever $\delta(+) \varepsilon = \gamma$. So, fix $\delta, \varepsilon < \omega_1$ with $\delta(+) \varepsilon = \gamma$. First, we will show that

$$U_{\delta} \cap V_{\varepsilon} \setminus \bigcup_{\sigma < \gamma} W_{\sigma} = \widetilde{U}_{\delta} \cap \widetilde{V}_{\varepsilon}.$$
 (2)

Let $x \in \widetilde{U}_{\delta} \cap \widetilde{V}_{\varepsilon}$. Then clearly

$$x \in U_{\delta} \cap V_{\varepsilon} = \bigcup_{\mu \le \delta, \nu \le \varepsilon} \left(\widetilde{U}_{\mu} \cap \widetilde{V}_{\nu} \right)$$

Suppose that $x \in W_{\sigma}$ for some $\sigma < \gamma$. There exist $\mu' \leq \delta'$ and $\nu' \leq \varepsilon'$ such that $\mu'(+) \nu' \leq \delta'(+) \varepsilon' = \sigma$ and $x \in \widetilde{U}_{\mu'} \cap \widetilde{V}_{\nu'}$. Hence, $\widetilde{U}_{\mu'} \cap \widetilde{U}_{\delta} \neq \emptyset$ and $\widetilde{V}_{\nu'} \cap \widetilde{V}_{\varepsilon} \neq \emptyset$. Notice that the sequences $\langle \widetilde{U}_{\xi}; \xi < \omega_1 \rangle$ and $\langle \widetilde{V}_{\xi}; \xi < \omega_1 \rangle$ consist of pairwise disjoint sets. Thus, $\mu' = \delta$ and $\nu' = \varepsilon$, and consequently,

$$\gamma = \delta(+) \varepsilon = \mu'(+) \nu' \le \sigma < \gamma,$$

which is impossible. It follows that $x \in U_{\delta} \cap V_{\varepsilon} \setminus \bigcup_{\sigma < \gamma} W_{\sigma}$. Now let $x \in U_{\delta} \cap V_{\varepsilon} \setminus \bigcup_{\sigma < \gamma} W_{\sigma}$. Since $x \in U_{\delta} \cap V_{\varepsilon}$, there exist $\mu \leq \delta$ and $\nu \leq \varepsilon$ such that $x \in \widetilde{U}_{\mu} \cap \widetilde{V}_{\nu}$. If $\mu(+) \nu < \gamma$, then $x \in W_{\mu(+)\nu} \subset \bigcup_{\sigma < \gamma} W_{\sigma}$, which is a contradiction. Thus, $\mu(+)\nu \ge \gamma$. By Lemma 6, we have $\mu = \delta$ and $\nu = \varepsilon$. It follows that $x \in \widetilde{U}_{\delta} \cap \widetilde{V}_{\varepsilon}$.

Now observe that by (2) and the induction assumption,

$$U_{\delta} \cap V_{\varepsilon} \setminus \bigcup_{\sigma < \gamma} \mathfrak{U}_{\sigma}(f + g) \subset U_{\delta} \cap V_{\varepsilon} \setminus \bigcup_{\sigma < \gamma} W_{\sigma} = \widetilde{U}_{\delta} \cap \widetilde{V}_{\varepsilon}.$$

Since $f | \widetilde{U}_{\delta}$ and $g | \widetilde{V}_{\varepsilon}$ are continuous, the functions

$$(f+g) \upharpoonright \widetilde{U}_{\delta} \cap \widetilde{V}_{\varepsilon}$$
 and $(f+g) \upharpoonright U_{\delta} \cap V_{\varepsilon} \setminus \bigcup_{\sigma < \gamma} \mathfrak{U}_{\sigma}(f+g)$

are continuous as well. Thus, $U_{\delta} \cap V_{\varepsilon} \subset \mathcal{U}_{\gamma}(f+g)$ (cf. Lemma 2). It completes the proof of (1).

By (1), we have, in particular,

$$W_{\alpha(+)\beta} = \mathbb{R} \subset \mathcal{U}_{\alpha(+)\beta}(f+g);$$

i.e., $f + g \in S_{\alpha(+)\beta}$.

Proposition 8. Let $\alpha, \beta < \omega_1$ and $h \in S_{\alpha+\beta}$. There are $f \in S_{\alpha}$ and $g \in S_{\beta}$ such that h = f + g.

PROOF. By definition, the restriction $\varphi \stackrel{\text{df}}{=} h \upharpoonright \mathcal{U}_{\alpha}(h) \setminus \bigcup_{\delta < \alpha} \mathcal{U}_{\delta}(h)$ is continuous. Since $\mathcal{U}_{\alpha}(h) \setminus \bigcup_{\delta < \alpha} \mathcal{U}_{\delta}(h)$ is a closed subspace of $\mathcal{U}_{\alpha}(h)$, by Tietze Extension Theorem, we can extend φ to a continuous function $\widetilde{\varphi} \colon \mathcal{U}_{\alpha}(h) \to \mathbb{R}$. (See, e.g., [1].) Define

$$g(x) = \begin{cases} h(x) & \text{if } x \in \mathbb{R} \setminus \mathcal{U}_{\alpha}(h) \\ \widetilde{\varphi}(x) & \text{if } x \in \mathcal{U}_{\alpha}(h). \end{cases}$$

To prove $g \in S_{\beta}$, it suffices to show that

$$\mathfrak{U}_{\alpha+\sigma}(h) \subset \mathfrak{U}_{\sigma}(g) \quad \text{for each } \sigma \leq \beta.$$

(Recall that $\mathcal{U}_{\alpha+\beta}(h) = \mathbb{R}$.) We proceed by transfinite induction.

Clearly, $\mathcal{U}_{\alpha+0}(h) = \mathcal{U}_{\alpha}(h) \subset \mathcal{U}_0(g)$. So, let $0 < \sigma \leq \beta$ and assume that $\mathcal{U}_{\alpha+\nu}(h) \subset \mathcal{U}_{\nu}(g)$ for each $\nu < \sigma$. Recall that if $\alpha \leq \xi < \alpha + \sigma$, then $\xi = \alpha + \nu$ for some $\nu < \sigma$. So, since $\sigma > 0$, by induction assumption, we obtain

$$\begin{split} \mathfrak{U}_{\alpha+\sigma}(h) \setminus \bigcup_{\nu < \sigma} \mathfrak{U}_{\nu}(g) \subset \mathfrak{U}_{\alpha+\sigma}(h) \setminus \bigcup_{\nu < \sigma} \mathfrak{U}_{\alpha+\nu}(h) \\ \subset \mathfrak{U}_{\alpha+\sigma}(h) \setminus \bigcup_{\xi < \alpha+\sigma} \mathfrak{U}_{\xi}(h) \subset \mathbb{R} \setminus \mathfrak{U}_{\alpha}(h). \end{split}$$

Thus, the restriction

$$g \upharpoonright \mathcal{U}_{\alpha+\sigma}(h) \setminus \bigcup_{\nu < \sigma} \mathcal{U}_{\nu}(g) = h \upharpoonright \mathcal{U}_{\alpha+\sigma}(h) \setminus \bigcup_{\nu < \sigma} \mathcal{U}_{\nu}(g)$$

is continuous. By Lemma 2, we obtain $\mathcal{U}_{\alpha+\sigma}(h) \subset \mathcal{U}_{\sigma}(g)$. It follows that $g \in S_{\beta}$.

Now define the function $f \colon \mathbb{R} \to \mathbb{R}$ by

$$f(x) \stackrel{\text{df}}{=} h(x) - g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \bigcup_{\delta < \alpha} \mathfrak{U}_{\delta}(h), \\ (h - \widetilde{\varphi})(x) & \text{otherwise.} \end{cases}$$

We will first show that

$$\mathfrak{U}_{\delta}(h) \subset \mathfrak{U}_{\delta}(f) \quad \text{for each } \delta < \alpha.$$
(3)

Let $\delta < \alpha$ and assume that $\mathcal{U}_{\mu}(h) \subset \mathcal{U}_{\mu}(f)$ for each $\mu < \delta$. Then by induction assumption,

$$\mathfrak{U}_{\delta}(h)\setminus \bigcup_{\mu<\delta}\mathfrak{U}_{\mu}(f)\subset \mathfrak{U}_{\delta}(h)\setminus \bigcup_{\mu<\delta}\mathfrak{U}_{\mu}(h)\subset \mathfrak{U}_{\alpha}(h).$$

So, the function

$$f \upharpoonright \mathcal{U}_{\delta}(h) \setminus \bigcup_{\mu < \delta} \mathcal{U}_{\mu}(f) = (h - \widetilde{\varphi}) \upharpoonright \mathcal{U}_{\delta}(h) \setminus \bigcup_{\mu < \delta} \mathcal{U}_{\mu}(f)$$

is continuous, and by Lemma 2, we obtain $\mathcal{U}_{\delta}(h) \subset \mathcal{U}_{\delta}(f)$.

Now observe that by (3), since the restriction $f \upharpoonright \mathbb{R} \setminus \bigcup_{\delta < \alpha} \mathcal{U}_{\delta}(f)$ is constant. Hence, $\mathcal{U}_{\alpha}(f) = \mathbb{R}$ and $f \in \mathcal{S}_{\alpha}$. This completes the proof. \Box

Using Proposition 8 several times, we obtain the following corollary.

Corollary 9. Let $\gamma = \omega^{\eta_0} r_0 + \cdots + \omega^{\eta_k} r_k$, where r_0, \ldots, r_k are finite nonzero ordinals, and $\langle \eta_0, \ldots, \eta_k \rangle$ is a decreasing sequence of countable ordinals. Then for each $h \in S_{\gamma}$, there are functions $f_{i,j} \in S_{\omega^{\eta_i}}$, where $i \in \{0, \ldots, k\}$ and $j \in \{1, \ldots, r_i\}$, such that $h = \sum_{i=0}^k \sum_{j=1}^{r_i} f_{i,j}$.

Corollary 10. Let $\alpha, \beta < \omega_1$ and $h: \mathbb{R} \to \mathbb{R}$. The following are equivalent:

(i) $h \in S_{\alpha(+)\beta}$,

(ii) there are functions $f \in S_{\alpha}$ and $g \in S_{\beta}$ such that h = f + g.

PROOF. (i) \Rightarrow (ii). Let $h \in S_{\alpha(+)\beta}$. Write ordinals α and β in the form

$$\alpha = \omega^{\xi_0} p_0 + \dots + \omega^{\xi_k} p_k, \quad \beta = \omega^{\xi_0} q_0 + \dots + \omega^{\xi_k} q_k,$$

where $\xi_0 > \cdots > \xi_k$ and $p_0, \ldots, p_k, q_0, \ldots, q_k$ are finite. By Corollary 9, there are functions $f_{i,j} \in \mathcal{S}_{\omega^{\eta_i}}$, where $i \in \{0, \ldots, k\}$ and $j \in \{1, \ldots, p_i + q_i\}$ such that $h = \sum_{i=0}^k \sum_{j=1}^{p_i+q_i} f_{i,j}$. Put

$$f = \sum_{i=0}^{k} \sum_{j=1}^{p_i} f_{i,j}, \quad g = \sum_{i=0}^{k} \sum_{j=1}^{q_i} f_{i,p_i+j}$$

By Theorem 7, $f \in S_{\alpha}$ and $g \in S_{\beta}$. Clearly, h = f + g. The implication (ii) \Rightarrow (i) follows by Theorem 7.

References

- R. Engelking, *General Topology*, Sigma Series in Pure Mathematics, no. 6, Heldermann Verlag, Berlin, 1989.
- [2] G. Hessenberg, Grundbegriffe der Mengenlehre, Abhandlungen der Friesschen Schule I, no. 4, Göttingen, 1906.
- [3] B. Kirchheim, *Baire one star functions*, Real Anal. Exchange, 18(2) (1992/93), 385–399.
- [4] C. Kuratowski, *Topologie*, 4th French ed., Monografie Matematyczne, vol. 1, no. 20, PWN, Warszawa, 1958.
- [5] T. Jech, Set Theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
- [6] R. J. O'Malley, Baire* 1, Darboux functions, Proc. Amer. Math. Soc., 60 (1976), 187–192.
- [7] R. J. Pawlak, On some class of functions intermediate between the class B^{*}₁ and the family of continuous functions, Tatra Mt. Math. Publ., **19** (2000), 135–144.
- [8] S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, no. 180, Springer-Verlag, New York, 1998.