A CLASSIFICATION OF BAIRE ONE STAR FUNCTIONS

Abstract

We present a new classification of Baire one star functions and examine sums of functions from the defined classes.

The letter \mathbb{R} denotes the real line. The symbols ω and ω_{1} denote the first infinite ordinal and the first uncountable ordinal, respectively. The word function denotes a mapping from a subset of \mathbb{R} into \mathbb{R}. The symbol $\mathcal{C}(f)$ stands for the set of points of continuity of a function f.

Let $A \subset \mathbb{R}$. We use the symbols int A and $\operatorname{cl} A$ to denote the interior and the closure of A, respectively. If A is closed, then for each $\alpha<\omega_{1}$, we denote by $A^{(\alpha)}$ the $\alpha^{\text {th }}$ Cantor-Bendixson derivative of A; i.e.,

$$
A^{(\alpha)} \stackrel{\text { df }}{=} \begin{cases}A & \text { if } \alpha=0 \\ \left(A^{(\beta)}\right)^{\prime} & \text { if } \alpha=\beta+1 \\ \bigcap_{\beta<\alpha} A^{(\beta)} & \text { if } \alpha \text { is a limit ordinal }\end{cases}
$$

where B^{\prime} is the set of all accumulation points of B. Clearly, $A^{(\alpha)} \supset A^{(\beta)}$ whenever $\alpha<\beta<\omega_{1}$.

If $f: \mathbb{R} \rightarrow \mathbb{R}$, then for every ordinal α, we define

$$
\mathcal{U}_{\alpha}(f) \stackrel{\mathrm{df}}{=} \operatorname{int}\left(\bigcup_{\beta<\alpha} \mathcal{U}_{\beta}(f) \cup \mathcal{C}\left(f \upharpoonright \mathbb{R} \backslash \bigcup_{\beta<\alpha} \mathcal{U}_{\beta}(f)\right)\right)
$$

(Clearly $\mathcal{U}_{\alpha}(f) \subset \mathcal{U}_{\beta}(f)$ for all ordinals $\alpha<\beta$.) For each $\alpha<\omega_{1}$, we denote

$$
\mathcal{S}_{\alpha} \stackrel{\text { df }}{=}\left\{f: \mathbb{R} \rightarrow \mathbb{R} ; \mathcal{U}_{\alpha}(f)=\mathbb{R}\right\}
$$

[^0]Observe that, in particular, \mathcal{S}_{1} is the class $\mathcal{B}_{1}^{* *}$ defined by R.J. Pawlak [7].
We say that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Baire one star function [6] if for each nonempty closed set $P \subset \mathbb{R}$, there is a nonempty portion $P^{\prime} \stackrel{\mathrm{df}}{=} P \cap(a, b)$ of P such that $f \upharpoonright P^{\prime}$ is continuous. We denote the family of all Baire one star functions by \mathcal{B}_{1}^{*}.

Recall the following theorem proved by B. Kirchheim [3, Theorem 2.3].
Theorem 1. For every function $f: \mathbb{R} \rightarrow \mathbb{R}$, the following are equivalent:
(i) $f \in \mathcal{B}_{1}^{*}$;
(ii) for each $a \in \mathbb{R}$, both $f^{-1}((-\infty, a])$ and $f^{-1}([a, \infty))$ are F_{σ}-sets.

The next lemma is easy to prove.
Lemma 2. Let $U \subset \mathbb{R}$ be an open set, $f: \mathbb{R} \rightarrow \mathbb{R}$, and $\alpha<\omega_{1}$. The following conditions are equivalent:
(i) $U \subset \mathcal{U}_{\alpha}(f)$;
(ii) the restriction $f \upharpoonright U \backslash \bigcup_{\beta<\alpha} \mathcal{U}_{\beta}(f)$ is continuous.

Now we can prove the first main result.
Theorem 3. $\bigcup_{\alpha<\omega_{1}} \mathcal{S}_{\alpha}=\mathcal{B}_{1}^{*}$.
Proof. First let $f \in \mathcal{B}_{1}^{*}$, and suppose that $\mathcal{U}_{\alpha}(f) \neq \mathbb{R}$ for each $\alpha<\omega_{1}$. Since $\left\langle U_{\alpha}(f) ; \alpha<\omega_{1}\right\rangle$ is an ascending transfinite sequence of open subsets of \mathbb{R}, there is an $\alpha<\omega_{1}$ such that $\mathcal{U}_{\alpha}(f)=\mathcal{U}_{\alpha+1}(f)$. (We use the Cantor-Baire stationary principle; see, e.g., [4, Theorem 2, p. 146].) Then $P \stackrel{\text { df }}{=} \mathbb{R} \backslash \mathcal{U}_{\alpha}(f)$ is a nonempty closed set. So, by definition, there is an open interval (a, b) such that $P^{\prime} \stackrel{\text { df }}{=} P \cap(a, b) \neq \emptyset$, and $f \upharpoonright P^{\prime}$ is continuous. Since $P^{\prime}=(a, b) \backslash \mathcal{U}_{\alpha}(f)$, by Lemma 2 , we obtain $(a, b) \subset \mathcal{U}_{\alpha+1}(f)$. Hence, $P^{\prime} \subset \mathcal{U}_{\alpha+1}(f) \backslash \mathcal{U}_{\alpha}(f)=\emptyset$, which is impossible.

Now let $f \in \mathcal{S}_{\alpha}$ for some $\alpha<\omega_{1}$. Fix an $a \in \mathbb{R}$. We have

$$
f^{-1}((-\infty, a])=\bigcup_{\gamma \leq \alpha}\left\{x \in \mathcal{U}_{\gamma}(f) \backslash \bigcup_{\beta<\gamma} \mathcal{U}_{\beta}(f) ; f(x) \leq a\right\}=\bigcup_{\gamma \leq \alpha} K_{\gamma}
$$

where

$$
K_{\gamma} \stackrel{\text { df }}{=}\left(f \upharpoonright \mathcal{U}_{\gamma}(f) \backslash \bigcup_{\beta<\gamma} \mathcal{U}_{\beta}(f)\right)^{-1}((-\infty, a])
$$

Let $\gamma \leq \alpha$. Put $V_{\gamma} \stackrel{\text { df }}{=} \mathcal{U}_{\gamma}(f) \backslash \bigcup_{\beta<\gamma} \mathcal{U}_{\beta}(f)$. Since $f \upharpoonright V_{\gamma}$ is continuous, the set K_{γ} is closed in V_{γ}. Let F_{γ} be a closed subset of \mathbb{R} such that $K_{\gamma}=F_{\gamma} \cap V_{\gamma}$. Then

$$
f^{-1}((-\infty, a])=\bigcup_{\gamma \leq \alpha}\left(F_{\gamma} \cap V_{\gamma}\right)
$$

is a countable union of F_{σ}-sets, and hence, it too is an F_{σ} set. Analogously, we can show that $f^{-1}([a, \infty))$ is an F_{σ}-set. By Theorem $1, f \in \mathcal{B}_{1}^{*}$.

Theorem 4. For each $\alpha<\omega_{1}$, we have $\mathcal{S}_{\alpha} \backslash \bigcup_{\beta<\alpha} \mathcal{S}_{\beta} \neq \emptyset$.
Proof. Let $A \subset \mathbb{R}$ be a countable, compact set such that $A^{(\alpha+1)}=\emptyset \neq A^{(\alpha)}$. (See, e.g., [8, Exercise 2.5.15].) Let f be the characteristic function of the set

$$
\bigcup_{\beta \text { odd, } \beta<\omega_{1}}\left(A^{(\beta)} \backslash A^{(\beta+1)}\right)
$$

One can easily verify that $\mathcal{U}_{\beta}(f)=\mathbb{R} \backslash A^{(\beta+1)}$ for each ordinal $\beta<\omega_{1}$. So, $f \in \mathcal{S}_{\alpha} \backslash \bigcup_{\beta<\alpha} \mathcal{S}_{\beta}$.

Now we will investigate the sums of functions from the defined classes. We will need the following theorem [5].

Theorem 5. Let $1 \leq \alpha<\omega_{1}$. Then α can be uniquely written in the form

$$
\alpha=\omega^{\eta_{0}} r_{0}+\cdots+\omega^{\eta_{n}} r_{n}
$$

where r_{0}, \ldots, r_{n} are finite nonzero ordinals, and $\left\langle\eta_{0}, \ldots, \eta_{n}\right\rangle$ is a decreasing sequence of countable ordinals.

The notion of the natural addition was defined in 1906 by G. Hessenberg [2]. We define the natural addition for countable ordinals in the following way. If

$$
\alpha=\omega^{\xi_{0}} p_{0}+\cdots+\omega^{\xi_{k}} p_{k}, \quad \beta=\omega^{\xi_{0}} q_{0}+\cdots+\omega^{\xi_{k}} q_{k}
$$

where $\xi_{0}>\cdots>\xi_{k}$ and $p_{0}, \ldots, p_{k}, q_{0}, \ldots, q_{k}$ are finite (we allow zeros here), then we define

$$
\alpha(+) \beta \stackrel{\mathrm{df}}{=} \omega^{\xi_{0}}\left(p_{0}+q_{0}\right)+\cdots+\omega^{\xi_{k}}\left(p_{k}+q_{k}\right)
$$

Clearly, the natural addition is commutative.
The following lemma is quite trivial.
Lemma 6. Let $\alpha<\alpha^{\prime}$ and $\beta \leq \beta^{\prime}$. Then $\alpha(+) \beta<\alpha^{\prime}(+) \beta^{\prime}$.
Now we can prove the next main result.
Theorem 7. Let $\alpha, \beta<\omega_{1}, f \in \mathcal{S}_{\alpha}$, and $g \in \mathcal{S}_{\beta}$. Then $f+g \in \mathcal{S}_{\alpha(+) \beta}$.

Proof. For brevity, for each $\gamma<\omega_{1}$, we denote

$$
\begin{array}{ll}
U_{\gamma} \stackrel{\mathrm{df}}{=} \mathcal{U}_{\gamma}(f), & V_{\gamma} \stackrel{\mathrm{df}}{=} U_{\gamma}(g), \\
\widetilde{U}_{\gamma} \stackrel{\mathrm{df}}{=} U_{\gamma} \backslash \bigcup_{\sigma<\gamma} U_{\sigma}, & \widetilde{V}_{\gamma} \stackrel{\text { df }}{=} V_{\gamma} \backslash \bigcup_{\sigma<\gamma} V_{\sigma}
\end{array}
$$

and

$$
W_{\gamma} \stackrel{\text { df }}{=} \bigcup_{\delta(+) \varepsilon=\gamma}\left(U_{\delta} \cap V_{\varepsilon}\right)=\bigcup_{\delta(+) \varepsilon=\gamma} \bigcup_{\mu \leq \delta, \nu \leq \varepsilon}\left(\widetilde{U}_{\mu} \cap \widetilde{V}_{\nu}\right) .
$$

Notice that each set W_{γ} is open.
We will show by transfinite induction that for each $\gamma<\omega_{1}$,

$$
\begin{equation*}
W_{\gamma} \subset \mathcal{U}_{\gamma}(f+g) \tag{1}
\end{equation*}
$$

Let $\gamma<\omega_{1}$ and assume that $W_{\sigma} \subset \mathcal{U}_{\sigma}(f+g)$ for each $\sigma<\gamma$. Clearly, it suffices to show that $U_{\delta} \cap V_{\varepsilon} \subset \mathcal{U}_{\gamma}(f+g)$ whenever $\delta(+) \varepsilon=\gamma$. So, fix $\delta, \varepsilon<\omega_{1}$ with $\delta(+) \varepsilon=\gamma$. First, we will show that

$$
\begin{equation*}
U_{\delta} \cap V_{\varepsilon} \backslash \bigcup_{\sigma<\gamma} W_{\sigma}=\widetilde{U}_{\delta} \cap \widetilde{V}_{\varepsilon} \tag{2}
\end{equation*}
$$

Let $x \in \widetilde{U}_{\delta} \cap \widetilde{V}_{\varepsilon}$. Then clearly

$$
x \in U_{\delta} \cap V_{\varepsilon}=\bigcup_{\mu \leq \delta, \nu \leq \varepsilon}\left(\widetilde{U}_{\mu} \cap \widetilde{V}_{\nu}\right) .
$$

Suppose that $x \in W_{\sigma}$ for some $\sigma<\gamma$. There exist $\mu^{\prime} \leq \delta^{\prime}$ and $\nu^{\prime} \leq \varepsilon^{\prime}$ such that $\mu^{\prime}(+) \nu^{\prime} \leq \delta^{\prime}(+) \varepsilon^{\prime}=\sigma$ and $x \in \widetilde{U}_{\mu^{\prime}} \cap \widetilde{V}_{\nu^{\prime}}$. Hence, $\widetilde{U}_{\mu^{\prime}} \cap \widetilde{U}_{\delta} \neq \emptyset$ and $\widetilde{V}_{\nu^{\prime}} \cap \widetilde{V}_{\varepsilon} \neq \emptyset$. Notice that the sequences $\left\langle\widetilde{U}_{\xi} ; \xi<\omega_{1}\right\rangle$ and $\left\langle\widetilde{V}_{\xi} ; \xi<\omega_{1}\right\rangle$ consist of pairwise disjoint sets. Thus, $\mu^{\prime}=\delta$ and $\nu^{\prime}=\varepsilon$, and consequently,

$$
\gamma=\delta(+) \varepsilon=\mu^{\prime}(+) \nu^{\prime} \leq \sigma<\gamma
$$

which is impossible. It follows that $x \in U_{\delta} \cap V_{\varepsilon} \backslash \bigcup_{\sigma<\gamma} W_{\sigma}$.
Now let $x \in U_{\delta} \cap V_{\varepsilon} \backslash \bigcup_{\sigma<\gamma} W_{\sigma}$. Since $x \in U_{\delta} \cap V_{\varepsilon}$, there exist $\mu \leq \delta$ and $\nu \leq \varepsilon$ such that $x \in \widetilde{U}_{\mu} \cap \widetilde{V}_{\nu}$. If $\mu(+) \nu<\gamma$, then $x \in W_{\mu(+) \nu} \subset \bigcup_{\sigma<\gamma} W_{\sigma}$, which is a contradiction. Thus, $\mu(+) \nu \geq \gamma$. By Lemma 6, we have $\mu=\delta$ and $\nu=\varepsilon$. It follows that $x \in \widetilde{U}_{\delta} \cap \widetilde{V}_{\varepsilon}$.

Now observe that by (2) and the induction assumption,

$$
U_{\delta} \cap V_{\varepsilon} \backslash \bigcup_{\sigma<\gamma} \mathcal{U}_{\sigma}(f+g) \subset U_{\delta} \cap V_{\varepsilon} \backslash \bigcup_{\sigma<\gamma} W_{\sigma}=\widetilde{U}_{\delta} \cap \widetilde{V}_{\varepsilon} .
$$

Since $f \upharpoonright \widetilde{U}_{\delta}$ and $g \upharpoonright \widetilde{V}_{\varepsilon}$ are continuous, the functions

$$
(f+g) \upharpoonright \widetilde{U}_{\delta} \cap \widetilde{V}_{\varepsilon} \quad \text { and } \quad(f+g) \upharpoonright U_{\delta} \cap V_{\varepsilon} \backslash \bigcup_{\sigma<\gamma} u_{\sigma}(f+g)
$$

are continuous as well. Thus, $U_{\delta} \cap V_{\varepsilon} \subset \mathcal{U}_{\gamma}(f+g)$ (cf. Lemma 2). It completes the proof of (1).

By (1), we have, in particular,

$$
W_{\alpha(+) \beta}=\mathbb{R} \subset \mathcal{U}_{\alpha(+) \beta}(f+g)
$$

i.e., $f+g \in \mathcal{S}_{\alpha(+) \beta}$.

Proposition 8. Let $\alpha, \beta<\omega_{1}$ and $h \in \mathcal{S}_{\alpha+\beta}$. There are $f \in \mathcal{S}_{\alpha}$ and $g \in \mathcal{S}_{\beta}$ such that $h=f+g$.
Proof. By definition, the restriction $\varphi \stackrel{\mathrm{df}}{=} h \upharpoonright \mathcal{U}_{\alpha}(h) \backslash \bigcup_{\delta<\alpha} \mathcal{U}_{\delta}(h)$ is continuous. Since $\mathcal{U}_{\alpha}(h) \backslash \bigcup_{\delta<\alpha} \mathcal{U}_{\delta}(h)$ is a closed subspace of $\mathcal{U}_{\alpha}(h)$, by Tietze Extension Theorem, we can extend φ to a continuous function $\widetilde{\varphi}: \mathcal{U}_{\alpha}(h) \rightarrow \mathbb{R}$. (See, e.g., [1].) Define

$$
g(x)= \begin{cases}h(x) & \text { if } x \in \mathbb{R} \backslash \mathcal{U}_{\alpha}(h), \\ \widetilde{\varphi}(x) & \text { if } x \in \bigcup_{\alpha}(h) .\end{cases}
$$

To prove $g \in \mathcal{S}_{\beta}$, it suffices to show that

$$
\mathcal{U}_{\alpha+\sigma}(h) \subset \mathcal{U}_{\sigma}(g) \quad \text { for each } \sigma \leq \beta
$$

(Recall that $\mathcal{U}_{\alpha+\beta}(h)=\mathbb{R}$.) We proceed by transfinite induction.
Clearly, $\mathcal{U}_{\alpha+0}(h)=\mathcal{U}_{\alpha}(h) \subset \mathcal{U}_{0}(g)$. So, let $0<\sigma \leq \beta$ and assume that $\mathcal{U}_{\alpha+\nu}(h) \subset \mathcal{U}_{\nu}(g)$ for each $\nu<\sigma$. Recall that if $\alpha \leq \xi<\alpha+\sigma$, then $\xi=\alpha+\nu$ for some $\nu<\sigma$. So, since $\sigma>0$, by induction assumption, we obtain

$$
\begin{aligned}
\mathcal{U}_{\alpha+\sigma}(h) \backslash \bigcup_{\nu<\sigma} U_{\nu}(g) & \subset \mathcal{U}_{\alpha+\sigma}(h) \backslash \bigcup_{\nu<\sigma} u_{\alpha+\nu}(h) \\
& \subset U_{\alpha+\sigma}(h) \backslash \bigcup_{\xi<\alpha+\sigma} u_{\xi}(h) \subset \mathbb{R} \backslash U_{\alpha}(h) .
\end{aligned}
$$

Thus, the restriction

$$
g \backslash \mathcal{U}_{\alpha+\sigma}(h) \backslash \bigcup_{\nu<\sigma} \mathcal{U}_{\nu}(g)=h \upharpoonright \mathcal{U}_{\alpha+\sigma}(h) \backslash \bigcup_{\nu<\sigma} \mathcal{U}_{\nu}(g)
$$

is continuous. By Lemma 2, we obtain $\mathcal{U}_{\alpha+\sigma}(h) \subset \mathcal{U}_{\sigma}(g)$. It follows that $g \in \mathcal{S}_{\beta}$.

Now define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x) \stackrel{\text { df }}{=} h(x)-g(x)= \begin{cases}0 & \text { if } x \in \mathbb{R} \backslash \bigcup_{\delta<\alpha} \mathcal{U}_{\delta}(h) \\ (h-\widetilde{\varphi})(x) & \text { otherwise }\end{cases}
$$

We will first show that

$$
\begin{equation*}
\mathcal{U}_{\delta}(h) \subset \mathcal{U}_{\delta}(f) \quad \text { for each } \delta<\alpha \tag{3}
\end{equation*}
$$

Let $\delta<\alpha$ and assume that $\mathcal{U}_{\mu}(h) \subset \mathcal{U}_{\mu}(f)$ for each $\mu<\delta$. Then by induction assumption,

$$
\mathcal{U}_{\delta}(h) \backslash \bigcup_{\mu<\delta} \mathcal{U}_{\mu}(f) \subset \mathcal{U}_{\delta}(h) \backslash \bigcup_{\mu<\delta} \mathcal{U}_{\mu}(h) \subset \mathcal{U}_{\alpha}(h)
$$

So, the function

$$
f \upharpoonright \mathcal{U}_{\delta}(h) \backslash \bigcup_{\mu<\delta} \mathcal{U}_{\mu}(f)=(h-\widetilde{\varphi}) \upharpoonright \mathcal{U}_{\delta}(h) \backslash \bigcup_{\mu<\delta} \mathcal{U}_{\mu}(f)
$$

is continuous, and by Lemma 2, we obtain $\mathcal{U}_{\delta}(h) \subset \mathcal{U}_{\delta}(f)$.
Now observe that by (3), since the restriction $f \upharpoonright \mathbb{R} \backslash \bigcup_{\delta<\alpha} \mathcal{U}_{\delta}(f)$ is constant. Hence, $\mathcal{U}_{\alpha}(f)=\mathbb{R}$ and $f \in \mathcal{S}_{\alpha}$. This completes the proof.

Using Proposition 8 several times, we obtain the following corollary.
Corollary 9. Let $\gamma=\omega^{\eta_{0}} r_{0}+\cdots+\omega^{\eta_{k}} r_{k}$, where r_{0}, \ldots, r_{k} are finite nonzero ordinals, and $\left\langle\eta_{0}, \ldots, \eta_{k}\right\rangle$ is a decreasing sequence of countable ordinals. Then for each $h \in \mathcal{S}_{\gamma}$, there are functions $f_{i, j} \in \mathcal{S}_{\omega^{\eta_{i}}}$, where $i \in\{0, \ldots, k\}$ and $j \in\left\{1, \ldots, r_{i}\right\}$, such that $h=\sum_{i=0}^{k} \sum_{j=1}^{r_{i}} f_{i, j}$.
Corollary 10. Let $\alpha, \beta<\omega_{1}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$. The following are equivalent:
(i) $h \in \mathcal{S}_{\alpha(+) \beta}$,
(ii) there are functions $f \in \mathcal{S}_{\alpha}$ and $g \in \mathcal{S}_{\beta}$ such that $h=f+g$.

Proof. (i) \Rightarrow (ii). Let $h \in \mathcal{S}_{\alpha(+) \beta}$. Write ordinals α and β in the form

$$
\alpha=\omega^{\xi_{0}} p_{0}+\cdots+\omega^{\xi_{k}} p_{k}, \quad \beta=\omega^{\xi_{0}} q_{0}+\cdots+\omega^{\xi_{k}} q_{k}
$$

where $\xi_{0}>\cdots>\xi_{k}$ and $p_{0}, \ldots, p_{k}, q_{0}, \ldots, q_{k}$ are finite. By Corollary 9, there are functions $f_{i, j} \in \mathcal{S}_{\omega^{\eta_{i}}}$, where $i \in\{0, \ldots, k\}$ and $j \in\left\{1, \ldots, p_{i}+q_{i}\right\}$ such that $h=\sum_{i=0}^{k} \sum_{j=1}^{p_{i}+q_{i}} f_{i, j}$. Put

$$
f=\sum_{i=0}^{k} \sum_{j=1}^{p_{i}} f_{i, j}, \quad g=\sum_{i=0}^{k} \sum_{j=1}^{q_{i}} f_{i, p_{i}+j}
$$

By Theorem 7, $f \in \mathcal{S}_{\alpha}$ and $g \in \mathcal{S}_{\beta}$. Clearly, $h=f+g$. The implication (ii) \Rightarrow (i) follows by Theorem 7 .

References

[1] R. Engelking, General Topology, Sigma Series in Pure Mathematics, no. 6, Heldermann Verlag, Berlin, 1989.
[2] G. Hessenberg, Grundbegriffe der Mengenlehre, Abhandlungen der Friesschen Schule I, no. 4, Göttingen, 1906.
[3] B. Kirchheim, Baire one star functions, Real Anal. Exchange, 18(2) (1992/93), 385-399.
[4] C. Kuratowski, Topologie, 4th French ed., Monografie Matematyczne, vol. 1, no. 20, PWN, Warszawa, 1958.
[5] T. Jech, Set Theory, Springer Monographs in Mathematics, SpringerVerlag, Berlin, 2003.
[6] R. J. O'Malley, Baire* 1, Darboux functions, Proc. Amer. Math. Soc., 60 (1976), 187-192.
[7] R. J. Pawlak, On some class of functions intermediate between the class \mathcal{B}_{1}^{*} and the family of continuous functions, Tatra Mt. Math. Publ., 19 (2000), 135-144.
[8] S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, no. 180, Springer-Verlag, New York, 1998.

[^0]: Key Words: Baire one star function, sum of functions
 Mathematical Reviews subject classification: Primary 26A15; Secondary 26A21
 Received by the editors June 24, 2004
 Communicated by: Udayan B. Darji
 *Partially supported by University in Bydgoszcz.

