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I-95125 Catania, Italy. email: ursino@dmi.unict.it

ON A GENERALIZED NOTION OF
DIFFERENTIABILITY

Abstract

We discuss and compare some generalized types of continuity and
differentiability. In particular, we focus on a notion of differentiability
based on an integral average, and we establish a link with an approxi-
mation procedure by polynomials.

1 Introduction.

The purpose of a limiting procedure is to provide an approximation of a func-
tion in a neighborhood of a given point. In the present article, we consider
three different generalized notions of limit for a Lebesgue measurable function
f : R → R at a point x ∈ R, denoted by C-limit, M -limit (or approximate
limit) and L-limit, respectively (see §2). In fact, all of these notions apply,
rather than to f , to the entire equivalence class of f (with respect to the equiv-
alence relation of equality almost everywhere), since they are immediately seen
to be independent of the choice of the particular representative.

The kind of approximation provided by these limits is quite different. For
the C-limit (see [9]), the portion of the neighborhood of x where f is far away
from the desired limiting value `0 ∈ R has zero measure, provided that the
neighborhood is small enough, while for the M -limit (widely studied in the
literature, see [4, 5, 8]), the measure of this set may not be zero, but it tends
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to become irrelevant as the neighborhood shrinks to x. In either case, f is
considered close to the limit `0 when the measure of the “bad” set is small.
On the contrary, f has L-limit (see [3]) equal to `0 if its integral average about
x is close to `0. Hence, from the point of view of the measure, f might be
always away from `0, and still behave as a constant function (equal to `0) in
a neighborhood of x, with respect to the integral. An enlightening example
is provided by the function f(t) = sin(1/t), which, although is very often far
away from zero, satisfies

lim
h→0

1
h

∫ h

0

sin
1
t

dt = 0.

Here, the cancellations play a fundamental role, since t = 0 is not a Lebesgue
point for f , and it is quite easy to verify that

lim
h→0

1
h

∫ h

0

∣∣∣ sin 1
t

∣∣∣ dt =
2
π
.

As we will see, some implications occur among the above-mentioned lim-
its. In particular, the existence of the C-limit ensures the existence of the
other ones. Besides, if f is essentially bounded in a neighborhood of x, then
the existence of the M -limit at x implies the existence of the L-limit at x.
Nonetheless, these two notions are not, in general, an extension of each other.
Indeed, Example 2.3 below shows that a function may possess different M -
and L-limits at x. Therefore, it is somehow a philosophical choice to decide
which of the two limits better reflects the behavior of f in a neighborhood
of x. For instance, from the physical viewpoint the notion of L-limit is cer-
tainly more interesting. Indeed, if f represents, say, a mass density, then the
effective way to measure the mass is to use the integral. In this sense, the
local behavior of f is not so important, whereas what one really measures is
its average. Hence, the L-limit is more suitable to detect small oscillations,
which are hidden using different approximation procedures, such as limits in
L1 (see [7], §B.43).

If we agree that the L-limit is an effective way to measure the behavior of
f at a given point x, we can deepen our analysis. A natural development (see
§3 and §4) is to look not just for a limit value `0, but rather for a polynomial
of order n in t of the form

T f
n (x; t) =

n∑
k=0

`k
k!

(t− x)k (1.1)

such that the integral average of f − T f
n (x) about x is a zero of order n, with

respect to the measure of the interval of integration. This leads quite naturally
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to the concept of L-derivative of order n at the point x. In this respect, T f
n (x)

can be viewed as a sort of Taylor sum of order n for the function f at the
point x.

Quite surprisingly, the existence of such a T f
n (x); that is, the L-differenti-

ability of f of order n at x, is related to a least square approximation procedure.
Indeed, in §5, we construct on each interval [x, y] a polynomial P x,y

n f of order
n, which, if f is locally square summable, realizes the minimum L2-distance
between f and the subspace of polynomials of order n on [x, y]. Then, setting
for x ∈ R

Pf
n(x; t) =

{
P x,t

n f(t) if t > x,

P t,x
n f(t) if t < x,

we prove the following result (see §6).

Theorem 1.1. Let f be n-times L-differentiable at x ∈ R. Then Pf
n(x; t) is

defined by continuity at t = x, and

T f
n (x; t) = Pf

n(x; t) + o(|t− x|n),

for every t ∈ R.

Finally, using a suitable basis {Gx,y
n } of orthogonal polynomials in L2(x, y),

we write

P x,y
n f(t) =

n∑
k=0

βf
k (x, y)Gx,y

k (t), t ∈ [x, y].

Then, the limiting values of the coefficients βf
k (x, y) happen to be related to

the successive L-derivatives of f . Precisely, we prove the following theorem
(see §7).

Theorem 1.2. The following are equivalent:

(i) f is n-times L-differentiable at x ∈ R.

(ii) There exist `0, . . . , `n ∈ R such that

lim
h→0+

βf
k (x, x+ h) = lim

h→0+
βf

k (x− h, x) =
`k
k!
,

for all k = 0, . . . , n.

In that case, (1.1) holds.

The proofs of the above theorems lean on some combinatorial identities.
In particular, the second theorem is based on a quite general Tauberian result
(see Theorem 7.1 below).



100 S. D’Asero, V. Pata, P. Ursino

2 Some Generalized Notions of Continuity.

We begin to establish and compare some different notions of limit at a given
point x ∈ R for a Lebesgue measurable function f : R → R (cf. [3, 4, 5, 8, 9]).

Definition 2.1. Let `0 ∈ R.

(i) f has C-limit equal to `0 at x if for every ε > 0 there exists δ > 0 such
that

λ
(
[x− δ, x+ δ] ∩

{
t : |f(t)− `0| > ε

})
= 0,

λ being Lebesgue measure.

(ii) f has M -limit (or approximate limit) equal to `0 at x if for every ε > 0
the set

{
t : |f(t)− `0| > ε

}
has zero Lebesgue density at x.

(iii) f has L-limit equal to `0 at x if limh→0
1
h

∫ x+h

x
f(t) dt = `0.

It is understood that (iii) requires that f is Lebesgue integrable in a neighbor-
hood of x. Analogous definitions can be given for limits from the right and
from the left. The function f is (C-, M - and L-, respectively) continuous at
x if f(x) is equal to the (appropriate) limit as t→ x.

Remark 2.2. It is apparent that the above limits are independent of the the
choice of the particular representative f in the same equivalence class (the
equivalence relation is obviously equality almost everywhere with respect to
λ).

If we denote by Cf (Mf , Lf) the function obtained replacing f(t) with
its C-limit (M -limit, L-limit) whenever it exists, we obtain a function in the
same equivalence class which is C-continuous (M -continuous, L-continuous)
at all points where the limit exists (see [9]). Hence, in the sequel we will not
make distinctions between continuity and having a limit at a point. In this
respect, our approach differs from the one usually adopted in the literature
(see e.g. [3, 4, 5, 8]), where the notions of M -continuity and L-continuity are
given just for a single function (and indeed, `0 is replaced by f(x)), rather
than for the equivalence class. On the other hand, in light of Remark 2.2, we
think that our point of view is more effective and better reflects the nature of
the limits under consideration.

We now dwell on the relationships among the three definitions. Clearly,
notion (i) is the strongest, and implies (ii) and (iii). It is not hard to see
that Cf might not be continuous in the usual sense at a point of C-continuity.
Nonetheless, as shown in [9], there exists a function Bcf (the “best continuous
function”), equal to f almost everywhere, whose continuity points are exactly
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the points of C-continuity, whereas it is clear that no function in the same
equivalence class of f can be continuous at a point where the f is not C-
continuous. The choice of function Bcf may have some degrees of arbitrariness
(see the following Example 3.4).

Let us examine in more detail the mutual implications between (ii) and
(iii). The following two facts are well known (see [4, 5, 8]).

- If f is essentially bounded in a neighborhood of x, then (ii) implies that
x is a Lebesgue point for f ; i.e.,

lim
h→0

1
h

∫ x+h

x

|f(t)− `0|dt = 0,

so that, in particular, (iii) holds.

- Conversely, if x is a Lebesgue point for f , then f is M -continuous at x.

However, the implication (ii)⇒ (iii) is in general false without the boundedness
of f . An example in such sense is provided by the function (see [8])

f(t) =

{
2n if 1

2n − 1
22n+1 ≤ t ≤ 1

2n , n ∈ N = {0, 1, 2, . . .},
0 otherwise,

which is M -continuous at 0, with Mf(0) = 0, but not L-continuous. The
situation can be even worse, since it is possible to construct measurable func-
tions which are nowhere locally summable, and thus nowhere L-continuous.
On the other hand, a classical result (see e.g. [4], Theorem 2.9.13) ensures
that any measurable function is M -continuous almost everywhere. The re-
verse implication (iii) ⇒ (ii) may also fail, even if f is essentially bounded in
a neighborhood of x. For instance, let A be a set which has Lebesgue density
1/2 at x, and let

f(t) = χA(t)− χAC (t).

Then L-limt→x f(t) = 0, but f has noM -limit at x (nor x is a Lebesgue point).
A more familiar example, recalled in the introduction, is given by the function
f(t) = sin(1/t), which is easily verified to be everywhere L-continuous, but has
no M -limit at t = 0. But perhaps the most peculiar fact is that (ii) and (iii)
may hold simultaneously for different values `0. Indeed, in the next example
we exhibit a function that possesses both a right M -limit and a right L-limit
at t = 0, but the values of the limits do not coincide. Obviously, the same can
be done with (left) limits. Just notice that this singular feature would have
been somehow hidden if we restricted ourselves to consider the continuity of
a single function rather than the one of the whole equivalence class.
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Example 2.3. For every integer n ≥ 1, call In =
(

1
n ,

1
n + 1

2n ] and define

f(t) =

{
2n

n(n+1) if t ∈ In,
0 otherwise.

Note that, for every n ≥ 1,∫ 1
n

0

f(t) dt =
∞∑

j=n+1

∫
Ij

f(t) dt =
∞∑

j=n+1

1
j(j + 1)

=
1

n+ 1
,

and

λ
([

0, 1
n

]
∩
{
t : f(t) > 0

})
=

∞∑
j=n+1

1
2j

=
1
2n
.

Fix h ∈ (0, 1]. Then h ∈
(

1
n+1 ,

1
n

]
for some n ≥ 1. Hence,

n

n+ 2
= n

∫ 1
n+1

0

f(t) dt ≤ 1
h

∫ h

0

f(t) dt ≤ (n+ 1)
∫ 1

n

0

f(t) dt = 1,

and

λ
(
[0, h] ∩

{
t : f(t) > 0

})
h

≤ (n+ 1)λ
(
[0, 1

n

]
∩
{
t : f(t) > 0

})
=
n+ 1
2n

.

Since n → ∞ as h → 0+, from the last two inequalities we conclude that, at
zero, f possesses right L-limit equal to 1 and right M -limit equal to 0.

3 Generalized Derivatives.

In the same spirit of the previous section, we provide different generalized
notions of differentiability.

Definition 3.1. Let `1 ∈ R.

(i) f has C-derivative equal to `1 at x if, for some `0 ∈ R and every ε > 0,
there exists δ > 0 such that

λ
(
[x− δ, x+ δ] ∩

{
t :
∣∣∣f(t)− `0
t− x

− `1

∣∣∣ > ε
})

= 0.

(ii) f has M -derivative (or approximate derivative) equal to `1 at x if, for
some `0 ∈ R and every ε > 0, the set{

t :
∣∣∣f(t)− `0
t− x

− `1

∣∣∣ > ε
}

has zero Lebesgue density at x.
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(iii) f has L-derivative equal to `1 at x if, for some `0 ∈ R,

lim
h→0

1
h2

∫ x+h

x

[
f(t)− `0 − `1(t− x)

]
dt = 0.

The number `1 is the (C-, M - and L-, respectively) derivative of f at x, and
we write `1 = C ′f(x), `1 = M ′f(x) and `1 = L′f(x) in the three cases.

Analogous definitions hold for right and left derivatives. It is straightfor-
ward to prove the following corollary.

Corollary 3.2. Assume that f has C- (M -, L-) right (left) derivative `1 at
x. Then f has C- (M -, L-) right (left) limit `0 at x, where `0 is the value
occurring in the above formulae.

Remark 3.3. It is worth observing that, assuming that the ratio

r(t) =
f(t)− `0
t− x

is summable, f has L-derivative `1 at x if and only if r has L-limit `1 at x.
Indeed, it is immediate to see that if r has L-limit at x then f has L-limit
equal to `0 at x. Then, upon setting

ψ(h) =
1
h2

∫ x+h

x

[
f(t)− `0 − `1(t− x)

]
dt and ϕ(h) =

1
h

∫ x+h

x

[
r(t)− `1

]
dt,

integration by parts yields the relations

ψ(h) = ϕ(h)− 1
h2

∫ h

0

tϕ(t) dt and ϕ(h) = ψ(h) +
1
h

∫ h

0

ψ(t) dt.

Hence, ψ(h) → 0 if and only if ϕ(h) → 0, as h→ 0.

The picture here is similar to the one we have seen just before. The stronger
condition (i) implies both (ii) and (iii), and it amounts to saying that there
is a function equivalent to f which is differentiable at x in the usual sense.
As in the case of continuity, it is possible to construct the “best differentiable
function” Bdf . Again, Bdf is not uniquely defined, and it may differ from a
particular choice of Bcf .

Example 3.4. Write R = A ∪ B ∪ N , where A and B are sets of Lebesgue
density 1/2 at 0, and N is a countable set with 0 as cluster point. Define

f(t) =


t2 if t ∈ A,
0 if t ∈ B,√
|t| if t ∈ N.
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Then, a possible choice of Bcf is just f , which is not differentiable at 0. To
obtain Bdf one must alter f on N , say to Bdf(t) = 0 for t ∈ N , for instance.

As should be expected after Remark 3.3, neither the implication (iii) ⇒
(ii) nor its converse remain valid in general as illustrated by the following two
examples.

Example 3.5. Let

f(t) =

{
1 if 1

2n − 1
22n+1 ≤ t ≤ 1

2n , n ∈ N,
0 otherwise.

Then M ′f(0) = 0, but f is not L-differentiable at 0.

Example 3.6. Let f : R → R be constructed in the following way. For all
n ∈ N, divide each interval [ 1

2n ,
1

2n−1 ] into 4n subintervals Inj of equal length
8−n, and define

f(t) =


1 if t ∈ Inj with j even,
−1 if t ∈ Inj with j odd,
0 otherwise.

Then L′f(0) = 0, but f is not M -differentiable at 0.

On the other hand, as a consequence of Remark 3.3 and the implications
between the M -limit and the L-limit discussed in the previous section, we have
the following proposition.

Proposition 3.7. Let f be M -differentiable at x. If the ratio

r(t) =
f(t)−Mf(x)

t− x

is essentially bounded in a neighborhood of x, then f is L-differentiable at x,
and we have the equality M ′f(x) = L′f(x). The analogous statements hold
for right and left derivatives.

Remark 3.8. In fact, in the hypotheses of the above proposition, a stronger
conclusion holds true. Namely, f is L1-differentiable at x in the sense of
Calderón-Zygmund [1]; that is,

lim
h→0

1
h2

∫ x+h

x

|f(t)−Mf(x)−M ′f(x)(t− x)|dt = 0.

Let us prove this fact for the right derivative. Set M+f(x) = `0 and M ′
+f(x) =

`1, and assume there exists k > 0 such that the function r is essentially
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bounded by a positive constant K in the interval [x, x+ k]. Select ε > 0, and
put E =

{
t : |r(t) − `1| > ε

}
. Then, introduce the sets Ah = [x, x + h] ∩ E

and Bh = [x, x+ h] ∩ EC . Hence, for 0 < h ≤ k, we have

1
h2

∫ x+h

x

|f(t)− `0 − `1(t− x)|dt ≤ 1
h

∫
Ah

|r(t)− `1|dt+
1
h

∫
Bh

|r(t)− `1|dt

≤ (K + |`1|)
λ(Ah)
h

+ ε.

Since we know that limh→0+ λ(Ah)/h = 0 and ε > 0 is arbitrary, taking the
limit h→ 0+ we get the claim.

4 Successive L-Derivatives.

We concentrate hereafter on the concept of L-derivative. Firstly, we define the
L-derivative of order n.

Definition 4.1. A function f ∈ L1
loc(R) is n-times L-differentiable at x ∈ R

if there exist `0, `1, . . . , `n ∈ R such that

lim
h→0

1
hn+1

∫ x+h

x

[
f(t)−

n∑
k=0

`k
k!

(t− x)k
]
dt = 0.

The number `k is the kth L-derivative of f at x, and we write `k = L(k)f(x).
It is readily seen that if such numbers `k exist, then they are unique.

Indeed, it is clear from the definition that if f is n-times L-differentiable
at x, then it is, in particular, k-times L-differentiable at x for all k ≤ n. Note
that the construction of the nth L-derivative of f at x does not require the
knowledge (nor the existence) of the L-derivatives of f of order k (for k < n)
in a neighborhood of x.

Analogous definitions hold for the right derivative L(k)
+ f(x) and the left

derivative L(k)
− f(x).

Definition 4.2. The generalized Taylor sum of order n relative to f centered
at x is the polynomial of order n in the variable t given by

T f
n (x; t) =

n∑
k=0

L(k)f(x)
k!

(t− x)k
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Directly from the definition, the nth L-derivative of f at x can be computed
(once the preceding L-derivatives at x are known) by the simple formula

L(n)f(x) = lim
h→0

(n+ 1)!
hn+1

∫ x+h

x

[
f(t)− T f

n−1(x; t)
]
dt.

Notation.

We agree to denote by Ln[x] (Ln
+[x] and Ln

−[x], respectively) the subset of
L1

loc(R) of functions which have L-derivatives (right L-derivative and left L-
derivative, respectively) at x up to order n.

5 Best Approximating Polynomials.

We assume for the moment that f ∈ L2
loc(R) and we construct a family of

approximating polynomials on the finite intervals of the real line. Precisely,
given x < y, we consider the projection operator P x,y

n : L2(x, y) → L2(x, y)
onto the subspace of L2(x, y) consisting of polynomials of order n. Thus, P x,y

n f
is uniquely defined by the relation

‖f − P x,y
n f‖L2(x,y) = min

p
‖f − p‖L2(x,y),

where the minimum is taken over all the polynomials p of degree less than or
equal to n.

Definition 5.1. We agree to call P x,y
n f the best approximating polynomial of

order n on the interval [x, y].

In order to compute P x,y
n f , it is convenient to consider the orthogonal basis

in L2(x, y) formed by the generalized Legendre polynomials (cf. the classical
treatise [10], or see [11] for a more concise exposition)

Gx,y
n (t) =

(n!)2

(2n)!

bn
2 c∑

i=0

(−1)i (2n− 2i)!
i!(n− i)!(n− 2i)!

(y − x

2

)2i(
t− y + x

2

)n−2i

, (5.1)

for n ∈ N, where b · c denotes the floor function. This normalization choice
entails the equality

Gx,y
n (y) =

(n!)2

(2n)!
(y − x)n. (5.2)
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The Gx,y
n are obtained by rescaling the Legendre polynomials (which are de-

fined on [−1, 1]) on the interval [x, y], and they satisfy the normalization con-
dition

‖Gx,y
n ‖2

L2(x,y) =
(n!)4

(2n+ 1)!(2n)!
(y − x)2n+1. (5.3)

Therefore,

P x,y
n f(t) =

n∑
k=0

βf
k (x, y)Gx,y

k (t),

where

βf
k (x, y) =

〈Gx,y
k , f〉L2(x,y)

‖Gx,y
k ‖2

L2(x,y)

. (5.4)

We now note that (5.4) makes sense even if we assume f ∈ L1
loc(R), provided

that we correctly interpret 〈Gx,y
k , f〉L2(x,y) as

∫ y

x
Gx,y

k (t)f(t) dt. Hence, we can
construct the polynomial P x,y

n f for f ∈ L1
loc(R) as well, and, with abuse of

notation, we keep referring to it as the best approximating polynomial.
The next step is to derive an explicit representation of the coefficient

βf
k (x, y). Setting

Γx,y
l [f ] =


∫ y

x

f(t) dt if l = 0,∫ y

x

∫ t0

x

· · ·
∫ tl−1

x

f(tl) dtl · · · dt0 if l > 0,

we have the following proposition.

Proposition 5.2. For every k ∈ N,

βf
k (x, y) =

(2k + 1)!
(k!)2

k∑
l=0

(−1)l (k + l)!
l!(k − l)!

Γx,y
l [f ]

(y − x)k+l+1
. (5.5)

The proof of the proposition is based on the following combinatorial iden-
tity

b k−l
2 c∑

i=0

(−1)i (2k − 2i)!
i!(k − i)!(k − 2i− l)!

= 2k−l (k + l)!
l!(k − l)!

, ∀k ∈ N, ∀l = 0, . . . , k.

(5.6)
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Indeed, the shifted Legendre polynomials, defined as P ∗k (t) = (2k)!
(k!)2G

0,1
k (t), have

the closed form (see [10, 11])

P ∗k (t) =
k∑

l=0

(−1)k+l (k + l)!
(l!)2(k − l)!

tl.

On the other hand, exploiting (5.1), we have also the equivalent expression

P ∗k (t) =
b k

2 c∑
i=0

(−1)i (2k − 2i)!
i!(k − i)!(k − 2i)!4i

(
t− 1

2

)k−2i

=
b k

2 c∑
i=0

(−1)i (2k − 2i)!
i!(k − i)!(k − 2i)!

k−2i∑
l=0

(−1)k+l (k − 2i)!
l!(k − 2i− l)!2k−l

tl

=
k∑

l=0

(−1)k+l 1
l!2k−l

b k−l
2 c∑

i=0

(−1)i (2k − 2i)!
i!(k − i)!(k − 2i− l)!

tl,

after a change of the summation order. Hence, (5.6) follows comparing the
coefficients of each term tl appearing in P ∗k .

Remark 5.3. Arguing in a similar fashion, G0,y
n (with y > 0) can be equiva-

lently written as

G0,y
n (t) =

(n!)2

(2n)!

n∑
l=0

(−y)n−l (n+ l)!
(l!)2(n− l)!

tl.

We can now proceed to the proof of Proposition 5.2.

Proof of Proposition 5.2. Exploiting (5.1) and (5.3)-(5.4), we are led to
the equality

βf
k (x, y) =

(
(2k + 1)!

(k!)2

b k
2 c∑

i=0

(−1)i (2k − 2i)!
4i i!(k − i)!(k − 2i)!

(y − x)2i−2k−1

)

×

(∫ y

x

(
t− y + x

2

)k−2i

f(t) dt.

)
Integration by parts (k − 2i)-times yields∫ y

x

(
t− y + x

2

)k−2i

f(t) dt =
k−2i∑
l=0

(−1)l (k − 2i)!
(k − 2i− l)!

(y − x

2

)k−2i−l

Γx,y
l [f ],
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so that

βf
k (x, y) =

(2k + 1)!
2k (k!)2

b k
2 c∑

i=0

(−1)i (2k − 2i)!
i!(k − i)!

k−2i∑
l=0

(−1)l 2l Γx,y
l [f ]

(k − 2i− l)!(y − x)k+l+1
.

Changing the summation order, this is equivalent to

βf
k (x, y) =

(2k + 1)!
2k (k!)2

k∑
l=0

(−1)l 2l Γx,y
l [f ]

(y − x)k+l+1

b k−l
2 c∑

i=0

(−1)i (2k − 2i)!
i!(k − i)!(k − 2i− l)!

,

and the conclusion follows from (5.6).

6 Approximating Polynomials and L-Derivatives.

Let us investigate the relationships between the best approximating polyno-
mials and the L-derivatives of a given function f ∈ L1

loc(R). We begin with
the following result on the limiting behavior of the coefficients βf

k (x, y).

Theorem 6.1. Let f ∈ Ln
+[x] for some x ∈ R and n ∈ N. Then, for every

k ∈ {0, . . . , n} and every h > 0,

βf
k (x, x+ h) =

(2k + 1)!
(k!)2

n−k∑
m=0

(m+ k)!
m!(m+ 2k + 1)!

L
(m+k)
+ f(x)hm + o(hn−k).

Analogously, if f ∈ Ln
−[x],

βf
k (x− h, x) =

(2k + 1)!
(k!)2

n−k∑
m=0

(m+ k)!
m!(m+ 2k + 1)!

L
(m+k)
− f(x)(−h)m + o(hn−k).

A particular instance of the above theorem follows.

Corollary 6.2. If f ∈ Ln[x] for some x ∈ R and n ∈ N, then

lim
h→0+

βf
n(x, x+ h) = lim

h→0+
βf

n(x− h, x) =
L(n)f(x)

n!
.

Remark 6.3. If f ∈ Lp
loc(R), for some p ≥ 1, from the straightforward in-

equality∣∣∣∣ 1h
∫ x+h

x

[
f(t)− T f

n (x; t)
]
dt
∣∣∣∣ ≤ ( 1

h

∫ x+h

x

∣∣f(t)− T f
n (x; t)

∣∣p dt
)1/p
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we see that if f has Lp-derivative of order n in the sense of Calderón-Zygmund
[1] (see also [2]), then f has L-derivative of order n. Thus, the existence of
the left and right limits in Corollary 6.2 is a necessary condition in order for
f to have Lp-derivative of order n. In that case, the value of the limit is the
coefficient of the Taylor sum relative to the Lp-derivative.

The proof of Theorem 6.1 requires the following lemma.

Lemma 6.4. For every k, j ∈ N,

k∑
l=0

(−1)l (k + l)!
l!(k − l)!(j + l + 1)!

=

{
0 if j < k,

j!
(j−k)!(k+j+1)! if j ≥ k.

(6.1)

Proof. Note that (6.1) can be equivalently written as the binomial identity

k∑
l=0

(−1)l
(k + l

l

)(k + j + 1
k − l

)
=
(j
k

)
,

which is just a particular instance of the more general identity∑
l∈Z

(−1)l
(p+ l
n+ l

)( q
k − l

)
= (−1)n

(q + n− p− 1
n+ k

)
, ∀n, k ∈ N, ∀p, q ∈ R.

To prove that, we use the relation

(−1)l
(p+ l
n+ l

)
= (−1)n

(n− p− 1
n+ l

)
,

obtained by negating the upper index. Hence, the above sum turns into

(−1)n
∑
l∈Z

(n− p− 1
n+ l

)( q
k − l

)
.

This is aVandermonde’s convolution (see e.g. §5 of [6]), whose result is exactly
the right-hand side of the identity to be proved.

Remark 6.5. Here is an interesting application of Lemma 6.4. If we consider
the shifted Legendre polynomials P ∗k (t), collecting (5.5) and (6.1) we have

tj =
j∑

k=0

(2k + 1)(j!)2

(j − k)!(k + j + 1)!
P ∗k (t),

for every t ∈ [0, 1] and every j ∈ N.
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Proof of Theorem 6.1. Let x ∈ R, n ∈ N and h > 0. We will limit
ourselves to give the proof of the asymptotic expansion of βf

k (x, x + h) (the
other case is analogous and left to the reader). For a fixed k ∈ {0, . . . , n},
using (5.5), we derive the equality

βf
k (x, x+ h) =

(2k + 1)!
(k!)2

k∑
l=0

(−1)l (k + l)!
l!(k − l)!

Γx,y
l [f ]
hk+l+1

= Λ1 + Λ2,

where

Λ1 =
(2k + 1)!

(k!)2

n∑
j=0

L
(j)
+ f(x)hj−k

k∑
l=0

(−1)l (k + l)!
l!(k − l)!(j + l + 1)!

and

Λ2 =
(2k + 1)!

(k!)2

k∑
l=0

(−1)l (k + l)!
l!(k − l)!

Γx,x+h
l [f − T f

n (x)]
hk+l+1

.

Here, we used the facts that

Γx,x+h
l [f ] = Γx,x+h

l [T f
n (x)] + Γx,x+h

l [f − T f
n (x)]

and

Γx,x+h
l [T f

n (x)] =
n∑

j=0

L
(j)
+ f(x)

(j + l + 1)!
hj+l+1.

Exploiting (6.1), we obtain

Λ1 =
(2k + 1)!

(k!)2

n∑
j=k

j!
(j − k)!(k + j + 1)!

L
(j)
+ f(x)hj−k

=
(2k + 1)!

(k!)2

n−k∑
m=0

(m+ k)!
m!(m+ 2k + 1)!

L
(k+m)
+ f(x) hm.

Hence, we are left to show that Λ2 = o(hn−k). Indeed, for every l ∈ {0, . . . , k},
using the L’Hospital rule l-times, and recalling that f ∈ Ln

+[x], we have

lim
h→0+

1
hn−k

Γx,x+h
l [f − T f

n (x)]
hk+l+1

= · · ·

=
(n+ 1)!

(n+ l + 1)!
lim

h→0+

1
hn+1

∫ x+h

x

[
f(t)− T f

n (x; t)
]
dt = 0.

The proof is completed.



112 S. D’Asero, V. Pata, P. Ursino

We are now ready to prove the main result of this section, namely, to
show how the best approximating polynomial of order n of a given function
f is related to the generalized Taylor sum T f

n . To this end, for x ∈ R, we
introduce the function

Pf
n(x; t) =

{
P x,t

n f(t) if t > x,

P t,x
n f(t) if t < x;

that is, the best approximating polynomial of f on the interval [x, t] (or [t, x] if
t < x) calculated at the right (or left) endpoint. Then, we have the following
theorem.

Theorem 6.6. Let f ∈ Ln[x] for some x ∈ R and n ∈ N. Then Pf
n(x; t) is

defined by continuity at t = x, and

T f
n (x; t) = Pf

n(x; t) + o(|t− x|n),

for every t ∈ R.

Proof. We assume that t > x, the argument for t < x being the same. Hence,
from (5.2),

Pf
n(x; t) =

n∑
k=0

βf
k (x, t)Gx,t

k (t) =
n∑

k=0

(k!)2

(2k)!
βf

k (x, t)(t− x)k.

On account of the explicit representation of the coefficients βf
k (x, t), provided

by Theorem 6.1, we obtain

Pf
n(x; t) =

n∑
k=0

(2k+1)
n−k∑
m=0

(m+ k)!
m!(m+ 2k + 1)!

L(m+k)f(x)(t−x)m+k +o(t−x)n.

Setting r = m + k, and grouping the terms corresponding to the same r, we
get

Pf
n(x; t) =

n∑
r=0

r!
r∑

k=0

(2k + 1)
(r − k)!(r + k + 1)!

L(r)f(x)(t− x)r + o(t− x)n

=
n∑

r=0

L(r)f(x)
r!

(t− x)r + o(t− x)n = T f
n (x; t) + o(t− x)n.

Indeed, setting Ak = 1
(r−k)!(r+k)! , we have

r∑
k=0

(2k + 1)
(r − k)!(r + k + 1)!

= Ar +
r−1∑
k=0

[
Ak −Ak+1

]
= A0 =

1
(r!)2

,

which finishes the proof.
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Remark 6.7. The same result clearly holds if we only require f ∈ Ln
+[x]

(f ∈ Ln
−[x], respectively), replacing t ∈ R with t ≥ x (t ≤ x, respectively).

7 A Converse Result.

In this final section, we prove the converse of Corollary 6.2. This entails the
following necessary and sufficient condition for L-differentiability of L1

loc(R)
functions.

Theorem 7.1. Let f ∈ L1
loc(R). Then, the following are equivalent:

(i) f ∈ Ln[x] for some x ∈ R and n ∈ N.

(ii) There exist `0, . . . , `n ∈ R such that

lim
h→0+

βf
k (x, x+ h) = lim

h→0+
βf

k (x− h, x) =
`k
k!
,

for all k = 0, . . . , n.

In that case, L(k)f(x) = `k, for k = 0, . . . , n.

Remark 7.2. If in (ii) we ask the existence of the first (second) limit only,
then the conclusion of the theorem holds replacing f ∈ Ln[x] with f ∈ Ln

+[x]
(f ∈ Ln

−[x]) in (i). In which case, the `k will be the right (left) successive
derivatives.

The implication (i) ⇒ (ii) is the content of Corollary 6.2. Thus, we have
just to prove the reverse implication (ii)⇒ (i). To this end, the main ingredient
needed is the following Tauberian result.

Theorem 7.3. Let ψ be a function defined in a neighborhood of x ∈ R, con-
tinuous except perhaps at x. Further, assume that

lim
h→0

hψ(x+ h) = 0. (7.1)

For q ≥ l ∈ N, let

Jl,q(h) =



hq+1ψ(x+ h) if l = 0,∫ x+h

x

(t− x)q+1ψ(t) dt if l = 1,∫ x+h

x

∫ t1

x

· · ·
∫ tl−1

x

(tl − x)q+1ψ(tl) dtl · · · dt1 if l > 1.
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Assume that, for some given q ≥ n ∈ N,

lim
h→0

n∑
l=0

(−1)l (n+ l)!
l!(n− l)!

Jl,q(h)
hq+l+1

= 0. (7.2)

Then, it follows that
lim
h→0

ψ(x+ h) = 0.

The same statement holds replacing h → 0 with h → 0+ (or h → 0−), when-
ever this limit occurs.

Proof. The proof is by induction on n. The case n = 0 is trivially satisfied.
Thus, assume that the theorem holds for n − 1, for some n > 0. Let then
q ≥ n > 0 be fixed. We set

Bl,n =
(n+ l)!
l!(n− l)!

, l = 0, . . . , n

and

Dl,n =
(n+ l)!

l!(n− l − 1)!n
, l = 0, . . . , n− 1.

By straightforward calculations,

Bl,n =


D0,n if l = 0,
(n+ l)Dl−1,n +Dl,n if l = 1, . . . , n− 1,
2nDn−1,n if l = n.

Observe now that

Dl−1,n
d
dh

Jl,q(h)
hn+l

= Dl−1,n
Jl−1,q(h)
hn+l

− (n+ l)Dl−1,n
Jl,q(h)
hn+l+1

,

which can be equivalently written as

Dl−1,n
d
dh

Jl,q(h)
hn+l

=


Dl−1,n

Jl−1,q(h)
hn+l

+(Dl,n−Bl,n)
Jl,q(h)
hn+l+1

if l = 1, . . . , n− 1,

Dn−1,n
Jn−1,q(h)
h2n

−Bn,n
Jn,q(h)
h2n+1

if l = n.

Hence, recalling that D0,n = B0,n, we learn that

d
dh

n∑
l=1

(−1)l−1Dl−1,n
Jl,q(h)
hn+l

=
n∑

l=0

(−1)lBl,n
Jl,q(h)
hn+l+1

.
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Due to (7.1), we have that Jl,q(h) = o(hq+l) as h → 0. Since q ≥ n, this
implies that

lim
h→0

n∑
l=1

(−1)l−1Dl−1,n
Jl,q(h)
hn+l

= 0.

Therefore, we are in a position to apply the L’Hospital rule to obtain

lim
h→0

n∑
l=1

(−1)l−1Dl−1,n
Jl,q(h)
hq+l+1

= lim
h→0

1
hq−n+1

n∑
l=1

(−1)l−1Dl−1,n
Jl,q(h)
hn+l

= lim
h→0

1
q − n+ 1

n∑
l=0

(−1)lBl,n
Jl,q(h)
hq+l+1

= 0,

thanks to (7.2). Hence, using (7.2) again,

lim
h→0

[ n∑
l=0

(−1)lBl,n
Jl,q(h)
hq+l+1

+ 2n
n∑

l=1

(−1)l−1Dl−1,n
Jl,q(h)
hq+l+1

]
= 0.

The expression between the brackets can be written more conveniently as

ψ(h) +
n∑

l=1

(−1)l(Bl,n − 2nDl−1,n)
Jl,q(h)
hq+l+1

=
n−1∑
l=0

(−1)lBl,n−1
Jl,q(h)
hq+l+1

.

Indeed, for l > 0,

Bl,n − 2nDl−1,n =
(n+ l − 1)!(n− l)

l!(n− l)!
=

{
Bl,n−1 if l = 1, . . . , n− 1,
0 if l = n.

In conclusion,

lim
h→0

n−1∑
l=0

(−1)lBl,n−1
Jl,q(h)
hq+l+1

= 0,

which, in light of the inductive hypotheses, yields the desired result. Obviously,
the same argument applies if we consider right or left limits only.

Proof of Theorem 7.1. We restrict ourselves to proving the right L-dif-
ferentiability (the other case being completely analogous). We prove the im-
plication (ii) ⇒ (i) by induction on n. For n = 0, it is trivially true. Assume
then that the result holds for n− 1, for some n ≥ 1. Set

T̂n(x; t) =
n∑

j=0

`j
j!

(t− x)j ,
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and introduce the function

ψ(τ) =
1

(τ − x)n+1

∫ τ

x

[
f(t)− T̂n(x; t)

]
dt.

Note that, by the inductive hypothesis,

lim
h→0+

hψ(x+ h) = 0. (7.3)

Proving the theorem amounts to showing that

lim
h→0+

ψ(x+ h) = 0. (7.4)

Arguing as in the proof of Theorem 6.1, we split the coefficient βf
n(x, x + h)

into the sum
βf

n(x, x+ h) = Λ′1 + Λ′2,

where

Λ′1 =
(2n+ 1)!

(n!)2

n∑
j=0

`jh
j−n

n∑
l=0

(−1)l (n+ l)!
l!(n− l)!(j + l + 1)!

and

Λ′2 =
(2n+ 1)!

(n!)2

n∑
l=0

(−1)l (n+ l)!
l!(n− l)!

Γx,x+h
l [f − T̂n(x)]

hn+l+1
.

By (6.1), it is readily seen that Λ′1 = `n

n! , whereas, with the notation of Theo-
rem 7.1, we have

Γx,x+h
l [f − T̂n(x)] = Jl,n(h),

so that

Λ′2 =
(2n+ 1)!

(n!)2

n∑
l=0

(−1)l (n+ l)!
l!(n− l)!

Jl,n(h)
hn+l+1

Therefore, the hypothesis

lim
h→0+

βn(x, x+ h) =
`n
n!

is in fact equivalent to

lim
h→0+

n∑
l=0

(−1)l (n+ l)!
l!(n− l)!

Jl,n(h)
hn+l+1

= 0. (7.5)

In view of (7.3) and (7.5), we can apply Theorem 7.3 with q = n, thereby
obtaining the desired conclusion (7.4).
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