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FUNCTIONS

Abstract
Let (X,Tx) and (Y,Ty) be topological spaces and let (Z, pz) be a
metric space. In this article we characterize the sets of all continuity
points of symmetrically cliquish functions from X XY to Z and the sets
of continuity points of symmetrically quasicontinuous functions from R?
to R.

If (X,Tx) and (Y,Ty) are topological spaces and (Z, p) is a metric space,

then a function f: X x Y — Y is said to be:

1. quasicontinuous (resp. cliquish) at a point (z,y) € X x Y if for every

set U XV € Tx x Ty containing (z,y) and for each positive real i, there
are nonempty sets U’ € T'x contained in U and V' € Ty contained in V'
such that f(U' x V') C K(f(x,y),n) = {t € Z;p(t, f(x,y)) < n} (resp.
diam(f(U" x V")) = sup{p(f(t,t'), f(u,u’));t,u € U and t',u' € V'} <
n) (3, 4]);

. quasicontinuous at (z,y) with respect to = (alternatively y) if for every
set U XV € Tx x Ty containing (x,y) and for each positive real 7 there
are nonempty sets U’ € T'x contained in U and V'’ € Ty contained in V'
such that € U’ (alternatively y € V') and f(U' x V') C K(f(z,y),n)

(15]);

. cliquish at (z,y) with respect to = (alternatively y) if for every set U X
V € Tx x Ty containing (z,y) and for each positive real n there are
nonempty sets U’ € Tx contained in U and V' € Ty contained in V
such that « € U’ (alternatively y € V') and diam(f (U’ x V')) < n) ([1]);
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4. symmetrically quasicontinuous (resp. symmetrically cliquish) at (z,y) if
it is quasicontinuous (alternatively cliquish) at (z,y) with respect to
and with respect to y ([5, 1]).

It is obvious that if the set C'(f) of all continuity points of a function
f: X XY — Z is dense, then f is cliquish. Moreover if X x Y is a Baire
space, then f is cliquish if and only if C(f) is dense ([4]).

In the last observation the hypothesis that X x Y is a Baire space is
important. For example, if X =Y = Z = Q (Q denotes the set of all rationals)
and Tx = Ty is the topology generated by the natural metric p(z,y) = |z —y|
in R, then for each enumeration (r,) of all rationals such that r, # 7, for
n # m, the function f(r,,r,) = —= is symmetrically cliquish (and hence

nm

cliquish), but the set C(f) is empty.

Remark 1. Let f : X XY — Z be a function. If the vertical sections
(C(f))e ={v eY;(z,v) € C(f)}, x € X, (alternatively the horizontal sec-
tions (C(f))Y ={u e X;(u,y) € C(f)}, y€Y), are dense inY (resp. in X),
then f is cliquish with respect to = (alternatively with respect to y).

PRrROOF. Fix a point (x1,y1) € X XY, sets U € Tx and V € Ty with (z1,91) €
U x V and a real n > 0. Since the section (C(f))s, is dense, there is a point
y2 € Y with (z1,y2) € C(f). Consequently, there are sets U; € Tx and
V1 € Ty such that (z1,y2) € Uy x V3 C U x V and

FU Vi) € K((F(e1,32). 3).

So oscy, xv, f < %” < n and the proof of the cliquishness of f with respect to x
is completed. The proof of its cliquishness with respect to y is analogous. [

Corollary 1. Let f : X XY — Z be a function. If the vertical sections
(C(f))e, x € X, and the horizontal sections (C(f))Y, y € Y, are dense in Y
and respectively in X, then f is symmetrically cliquish.

Theorem 1. Suppose that (Y,Ty) (alternatively (X,Tx)) is a Baire space
and a function f: X XY — Z is cliquish with respect to x (alternatively with
respect to y). Then each section (C(f))z, x € X, (alternatively each section
(C(f))Y,yeY), is dense in Y (alternatively in X ).

PrOOF. For n > 1 let

1
U, ={(z,y) € X xY;o0scf < - at (z,y)}.
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The sets -
Un € Tx x Ty and C(f) = () Up.
n=1

Fix a point (z,y) € X XY, sets U € Tx and V € Ty with (z,y) € UxV and a
positive integer n. Since f is cliquish with respect to x, there are sets Uy € Tx
and V] € Ty such that x € U; C U, V4 C V and diam(f(U; x V1)) < % So
Vi C (Un). NV, and consequently the set (Up,), is dense in Y. The section
(Upn)z is open and dense in Y. Thus Y\ (U,,), is closed and nowhere dense in
Y. From this it follows that

oo

n=

is of the first category in Y. Since Y is a Baire space, the section (C(f))s is
dense in Y. The proof of the second part is analogous. O

The next assertion follows immediately from Theorem 1.

Corollary 2. Suppose that (Y, Ty) and (X,Tx) are Baire spaces and a func-
tion f: X XY — Z is symmetrically cliquish. Then the sections (C(f))a,
x € X, and the sections (C(f))Y, y €Y, are dense in'Y and resp. in X.

By a standard reasoning we can prove the following remark which we apply
in the proof of next theorem.

Remark 2. If a sequence of cliquish (quasicontinuous) with respect to x [al-
ternatively y] functions f, : X x Y — Z uniformly converges to a function f,
then f is also cliquish (quasicontinuous) with respect to x [alternatively y].

Theorem 2. Let A C X XY be an F,-set such that the sections A,, x € X,
(alternatively AY, y € Y,) are of the first category in Y (alternatively in X ).

Then there is a function f : X XY — R which is cliquish with respect to x
(alternatively to y) such that C(f) = (X xY)\ A.

PRrROOF. There are closed sets A, with A = J,, A, and A,, C A4 for n >
1. Since for n > 1, the sections ((X x Y) \ Ap)., x € X, (alternatively
(X xY)\ Ap)Y, y € Y,) are open, the sections (A,),, z € X, (alternatively
(A,)Y, y€Y,) and n=1,2,..., are closed and nowhere dense. Consequently,
the characteristic functions f,, = Xa, xxy are symmetrically cliquish with

respect to z (alternatively y). Let f = Y 7, 5—2 and forn > 1lets, =
[ g—’f Since for each n > 1 the sections (A,)., * € X, (alternatively

(A,)Y, y € Y,) are nowhere dense, the function s, is cliquish with respect to x
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(alternatively y). But the convergence of the series is uniform, so the function
f is cliquish with respect to « (alternatively y). Moreover from the equalities
C(sn) = (X xY)\ An, n > 1, we obtain C(f) = (X xY) \ A. O

In the same manner we can prove the following theorem.

Theorem 3. Let A C X XY be an F,-set such that the sections A,, v € X,
and AY, y €'Y, are of the first category in'Y and resp. in X. Then there is a
symmetrically cliquish function f: X xY — R such that C(f) = (X xY)\ A.

It is obvious (compare [2]) that if a function f : X x Y — Z is such that
the graph Gr(f[C(f) of the restricted function f[C(f) is dense in the graph
Gr(f), then f is quasicontinuous. The converse is also true.

Remark 3. If a function f : X XY — Z is quasicontinuous and the set C(f)
is dense in X XY, then the graph Gr(f|C(f) is dense in Gr(f).

Proor. Fix apoint (z,y, f(z,y)), where (z,y) € XxY,setsU € Tx, V € Ty
with (z,y) € U x V and a real > 0. From the quasicontinuity of f at (z,y)
it follows that there are nonempty sets U; € T'x and V; € Ty such that

Uy x Vi CU XV and f(UL x VA1) CK(f(x,y),g).

Since C(f) is dense in X x Y, there is a point (z1,31) € (U1 x V1) N C(f).
From the continuity of f at (x1,y1) it follows that there are sets Uy € T'x and
V5 € Ty such that

(z1,51) € Us x Vo C Uy x Vi and f(Us x Vo) C K(f(xhyl), g)

Us x Vo is a nonempty open set contained in U x V and f(Us x V3) C
K(f(z,y).n). u

There is, however, a symmetrically quasicontinuous function g with C(g) =
(). In a suitable example we apply the following remark, which may be proved
by a standard reasoning.

Remark 4. Let a function f: X XY — R be symmetrically quasicontinuous
at a point (x,y) and let g : X XY — R be continuous at (x,y). Then the sum
f 4+ g is symmetrically quasicontinuous at (x,y).

Example 1. In X =Y = Z = R we introduce the natural metric p and let

Fla.y) = meyyz for x,y >0
’ f(x,y) =0 otherwise on R2.
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Then f: R? — [0, 1] is a symmetrically quasicontinuous function and C(f) =
R2\ {(0,0)}. Let ((xn,¥n))n be an enumeration of all pairs of rationals such
that (xn,yn) # (Tm,Ym) for n # m. Observe that for each positive integer n
the function

f(x*xnayfyn)
2n

gn(z,y) = for (z,y) € R?,

is symmetrically quasicontinuous on R? and C(g,) = R? \ {(zpn,yn)}. Let
g:Q x @ — R be defined by

n=1

For each positive integer k we have

oo

g@y) = > gn(z.y) + gr(z.y).
k#n=1

So g is the sum of a continuous function at the point (xj,yx) and the sym-
metrically quasicontinuous function g, which is not discontinuous at (zx,yx)-
Consequently, by Remark 4, the function ¢ is symmetrically quasicontinuous

on @ x Q and C(g) = 0.

Theorem 4. Let f : X XY — Z be a function. If the graphs of the restric-
tions of the wvertical sections f[C(f)z, x € X, (alternatively the graphs of
the restrictions of the horizontal sections fY1C(f)Y, y € Y), are dense in the
graphs of these sections f, (alternatively f¥), then f is quasicontinuous with
respect to x (alternatively with respect to y).

ProOF. Fix a point (z1,y1) € X XY, setsU € Tx and V € Ty with (x1,y1) €
UxV and areal n > 0. Since the graph Gr(fz, [((C(f))s,) is dense in Gr(fy,),
there is a point

A

y2 € Y with (z1,y2) € C(f) and p(f(z1,92), f(z1,91)) < 5

By the continuity of f at (z1,y2), there are sets U; € Tx and V; € Ty such
that (z1,12) € Uy x Vi C U x V and f(Uy x Vi) C K((f(%1,¥2), ). Observe
that f(U; x V1) € K(f(x1,y1),n) and the proof of the quasicontinuity of f
with respect to x is completed. The proof of its quasicontinuity with respect

to y is analogous. O

The next assertion follows immediately from Theorem 4.
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Corollary 3. Let f : X XY — Z be a function. If the graphs of the restrictions
fo1C(f)z, ® € X, are dense in Gr(f.) and the graphs of the restrictions
fUIC(f)Y, y € Y, are dense in the graphs Gr(fY), then f is symmetrically
quasicontinuous.

Theorem 5. Suppose that (Y, Ty) (alternatively (X,Tx)) is a Baire space and
a function f: X XY — Z is quasicontinuous with respect to x (alternatively
with respect to y). Then the graphs Gr(f|C(f)z), x € X, (alternatively the
graphs Gr(fYIC(f)¥), y € Y ), are dense in Gr(fy) (alternatively in Gr(fY)).

PROOF. Fix a point (z,y) € X x Y, sets U € Tx and V € Ty with (z,y) €
U x V and a real n > 0. Since f is quasicontinuous with respect to z, there
are sets Uy € T'x and Vi € Ty such that

zeU cU VicVand f({U xW)) C K(f(z,y),1).

By Theorem 1 the section (C(f)), is dense in Y, so there is a point v € V3
with (z,v) € C(f). Since fy(v) = f(z,v) € K(f(z,y),n), the proof of the
first part is completed. The proof of the second part is analogous. O

The next Corollary follows immediately from Theorem 5.

Corollary 4. Suppose that (Y, Ty) and (X,Tx) are Baire spaces and a func-
tion f : X XY — Z is symmetrically quasicontinuous. Then the graphs of
the restrictions f,[C(f)z, v € X, are dense in the graphs of these sections f,
and the graphs of the restrictions fYIC(f)Y, y € Y, are dense in the graphs
of these sections fY.

Since every symmetrically quasicontinuous function f : X x Y — Z is
symmetrically cliquish, the set D(f) = (X x Y) \ C(f) is an F,-set with of
the first category horizontal and vertical sections (D(f))Y and (D(f))z, y €Y
and resp. = € X.

Theorem 6. Suppose that X =Y = Z =R, p(z,y) = |z —y| forx,y € R and
that Tx = Ty is the natural topology generated by p. If A C R? is an F,-set
whose horizontal and vertical sections AY and A, x,y € R, are of the first

category, then there is a symmetrically quasicontinuous function f : R? — R
such that C(f) = R?\ A.

PROOF. Since A is an F,-set, there are nonempty compact sets A,, such that

A:UAn and A, C A,y forn > 1.
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Without loss of the generality we can assume that A, 1 \ A, # 0 for n > 1.
Since every set A,, C A, the sections (A,), and (A,)Y, z,y € R, are nowhere
dense in R. Now we will construct by induction a sequence of functions (f;,).

For this for a point ¢ = (¢1,c2) € R? and a real » > 0 denote by Sqr (c,r)
the closed square [¢c; — 7, ¢1 + 7] X [ca — r,co + 7).

Step 1. Let By C A; be a countable set dense in A;. Without loss of the
generality we can assume that Bj is an infinite set. Enumerate all points of
By in a sequence (by,,). Since A; is a nowhere dense set, for each point by ,
n > 1, there are a sequence of different points ¢y 1 € R?\ A and a sequence
of pairwise disjoint closed squares It . = Sqr (¢i,n,k, "1,n,5), k£ > 1, such that

(1.1) for each m > 1 the limit limg_ o0 €10,k = b1 n;
(1.2) if (n1, k1) # (na, ko), then It pny gy N1y ke = 0;
(1.
(

)
)

3) Iinp NApyr =0 for k> 1;
1.4)

for all n,k > 1 and @ € Iy ., dist(z, A1) = inf{|z —y|;y € 41} < L.

Now for all positive integers n,k > 1 we find a real ¢1, 5 € (0,71,5,%) and
denote by Jy ,, k the closed square Sqr (¢1,pnk,t1,n,k). For n,k > 1 let fi 5 :
I n.x — [0,1] be a continuous function such that

Jink(cing) =1 and fi,x(2,y) =0 for (z,y) € Iink \ J1n.ks

and let
f n,k\Ts Y for T,y €l Lk ’I’L,k >1
fulw,y) = | frmalw) for (@9) € Lo,
0 otherwise on R-.

Observe that C(f;) = R?\ A;. We will prove that f; is symmetrically qua-
sicontinuous. Obviously, it is symmetrically quasicontinuous at all points
(x,y) € O(f1) = R?\ A;. Fix a point t = (z,y) € Ay, areal n > 0
and open intervals I, J such that (z,y) € I x J. If there is a pair (ng, k1)
such that {(z,v);v € J} NI,k # 0, then there is a point yo € J with
(%, y2) € Iy ky \ 1.6, and consequently there are open intervals I; C [
and J; C J such that « € I; and fi(I; x Jy) = {0}. If such a pair (n1, k1)
does not exist, then for each point v € J \ (A1), the point (z,v) € C(f1) and
consequently, there are open intervals Iy C I and J; C J such that z € I
and fi(I, x Jy) = {0}. Since f1(t) = fi(z,y) = 0, we obtain that f; is qua-
sicontinuous at t with respect to . In the same way we can prove that f; is
quasicontinuous at ¢ with respect to y. So f1 is symmetrically quasicontinuous.

Step m (m > 2). Let B,, C A, \ An_1 be a countable set dense in
A\ Apm—1. Without loss of the generality we can assume that B,, is an infinite
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set. Enumerate all points of B,, in a sequence (b, ) such that by, n, # bimony
for ny # ng. Since the sections (A,,), and (A,,)Y, x,y € R, are nowhere
dense sets, for each point b, ,,, n > 1, there are a sequence of different points
Cmonk € R?\ A and a sequence of pairwise disjoint closed squares

Ik = Sar (Cmon ks Tmonk), k> 1,
such that
m.1) for each n > 1 the limit limy_,o0 Comon.k = bmon;
2) if (n1, k1) # (ne, ko), then I ny ky N Imong ke = 05
3) ifby, € RQ\UKW k1 Lok then Iy g C RQ\(AmUUKW k1 Ligk);
m.4) if by, ,, € I; j; for some ¢ < m and j,1 > 1, then Ip, » 1 C I; ;15
5)
6)

Im,n,k n Am+n+k = for nk>1;

1
m—+n "’

forall n,k > 1 and x € I, .k dist(z, A,,) = inf{lz—y|;y € A1} <

Now for all positive integers n,k > 1 we find a real sy, nk € (0,7mn%) and
denote by Jy, 1, 1 the closed square Sqr (¢, n ks Smonk). Forn,k > 1let fo, np
Iy — [0,1] be a continuous function such that

fm,n,k(cm,n,k) =1 and fm,n,k(x7y) =0 for (%y) € Im,n,k: \ Jm,n,k-

Moreover let

fm,n,k(may) for S Im,n,k» n, k Z 1
fm($7 y) = . 2
0 otherwise on R-.
In the same manner as in the case of f; we can prove that C(f;) = R\ cl(4;\
Aj_1) and that f; are symmetrically quasicontinuous everywhere on R2. Let

30:0andsj22§forje{l,?,...,m}.

i<j

Observe that if (z,y) ¢ A,,, then the functions f;, i < m, are continuous at
(x,y), and consequently s,, is also continuous at (z,y). So, R2\ A,, C C(s,,).
If (x,y) € A,,, then either (z,y) € A; or there is a positive integer k < m

such that (z,y) € Ags1 \ Ag. If (z,y) € Ay, then sy (z,y) = fi(z,y) =0

fi(uv) _ 1
) 2 - 2

and Imsup(,, ) (z,y) Sm(U;v) = Imsup(, ,)— and s, is not

continuous at (z,y).
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If there is a positive integer k < m with (x,y) € Agy1 \ Ak, then put
h = sm — s, and observe that sy is continuous at (z,y). Similarly as above
we can prove that h(z,y) = 0 and limsup, ,)_ (4, M(u,v) > 0. So h is not
continuous at (x,y). Since s, = si + h, the sum s,, is not continuous at (z,y)
and C(s,,) = R?\ A,,.

Now we will prove that the sum s, is symmetrically quasicontinuous. Ev-
idently it is symmetrically quasicontinuous at all points of the set C(s,,) =
R2\ A,,. Let (x,y) € A,,. Since the function s; = % is symmetrically qua-
sicontinuous, for the proof that s,, is symmetrically quasicontinuous at (z,y)
(we will write s, € Sqc (z,y)) it suffices to show that for k& < m the implica-
tion s € Sqc (z,y) = sk+1 € Sqc (z,y). So fix a positive integer k < m and
assume that s is symmetrically quasicontinuous at (x,y). Let j < m be the
first integer such that (z,y) € A;. If j > k, then (z,y) € R?\ Ay = C(s;) and
Sg+1 1s symmetrically quasicontinuous at (z,y) as the sum of the symmetri-
cally quasicontinuous at (z,y) function fr41 and continuous at this point s.
Thus we can assume that j < k. The function s;_; is continuous at (z,y)
and g;(z,y) = 0. If for each integer [ € {j + 1,5+ 2,...,k + 1} the point
(x,y) ¢ cl(A; \ A;—1), then the functions f;, j <1 < k+ 1, are continuous at
(z,y), and consequently sp1 =3, ;< fi + f; is symmetrically quasicon-
tinuous at (z,y) as the sum of symmetrically quasicontinuous function f; and
a continuous function at this point (z,y). Now consider the case, where the
family A of all integers I such that j <! < k+ 1 and (z,y) € cl(4; \ A1)
is nonempty. Then for ¢ < j and for j < i ¢ A the functions f; are contin-
uous at (x,y). Let ¢ = >, 4 g— and let h = si11 — 1. The function h is
continuous at (z,y) and ¥ (z,y) = 0. Let U and V be open intervals such that
(z,y) € U x V. Since open intervals cannot be countable unions of pairwise
disjoint closed sets ([6]), there is an open interval J C V' \ (Ag41), such that
({z} x J) C »~=10) N C(¢)). Consequently the function 1 is quasicontinuous
at (x,y) with respect to x. Similarly we can prove that v is quasicontinuous
at (z,y) with respect to y. Since ¢ is symmetrically quasicontinuous at (x,y)
and h is continuous at (x,y), the sum sxy; = h + ¢ is also symmetrically
quasicontinuous at (z,y). This proves that the function f = Y >°_, gm as
the limit of a uniformly convergent sequence of symmetrically quasicontinu-
ous functions s, is symmetrically quasicontinuous. Moreover C(f) = R?\ A
and the proof is completed. O

Example 2. Let X =Y =7 =R, let
Tx =Ty ={0} U{R\ 4; A is finite},

and let T, = T, be the natural topology in R. Then each quasicontinuous
(hence also symmetrically quasicontinuous) function f: (X x Y, Tx x Ty) —
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(Z,Tz) is constant. In fact, if a quasicontinuous function f : R? — R is not
constant, then there are different points (z1,y1) and (z2, y2) with f(x1,y1) #
f(za,ys2). Let

_ |f(z1,91) — f(72,92)]

= 5 .
Since f is quasicontinuous, there are nonempty sets Uy, Us, Vi, Vo € Tx =Ty
such that

f(Ur x V1) C (f(z1,91) —n, f(#1,91) + 1) and
f(UQ X ‘/'2) C (f 332>y2) —777f(3317y1) +77)
Obviously there is a point (u,v) € (Uy x V1) N (Us x Va). Thus,
2 = |f(z1, 1) — f(@2,p2)| < [f(21,01) — flw,0)] + [ f(w,v) = f(22,92)]
<n+n=2n,

and the obtained contradiction shows that f is constant (so and continuous).

Thus if A C X xY is a nonempty F,-set with of the first category sections
A, and AY, z,y € R (for example a nonempty finite set), then each symmet-
rically quasicontinuous function f : X x Y — Z is continuous at all points of

A.
Example 2 shows that an analogy of Theorem 6 in arbitrary topological

spaces (X, Tx) and (Y, Ty) is not true.

References

[1] Z. Grande, Some observations on the symmetrical quasicontinuity of Pi-

otrowski and Vallin, Real Anal. Exch., 31, No. 1 (2005-2006), 309-314.

[2] Z. Grande, T. Natkaniec, Lattices generated by T -quasicontinuous func-
tions, Bull. Polish Acad., Sci. Math., 34, No. 9-10 (1986), 525-530.

[3] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math., 19 (1932),
184-197.

[4] T. Neubrunn, Quasi-continuity, Real Anal. Exch., 14, No. 2 (1988-89),
259-306.

[5] Z. Piotrowski and R. W. Vallin, Conditions which imply continuity, Real
Anal. Exch., 29 No. 1 (2003-2004), 211-217.

[6] W. Sierpiniski, Sur une propriété des ensembles F,-linéaires, Fund. Math.,
14 (1929), 216-220.



