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A CLASSIFICATION OF BAIRE ONE STAR
FUNCTIONS

Abstract

We present a new classification of Baire one star functions and ex-
amine sums of functions from the defined classes.

The letter R denotes the real line. The symbols ω and ω1 denote the
first infinite ordinal and the first uncountable ordinal, respectively. The word
function denotes a mapping from a subset of R into R. The symbol C(f)
stands for the set of points of continuity of a function f .

Let A ⊂ R. We use the symbols int A and cl A to denote the interior and
the closure of A, respectively. If A is closed, then for each α < ω1, we denote
by A(α) the αth Cantor-Bendixson derivative of A; i.e.,

A(α) df=


A if α = 0,(
A(β)

)′ if α = β + 1,⋂
β<α A(β) if α is a limit ordinal,

where B′ is the set of all accumulation points of B. Clearly, A(α) ⊃ A(β)

whenever α < β < ω1.
If f : R → R, then for every ordinal α, we define

Uα(f) df= int
(⋃

β<α Uβ(f) ∪ C
(
f�R \

⋃
β<α Uβ(f)

))
.

(Clearly Uα(f) ⊂ Uβ(f) for all ordinals α < β.) For each α < ω1, we denote

Sα
df=

{
f : R → R; Uα(f) = R

}
.
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Observe that, in particular, S1 is the class B∗∗
1 defined by R.J. Pawlak [7].

We say that f : R → R is a Baire one star function [6] if for each nonempty
closed set P ⊂ R, there is a nonempty portion P ′ df= P ∩ (a, b) of P such that
f�P ′ is continuous. We denote the family of all Baire one star functions by B∗

1.
Recall the following theorem proved by B. Kirchheim [3, Theorem 2.3].

Theorem 1. For every function f : R → R, the following are equivalent :

(i) f ∈ B∗
1;

(ii) for each a ∈ R, both f−1
(
(−∞, a]

)
and f−1

(
[a,∞)

)
are Fσ-sets.

The next lemma is easy to prove.

Lemma 2. Let U ⊂ R be an open set, f : R → R, and α < ω1. The following
conditions are equivalent :

(i) U ⊂ Uα(f);

(ii) the restriction f�U \
⋃

β<α Uβ(f) is continuous.

Now we can prove the first main result.

Theorem 3.
⋃

α<ω1
Sα = B∗

1.

Proof. First let f ∈ B∗
1, and suppose that Uα(f) 6= R for each α < ω1. Since

〈Uα(f); α < ω1〉 is an ascending transfinite sequence of open subsets of R,
there is an α < ω1 such that Uα(f) = Uα+1(f). (We use the Cantor–Baire
stationary principle; see, e.g., [4, Theorem 2, p. 146].) Then P

df= R \Uα(f) is
a nonempty closed set. So, by definition, there is an open interval (a, b) such
that P ′ df= P ∩ (a, b) 6= ∅, and f�P ′ is continuous. Since P ′ = (a, b) \ Uα(f),
by Lemma 2, we obtain (a, b) ⊂ Uα+1(f). Hence, P ′ ⊂ Uα+1(f) \ Uα(f) = ∅,
which is impossible.

Now let f ∈ Sα for some α < ω1. Fix an a ∈ R. We have

f−1
(
(−∞, a]

)
=

⋃
γ≤α

{
x ∈ Uγ(f) \

⋃
β<γUβ(f); f(x) ≤ a

}
=

⋃
γ≤α

Kγ ,

where
Kγ

df=
(
f�Uγ(f) \

⋃
β<γUβ(f)

)−1((−∞, a]
)
.

Let γ ≤ α. Put Vγ
df= Uγ(f) \

⋃
β<γ Uβ(f). Since f�Vγ is continuous, the

set Kγ is closed in Vγ . Let Fγ be a closed subset of R such that Kγ = Fγ ∩Vγ .
Then

f−1
(
(−∞, a]

)
=

⋃
γ≤α

(Fγ ∩ Vγ)
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is a countable union of Fσ-sets, and hence, it too is an Fσ set. Analogously,
we can show that f−1

(
[a,∞)

)
is an Fσ-set. By Theorem 1, f ∈ B∗

1.

Theorem 4. For each α < ω1, we have Sα \
⋃

β<α Sβ 6= ∅.

Proof. Let A ⊂ R be a countable, compact set such that A(α+1) = ∅ 6= A(α).
(See, e.g., [8, Exercise 2.5.15].) Let f be the characteristic function of the set⋃

β odd, β < ω1

(
A(β) \A(β+1)

)
.

One can easily verify that Uβ(f) = R \ A(β+1) for each ordinal β < ω1. So,
f ∈ Sα \

⋃
β<α Sβ .

Now we will investigate the sums of functions from the defined classes. We
will need the following theorem [5].

Theorem 5. Let 1 ≤ α < ω1. Then α can be uniquely written in the form

α = ωη0r0 + · · ·+ ωηnrn,

where r0, . . . , rn are finite nonzero ordinals, and 〈η0, . . . , ηn〉 is a decreasing
sequence of countable ordinals.

The notion of the natural addition was defined in 1906 by G. Hessenberg [2].
We define the natural addition for countable ordinals in the following way. If

α = ωξ0p0 + · · ·+ ωξkpk, β = ωξ0q0 + · · ·+ ωξkqk,

where ξ0 > · · · > ξk and p0, . . . , pk, q0, . . . , qk are finite (we allow zeros here),
then we define

α (+) β
df= ωξ0(p0 + q0) + · · ·+ ωξk(pk + qk).

Clearly, the natural addition is commutative.
The following lemma is quite trivial.

Lemma 6. Let α < α′ and β ≤ β′. Then α (+) β < α′ (+) β′.

Now we can prove the next main result.

Theorem 7. Let α, β < ω1, f ∈ Sα, and g ∈ Sβ. Then f + g ∈ Sα(+)β.
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Proof. For brevity, for each γ < ω1, we denote

Uγ
df= Uγ(f), Vγ

df= Uγ(g),

Ũγ
df= Uγ \

⋃
σ<γ

Uσ, Ṽγ
df= Vγ \

⋃
σ<γ

Vσ,

and
Wγ

df=
⋃

δ(+)ε=γ

(Uδ ∩ Vε) =
⋃

δ(+)ε=γ

⋃
µ≤δ,ν≤ε

(Ũµ ∩ Ṽν).

Notice that each set Wγ is open.
We will show by transfinite induction that for each γ < ω1,

Wγ ⊂ Uγ(f + g). (1)

Let γ < ω1 and assume that Wσ ⊂ Uσ(f + g) for each σ < γ. Clearly,
it suffices to show that Uδ ∩ Vε ⊂ Uγ(f + g) whenever δ (+) ε = γ. So, fix
δ, ε < ω1 with δ (+) ε = γ. First, we will show that

Uδ ∩ Vε \
⋃
σ<γ

Wσ = Ũδ ∩ Ṽε. (2)

Let x ∈ Ũδ ∩ Ṽε. Then clearly

x ∈ Uδ ∩ Vε =
⋃

µ≤δ,ν≤ε

(
Ũµ ∩ Ṽν

)
.

Suppose that x ∈ Wσ for some σ < γ. There exist µ′ ≤ δ′ and ν′ ≤ ε′ such
that µ′ (+) ν′ ≤ δ′ (+) ε′ = σ and x ∈ Ũµ′ ∩ Ṽν′ . Hence, Ũµ′ ∩ Ũδ 6= ∅ and
Ṽν′ ∩ Ṽε 6= ∅. Notice that the sequences

〈
Ũξ; ξ < ω1

〉
and

〈
Ṽξ; ξ < ω1

〉
consist

of pairwise disjoint sets. Thus, µ′ = δ and ν′ = ε, and consequently,

γ = δ (+) ε = µ′ (+) ν′ ≤ σ < γ,

which is impossible. It follows that x ∈ Uδ ∩ Vε \
⋃

σ<γ Wσ.
Now let x ∈ Uδ ∩ Vε \

⋃
σ<γ Wσ. Since x ∈ Uδ ∩ Vε, there exist µ ≤ δ and

ν ≤ ε such that x ∈ Ũµ ∩ Ṽν . If µ (+) ν < γ, then x ∈ Wµ(+)ν ⊂
⋃

σ<γ Wσ,
which is a contradiction. Thus, µ (+) ν ≥ γ. By Lemma 6, we have µ = δ and
ν = ε. It follows that x ∈ Ũδ ∩ Ṽε.

Now observe that by (2) and the induction assumption,

Uδ ∩ Vε \
⋃
σ<γ

Uσ(f + g) ⊂ Uδ ∩ Vε \
⋃
σ<γ

Wσ = Ũδ ∩ Ṽε.
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Since f�Ũδ and g�Ṽε are continuous, the functions

(f + g)�Ũδ ∩ Ṽε and (f + g)�Uδ ∩ Vε \
⋃
σ<γ

Uσ(f + g)

are continuous as well. Thus, Uδ∩Vε ⊂ Uγ(f +g) (cf. Lemma 2). It completes
the proof of (1).

By (1), we have, in particular,

Wα(+)β = R ⊂ Uα(+)β(f + g);

i.e., f + g ∈ Sα(+)β .

Proposition 8. Let α, β < ω1 and h ∈ Sα+β. There are f ∈ Sα and g ∈ Sβ

such that h = f + g.

Proof. By definition, the restriction ϕ
df= h�Uα(h)\

⋃
δ<α Uδ(h) is continuous.

Since Uα(h) \
⋃

δ<α Uδ(h) is a closed subspace of Uα(h), by Tietze Extension
Theorem, we can extend ϕ to a continuous function ϕ̃ : Uα(h) → R. (See,
e.g., [1].) Define

g(x) =

{
h(x) if x ∈ R \ Uα(h),
ϕ̃(x) if x ∈ Uα(h).

To prove g ∈ Sβ , it suffices to show that

Uα+σ(h) ⊂ Uσ(g) for each σ ≤ β.

(Recall that Uα+β(h) = R.) We proceed by transfinite induction.
Clearly, Uα+0(h) = Uα(h) ⊂ U0(g). So, let 0 < σ ≤ β and assume that

Uα+ν(h) ⊂ Uν(g) for each ν < σ. Recall that if α ≤ ξ < α +σ, then ξ = α + ν
for some ν < σ. So, since σ > 0, by induction assumption, we obtain

Uα+σ(h) \
⋃
ν<σ

Uν(g) ⊂ Uα+σ(h) \
⋃
ν<σ

Uα+ν(h)

⊂ Uα+σ(h) \
⋃

ξ<α+σ

Uξ(h) ⊂ R \ Uα(h).

Thus, the restriction

g�Uα+σ(h) \
⋃
ν<σ

Uν(g) = h�Uα+σ(h) \
⋃
ν<σ

Uν(g)

is continuous. By Lemma 2, we obtain Uα+σ(h) ⊂ Uσ(g). It follows that
g ∈ Sβ .
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Now define the function f : R → R by

f(x) df= h(x)− g(x) =

{
0 if x ∈ R \

⋃
δ<α Uδ(h),

(h− ϕ̃)(x) otherwise.

We will first show that

Uδ(h) ⊂ Uδ(f) for each δ < α. (3)

Let δ < α and assume that Uµ(h) ⊂ Uµ(f) for each µ < δ. Then by
induction assumption,

Uδ(h) \
⋃
µ<δ

Uµ(f) ⊂ Uδ(h) \
⋃
µ<δ

Uµ(h) ⊂ Uα(h).

So, the function

f�Uδ(h) \
⋃
µ<δ

Uµ(f) = (h− ϕ̃)�Uδ(h) \
⋃
µ<δ

Uµ(f)

is continuous, and by Lemma 2, we obtain Uδ(h) ⊂ Uδ(f).
Now observe that by (3), since the restriction f�R\

⋃
δ<α Uδ(f) is constant.

Hence, Uα(f) = R and f ∈ Sα. This completes the proof.

Using Proposition 8 several times, we obtain the following corollary.

Corollary 9. Let γ = ωη0r0 + · · ·+ ωηkrk, where r0, . . . , rk are finite nonzero
ordinals, and 〈η0, . . . , ηk〉 is a decreasing sequence of countable ordinals. Then
for each h ∈ Sγ , there are functions fi,j ∈ Sωηi , where i ∈ {0, . . . , k} and
j ∈ {1, . . . , ri}, such that h =

∑k
i=0

∑ri

j=1 fi,j.

Corollary 10. Let α, β < ω1 and h : R → R. The following are equivalent :

(i) h ∈ Sα(+)β,

(ii) there are functions f ∈ Sα and g ∈ Sβ such that h = f + g.

Proof. (i)⇒ (ii). Let h ∈ Sα(+)β . Write ordinals α and β in the form

α = ωξ0p0 + · · ·+ ωξkpk, β = ωξ0q0 + · · ·+ ωξkqk,

where ξ0 > · · · > ξk and p0, . . . , pk, q0, . . . , qk are finite. By Corollary 9, there
are functions fi,j ∈ Sωηi , where i ∈ {0, . . . , k} and j ∈ {1, . . . , pi + qi} such
that h =

∑k
i=0

∑pi+qi

j=1 fi,j . Put

f =
k∑

i=0

pi∑
j=1

fi,j , g =
k∑

i=0

qi∑
j=1

fi,pi+j .
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By Theorem 7, f ∈ Sα and g ∈ Sβ . Clearly, h = f + g.
The implication (ii)⇒ (i) follows by Theorem 7.
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