Wenxia Li, Department of Mathematics, East China Normal University, Shanghai 200062, P. R. China. email: wxli@math.ecnu.edu.cn

## POINTS OF INFINITE DERIVATIVE OF CANTOR FUNCTIONS


#### Abstract

We consider self-similar Borel probability measures $\mu$ on a self-similar set $E$ with strong separation property. We prove that for any such measure $\mu$ the derivative of its distribution function $F(x)$ is infinite for $\mu$-a.e. $x \in E$, and so the set of points at which $F(x)$ has no derivative, finite or infinite is of $\mu$-zero.


## 1 Introduction.

Let $E \subset \mathbb{R}$ be a Borel set, let $\mu$ be a finite, atomless Borel measure on $E$. For $0<c<\infty$, set

$$
Q_{c}^{u}=\left\{x \in E: \limsup _{r \rightarrow 0+} \frac{\mu([x-r, x+r])}{r} \leq c\right\}
$$

and

$$
Q_{c}^{l}=\left\{x \in E: \liminf _{r \rightarrow 0+} \frac{\mu([x-r, x+r])}{r} \leq c\right\}
$$

Then a classical result (ref. proposition 2.2 (a) and (c) in [4]) shows that $\mu\left(Q_{c}^{u}\right) \leq c \mathcal{H}^{1}\left(Q_{c}^{u}\right)$ and $\mu\left(Q_{c}^{l}\right) \leq c \mathcal{P}^{1}\left(Q_{c}^{l}\right)$, where $\mathcal{H}^{1}(\cdot)$ and $\mathcal{P}^{1}(\cdot)$ are, respectively, the one-dimensional Hausdorff and packing measures. Therefore, if both $\operatorname{dim}_{H} E$ and $\operatorname{dim}_{P} E$ are less than 1, then for $\mu$-a.e. $x \in E$,

$$
\begin{equation*}
\limsup _{r \rightarrow 0+} \mu([x-r, x+r]) / r=+\infty \text { and } \liminf _{r \rightarrow 0+} \mu([x-r, x+r]) / r=+\infty \tag{1}
\end{equation*}
$$

[^0]The first equality in (1) implies that for $\mu$-a.e. $x \in E$,

$$
\max \left\{\limsup _{r \rightarrow 0+} \frac{\mu[x-r, x]}{r}, \limsup _{r \rightarrow 0+} \frac{\mu[x, x+r]}{r}\right\}=+\infty
$$

It shows that the distribution function of $\mu$ has infinite upper derivatives $\mu$ almost everywhere. However, the second equality in (1) provides less information about its lower derivatives which for $x \in \mathbb{R}$ equal

$$
\min \left\{\liminf _{r \rightarrow 0+} \frac{\mu[x-r, x]}{r}, \liminf _{r \rightarrow 0+} \frac{\mu[x, x+r]}{r}\right\}
$$

In the following, we consider $E$ as a class of self-similar sets, and $\mu$ as the self-similar measures on $E$. In the present paper, we show that their distribution functions have infinite derivatives for $\mu$-a.e. $x \in E$.

A self-similar set $E$ in $\mathbb{R}$ is defined as the unique nonempty compact set invariant under $h_{j}$ 's:

$$
\begin{equation*}
E=\bigcup_{j=0}^{r} h_{j}(E) \tag{2}
\end{equation*}
$$

where $h_{j}(x)=a_{j} x+b_{j}, j=0,1, \ldots, r$, with $0<a_{j}<1$ and $r \geq 1$ being a positive integer. Without loss of generality, we shall assume that $b_{0}=0$ and $a_{r}+b_{r}=1$. We furthermore assume that the images $h_{j}([0,1]), j=0,1, \ldots, r$ are pairwise disjoint (i.e., $E$ satisfies the strong separation property) and are ordered from left to right. We remark that this assumption implies that the $h_{j}$ 's satisfy the open set condition with the open set $(0,1)$, which is less general than the usual one defined by [6]. It is well-known that $\operatorname{dim}_{H} E=\operatorname{dim}_{B} E=$ $\operatorname{dim}_{P} E=\xi \in(0,1)$ and $0<\mathcal{H}^{\xi}(E)<\mathcal{P}^{\xi}(E)<+\infty$ where $\xi$ is given by $\sum_{j=0}^{r} a_{j}^{\xi}=1$ (ref. [6]).

As usual, the elements of $E$ in (2) can be encoded by digits in $\Omega=$ $\{0,1, \ldots, r\}$ as follows. We write $\Omega^{\mathbb{N}}=\{\sigma=(\sigma(1), \sigma(2), \ldots): \sigma(j) \in \Omega\}$ and $\Omega^{*}=\bigcup_{k=1}^{\infty} \Omega^{k}$ with $\Omega^{k}=\{\sigma=(\sigma(1), \sigma(2), \ldots, \sigma(k)): \sigma(j) \in \Omega\}$ for $k \in \mathbb{N}$. $|\sigma|$ is used to denote the length of the word $\sigma \in \Omega^{*}$. For any $\sigma, \tau \in \Omega^{*}$, write $\sigma * \tau=(\sigma(1), \ldots, \sigma(|\sigma|), \tau(1), \ldots, \tau(|\tau|))$, and write $\tau * \sigma=(\tau(1), \ldots, \tau(|\tau|), \sigma(1), \sigma(2), \ldots)$ for any $\tau \in \Omega^{*}, \sigma \in \Omega^{\mathbb{N}} . \sigma \mid k=$ $(\sigma(1), \sigma(2), \ldots, \sigma(k))$ for $\sigma \in \Omega^{\mathbb{N}}$ and $k \in \mathbb{N}$. Let $h_{\sigma}(x)=h_{\sigma(1)} \circ \cdots \circ$ $h_{\sigma(k)}(x)$ for $\sigma \in \Omega^{k}$ and $x \in \mathbb{R}$. Then for $\sigma \in \Omega^{k}$, the intervals $h_{\sigma * 0}([0,1])$, $h_{\sigma * 1}([0,1]), \ldots, h_{\sigma * r}([0,1])$ are contained in $h_{\sigma}([0,1])$ in this order where the left endpoint of $h_{\sigma * 0}([0,1])$ coincides with the left endpoint of $h_{\sigma}([0,1])$, and the right endpoint of $h_{\sigma * r}([0,1])$ coincides with the right endpoint of $h_{\sigma}([0,1])$. Moreover, the length of the interval $h_{\sigma}([0,1])$ equals $\lambda\left(h_{\sigma}([0,1])\right)=\prod_{j=1}^{k} a_{\sigma(j)}$ $=: a_{\sigma}$ for $\sigma \in \Omega^{k}$, where $\lambda(\cdot)$ denotes the one-dimensional Lebesgue measure.

For $j=1,2, \ldots$, let $E_{j}=\cup_{\sigma \in \Omega^{j}} h_{\sigma}([0,1])$. Then $E_{j} \downarrow E$ as $j \rightarrow \infty$ and $x \in E$ can be encoded by a unique $\sigma \in \Omega^{\mathbb{N}}$ satisfying

$$
\{x\}=\bigcap_{k=1}^{\infty} h_{\sigma \mid k}([0,1])
$$

Throughout this paper we sometimes denote this unique code of $x$ by $\tilde{x}$ and use $x(k)$ to denote the $k$-th component of $\tilde{x}$; i.e., use $\tilde{x}=(x(1), x(2), \ldots)$ for the code of $x \in E$. In this way one can establish a continuous one-to-one correspondence between $\Omega^{\mathbb{N}}$ and $E$. The endpoints of $h_{\sigma}([0,1])$ for a $\sigma \in \Omega^{*}$ will be called the endpoints of $E$. So the set of endpoints of $E$ is countable. Obviously, any endpoint $e$ of $E$ lies in $E$ and except for a finite number of terms, its coding $\tilde{e}$ consists of either only the symbol 0 if $e$ is the left endpoint of some $h_{\sigma}([0,1])$, or only the symbol $r$ if $e$ is the right endpoint of some $h_{\sigma}([0,1])$.

Let $\mu$ be a self-similar Borel probability measure on $E$ corresponding to the probability vector $\left(p_{0}, p_{1}, \ldots, p_{r}\right)$, where each $p_{i}>0$ and $\sum_{i=0}^{r} p_{i}=1$; i.e., the measure satisfying

$$
\mu(A)=\sum_{j=0}^{r} p_{j} \mu\left(h_{j}^{-1}(A)\right) \text { for any Borel set } A
$$

and so

$$
\begin{equation*}
\mu\left(h_{\sigma}([0,1])\right)=\prod_{j=1}^{k} p_{\sigma(j)}=: p_{\sigma}, \text { for any } \sigma \in \Omega^{k}, k \in \mathbb{N} . \tag{3}
\end{equation*}
$$

Obviously, $\mu$ is atomless. Consider the distribution function of such a probability measure $\mu$, also called Cantor function or a self-affine 'devil's staircase' function,

$$
\begin{equation*}
F(x)=\mu([0, x]), x \in[0,1] \tag{4}
\end{equation*}
$$

Then $F(x)$ is a non-decreasing continuous function with $F(0)<F(1)$; that is, constant off the support of $\mu$. Obviously, the derivative of $F(x)$ is zero for each $x \in[0,1] \backslash E$. In particular, the set $S$ of points of non-differentiability of $F(x)$; that is, those $x$ where

$$
\lim _{\delta \rightarrow 0} \frac{F(x+\delta)-F(x)}{\delta}=\lim _{\delta \rightarrow 0} \frac{\mu((x, x+\delta])}{\delta} \quad\left(\text { or } \frac{\mu((x+\delta, x])}{-\delta} \text { if } \delta<0\right)
$$

does not exist either as a finite number or $\infty$, has Lebesgue measure 0 . The Hausdorff dimension of $S$ has been obtained (ref. [1, 2, 3, 5] for the case $p_{i}=a_{i}^{\xi},[8]$ for the case $p_{i}=a_{i}\left(\sum_{i=0}^{r} a_{i}\right)^{-1}$ and [7] for the case $\left.p_{i}>a_{i}\right)$. Let

$$
E^{*}=E \backslash\{\text { endpoints of } E\}
$$

and

$$
\begin{equation*}
T=\left\{t \in E^{*}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log \frac{p_{t(i)}}{a_{t(i)}}=\sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)\right\} \tag{5}
\end{equation*}
$$

Then $\mu(T)=1$ by the law of large numbers. We decompose the set $S$ into

$$
S=N^{+} \cup N^{-} \cup Z
$$

where $N^{+}\left(N^{-}\right)$is the set of points in $E^{*}$ at which the right (left) derivative of $F(x)$ doesn't exist, finite or infinite, $Z$ is a subset of the set of endpoints of $E$, so at most countable. In the present paper, we prove the following theorem.

Theorem 1.1. Let $\left(p_{0}, p_{1}, \ldots, p_{r}\right)$ be an arbitrarily given probability vector. Let $\mu$ and $F(x)$ be determined by (3) and (4) respectively. Then $F^{\prime}(x)=+\infty$ for $\mu$-a.e. $x \in E$. So $\mu(S)=0$.

## 2 Proofs.

In this section, we first prove in the following Proposition 2.1 that $F(x)$ has infinite upper derivatives for $\mu$-a.e. $x \in E$ (although it can be obtained directly from (1)) by showing that both of the upper right and the upper left derivatives of $F(x)$ are infinite for each $x \in T$. Then the set $T \cap N^{+}\left(T \cap N^{-}\right)$consists of those points of $T$ at which $F(x)$ has finite lower right (left) derivatives by the definition of $N^{+}\left(N^{-}\right)$. We characterize $T \cap N^{+}\left(T \cap N^{-}\right)$by the coding property of its elements in Lemma 2.2. Theorem 1.1 then is proved by showing that $\mu\left(T \cap N^{+}\right)=0\left(\mu\left(T \cap N^{-}\right)=0\right)$.

Proposition 2.1. Both the upper right and the upper left derivatives of $F(x)$ are infinite for each $x \in T$.

Proof. Let $t \in T$ with code $\tilde{t}=(t(1), t(2), \ldots)$. Then $\tilde{t}$ has infinitely many entries lying in $\Omega \backslash\{r\}$. Suppose $\tilde{t}$ has an entry from $\Omega \backslash\{r\}$ in position $j$. Then $t$ lies in the interval $h_{\tilde{t} \mid(j-1)}([0,1])$, but is not equal to the right endpoint $u$ of $h_{\tilde{t} \mid(j-1)}([0,1])$, where $\tilde{u}=(t(1), \ldots, t(j-1), r, r, \ldots)$. Note that $u$ is also the right endpoint of $h_{\tilde{u} \mid j}([0,1])$ and that $t \notin h_{\tilde{u} \mid j}([0,1])$. Thus we have that $t, u \in h_{\tilde{t} \mid(j-1)}([0,1])$ and $(t, u] \supseteq h_{\tilde{u} \mid j}([0,1])$. Consider the slope of the line segment from the point $P=(t, F(t))$ on the graph of $F(x)$ to the
point $Q=(u, F(u))$. We have

$$
\begin{align*}
\frac{F(u)-F(t)}{u-t} & =\frac{\mu((t, u])}{u-t} \geq \frac{\mu\left(h_{\tilde{u} \mid j}([0,1])\right)}{\left|h_{\tilde{t} \mid(j-1)}([0,1])\right|}=\frac{p_{\tilde{t} \mid(j-1)} p_{r}}{a_{\tilde{t} \mid(j-1)}} \\
& =p_{r} \exp \left((j-1) \frac{1}{j-1} \sum_{i=1}^{j-1} \log \frac{p_{t(i)}}{a_{t(i)}}\right) \tag{6}
\end{align*}
$$

Note that by corollary 1.5 in [4],

$$
\sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right) \geq-\log \sum_{j=0}^{r} a_{j}>0
$$

Thus, the upper right derivative of $F(x)$ at $t$ is infinite by (6) and (5) when $j \rightarrow+\infty$. Symmetrically, the upper left derivative of $F(x)$ at $t$ of $E$ is also infinite.

Lemma 2.2. Let $\Gamma=\{0,1, \ldots, r-1\}$. Let $t \in E^{*}$ and let $z(t, n)$ denote the position of the $n$-th occurrence of elements of $\Gamma$ in $t$. Then
(I) $T \cap N^{+} \subseteq T \cap\left\{t \in E^{*}: \limsup _{n \rightarrow \infty} \frac{z(t, n+1)}{z(t, n)} \geq 1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)\right\}$;
(II) $T \cap\left\{t \in E^{*}: \limsup _{n \rightarrow \infty} \frac{z(t, n+1)}{z(t, n)}>1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)\right\} \subseteq$ $T \cap N^{+}$.

Symmetrically, if we replace $\Gamma$ by $\{1,2, \ldots, r\}$, then
(I') $T \cap N^{-} \subseteq T \cap\left\{t \in E^{*}: \limsup _{n \rightarrow \infty} \frac{z(t, n+1)}{z(t, n)} \geq 1-\frac{1}{\log p_{0}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)\right\}$; (II') $T \cap\left\{t \in E^{*}: \lim \sup _{n \rightarrow \infty} \frac{z(t, n+1)}{z(t, n)}>1-\frac{1}{\log p_{0}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)\right\} \subseteq$ $T \cap N^{-}$.

Proof. We first prove statement (I); i.e., the lower-right derivative of $F(x)$ is infinite at $t \in T$ when

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{z(t, n+1)}{z(t, n)}<1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right) \tag{7}
\end{equation*}
$$

Consider such a point $t$ with $\tilde{t}=(t(1), t(2), \ldots)$. By (7) and (5) let $k$ be a positive integer such that for $n \geq k$

$$
\begin{equation*}
\frac{z(t, n+1)}{z(t, n)}<1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)+2 q \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{z(t, n)} \sum_{i=1}^{z(t, n)} \log \frac{p_{t(i)}}{a_{t(i)}}>\sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)-q \log p_{r} \tag{9}
\end{equation*}
$$

for some negative real number $q$. Let $u$ be a positive number such that $u$ is smaller than the distance between $t$ and $[0,1] \backslash E_{\tilde{t} l l}$ with $l=z(t, k)$. Let $x$ be a point in the segment $(t, t+u)$. Then $t, x \in h_{\tilde{t} \mid l}([0,1])$. We will see that $(F(x)-F(t)) /(x-t)$ is large relative to $k$, so $t$ is not in $N^{+}$. Let $i$ denote the level at which $x \notin h_{\tilde{t} \mid i}([0,1])$ but $x \in h_{\tilde{t} \mid(i-1)}([0,1])$. Note also that $t \in h_{\tilde{t} \mid(i-1)}([0,1])$. Thus $x-t \leq\left|h_{\tilde{t} \mid(i-1)}([0,1])\right|=a_{\tilde{t} \mid(i-1)} ;$ also $i=z(t, n)$ for some $n>k$. Put $j=z(t, n+1)-1$, and by $v$ we denote the right endpoint of $h_{\tilde{t} \mid j}([0,1])$, which implies that $\tilde{v}=(t(1), \ldots, t(j), r, r, \ldots)$ and $(t, v] \supseteq h_{\tilde{v} \mid(j+1)}([0,1])$. Then we have $t<v<x$ and $F(v)-F(t)=\mu((t, v]) \geq$ $\mu\left(h_{\tilde{v} \mid(j+1)}([0,1])\right)=p_{\tilde{t} \mid j} p_{r}$. Therefore, we have

$$
\begin{align*}
\frac{F(x)-F(t)}{x-t} & \geq \frac{p_{\tilde{t} \mid j} p_{r}}{a_{\tilde{t} \mid(i-1)}}=\frac{p_{r} \prod_{m=1}^{z(t, n+1)-1} p_{t(m)}}{\prod_{m=1}^{z(t, n)-1} a_{t(m)}} \\
& =a_{t(z(t, n))} p_{r}^{z(t, n+1)-z(t, n)} \prod_{m=1}^{z(t, n)} \frac{p_{t(m)}}{a_{t(m)}}  \tag{10}\\
& \geq\left(\min _{0 \leq m \leq r} a_{m}\right)\left[p_{r}^{\frac{z(t, n+1)}{z(t, n)}-1}\left(\prod_{m=1}^{z(t, n)} \frac{p_{t(m)}}{a_{t(m)}}\right)^{\frac{1}{z(t, n)}}\right]^{z(t, n)}
\end{align*}
$$

Let

$$
Q=p_{r}^{\frac{z(t, n+1)}{z(t, n)}-1}\left(\prod_{m=1}^{z(t, n)} \frac{p_{t(m)}}{a_{t(m)}}\right)^{\frac{1}{z(t, n)}} .
$$

Taking logs, and by (8) and (9), we have

$$
\begin{equation*}
\log Q=\left(\frac{z(t, n+1)}{z(t, n)}-1\right) \log p_{r}+\frac{1}{z(t, n)} \sum_{m=1}^{z(t, n)} \log \frac{p_{t(m)}}{a_{t(m)}}>q \log p_{r} \tag{11}
\end{equation*}
$$

Since $t$ is a non-end point, $z(t, n) \rightarrow \infty$ and the lower-right derivative of $F(x)$ is infinite at $t$ by (10) and (11).

Now we turn to the proof of statement (II). Let $t \in T$ be such that

$$
\limsup _{n \rightarrow \infty} \frac{z(t, n+1)}{z(t, n)}>1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)
$$

Then there exists a sequence $\left\{n_{k}\right\}$ of positive integers such that for some positive constant $c$,

$$
\begin{equation*}
\frac{z\left(t, n_{k}+1\right)}{z\left(t, n_{k}\right)}>1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)+2 c \tag{12}
\end{equation*}
$$

and in addition by (5),

$$
\begin{equation*}
\frac{1}{z\left(t, n_{k}\right)} \sum_{i=1}^{z\left(t, n_{k}\right)} \log \frac{p_{t(i)}}{a_{t(i)}}<\sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)-c \log p_{r} \tag{13}
\end{equation*}
$$

Let $x_{k}$ be the left endpoint of $h_{\left(\tilde{t} \mid j_{k}\right) *\left(t\left(j_{k}+1\right)+1\right)}([0,1])$, where $j_{k}=z\left(t, n_{k}\right)-$ 1. Thus we have $\tilde{x}_{k}=\left(t(1), \ldots, t\left(j_{k}\right), t\left(j_{k}+1\right)+1,0, \ldots, 0, \ldots\right)$. Let $u_{k}$ be the right endpoint of $h_{\tilde{t} \mid\left(j_{k}+1\right)}([0,1])$. Then $\tilde{u}_{k}=\left(t(1), \ldots, t\left(j_{k}\right), t\left(j_{k}+\right.\right.$ $1), r, r, r, \ldots)$. Thus, $\left(u_{k}, x_{k}\right)$ is the gap on the right side of $h_{\tilde{t} \mid\left(j_{k}+1\right)}([0,1])$ and $\lambda\left(\left[u_{k}, x_{k}\right]\right)=x_{k}-u_{k}=a_{\tilde{t} \mid j_{k}} \beta_{t\left(j_{k}+1\right)}$ where by $\beta_{j}, j=0,1, \ldots, r-1$, we denote length of the gap between images $h_{j}([0,1])$ and $h_{j+1}([0,1])$. Note that $\left[t, x_{k}\right] \supseteq\left[u_{k}, x_{k}\right]$ and $\mu\left(\left(t, x_{k}\right]\right)=\mu\left(\left(t, u_{k}\right]\right)+\mu\left(\left(u_{k}, x_{k}\right]\right)=\mu\left(\left(t, u_{k}\right]\right) \leq$ $\mu\left(h_{\tilde{t} \mid\left(z\left(t, n_{k}+1\right)-1\right)}([0,1])\right)$ since $\tilde{t}\left|\left(z\left(t, n_{k}+1\right)-1\right)=\tilde{u}_{k}\right|\left(z\left(t, n_{k}+1\right)-1\right)$. Therefore we have

$$
F\left(x_{k}\right)-F(t)=\mu\left(\left(t, x_{k}\right]\right) \leq \mu\left(h_{\tilde{t} \mid\left(z\left(t, n_{k}+1\right)-1\right)}([0,1])\right)=p_{\tilde{t} \mid\left(z\left(t, n_{k}+1\right)-1\right)}
$$

and

$$
x_{k}-t \geq \lambda\left(\left[u_{k}, x_{k}\right]\right)=a_{\tilde{t} \mid\left(z\left(t, n_{k}\right)-1\right)} \beta_{t\left(z\left(t, n_{k}\right)\right)}
$$

Let $\beta_{*}=\min _{j \in\{0,1, \ldots, r-1\}} \beta_{j}$ and $a^{*}=\max _{j \in\{0,1, \ldots, r\}} a_{j}$. Then we obtain, by a similar reasoning which led to (10),

$$
\begin{align*}
\frac{F\left(x_{k}\right)-F(t)}{x_{k}-t} & \leq \frac{p_{\tilde{t} \mid\left(z\left(t, n_{k}+1\right)-1\right)}}{a_{\tilde{t} \mid\left(z\left(t, n_{k}\right)-1\right)} \beta_{\tilde{t}\left(z\left(t, n_{k}\right)\right)}} \\
& =\frac{a_{z\left(t, n_{k}\right)}}{\beta_{\tilde{t}\left(z\left(t, n_{k}\right)\right)} p_{r}} p_{r}^{z\left(t, n_{k}+1\right)-z\left(t, n_{k}\right)} \prod_{i=1}^{z\left(t, n_{k}\right)} \frac{p_{t(i)}}{a_{t(i)}}  \tag{14}\\
& \leq \frac{a^{*}}{\beta_{*} p_{r}}\left(p_{r}^{\frac{z\left(t, n_{k}+1\right)}{z\left(t, n_{k}\right)}-1}\left(\prod_{i=1}^{z\left(t, n_{k}\right)} \frac{p_{t(i)}}{a_{t(i)}}\right)^{\frac{1}{z\left(t, n_{k}\right)}}\right)^{z\left(t, n_{k}\right)}
\end{align*}
$$

Let

$$
Q=p_{r}^{\frac{z\left(t, n_{k}+1\right)}{z\left(t, n_{k}\right)}-1}\left(\prod_{i=1}^{z\left(t, n_{k}\right)} \frac{p_{t(i)}}{a_{t(i)}}\right)^{\frac{1}{z\left(t, n_{k}\right)}}
$$

Taking logs and using (12) and (13), we obtain

$$
\begin{equation*}
\log Q=\left(\frac{z\left(t, n_{k}+1\right)}{z\left(t, n_{k}\right)}-1\right) \log p_{r}+\frac{1}{z\left(t, n_{k}\right)} \sum_{i=1}^{z\left(t, n_{k}\right)} \log \frac{p_{t(i)}}{a_{t(i)}}<c \log p_{r}<0 \tag{15}
\end{equation*}
$$

From (14) and (15) it follows that the lower-right derivative of $F(x)$ at $t$ is finite by letting $k \longrightarrow \infty$. Finally, (I') and (II') can be proved similarly.

Proof of theorem 1.1. Since $\mu$ is atomless, we only need to prove that $\mu\left(N^{+} \bigcap T\right)=\mu\left(N^{-} \bigcap T\right)=0$. Below we prove $\mu\left(N^{+} \bigcap T\right)=0 ; \mu\left(N^{-} \bigcap T\right)=$ 0 can be obtained in the same way. By lemma 2.2 (I), we have $N^{+} \bigcap T \subseteq M$ where

$$
M=\left\{t \in T: \limsup _{n \rightarrow \infty} \frac{z(t, n+1)}{z(t, n)} \geq 1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)\right\}
$$

Now fix a positive real number

$$
\begin{equation*}
\alpha<-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right) . \tag{16}
\end{equation*}
$$

Choose $n^{*}$ large enough to assure that when $k \geq n^{*}$

$$
\begin{equation*}
-\frac{2 \log k}{k \log p_{r}}<\frac{\alpha}{2} \text { and } \frac{1}{k}<\frac{\alpha}{8} \tag{17}
\end{equation*}
$$

Now for each $k \geq n^{*}$, we can choose $u_{k}>k$ such that

$$
\begin{equation*}
\frac{u_{k}}{k}>1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)-\frac{\alpha}{2} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{u_{k}-1}{k} \leq 1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)-\frac{\alpha}{2} \tag{19}
\end{equation*}
$$

Then we have

$$
\begin{align*}
1- & \frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)-\frac{\alpha}{2}<\frac{u_{k}}{k}  \tag{20}\\
& <1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)-\frac{\alpha}{4}
\end{align*}
$$

by (18), (19) and the second inequality in (17). Let

$$
J_{k}=\left\{x \in E: x(i)=r \text { for } k<i \leq u_{k}\right\}, k \geq n^{*},
$$

and

$$
J^{\infty}=\limsup _{k \rightarrow \infty} J_{k}=\bigcap_{m=n^{*}}^{\infty} \bigcup_{k \geq m} J_{k}
$$

Now for each point $t \in M$, there exists a strictly increasing sequence $\left\{n_{i}, i \in\right.$ $\mathbb{N}\}$ of positive integers such that $z\left(t, n_{1}\right) \geq n^{*}$ and

$$
\begin{equation*}
\frac{z\left(t, n_{i}+1\right)}{z\left(t, n_{i}\right)}>1-\frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i}\left(\log p_{i}-\log a_{i}\right)-\frac{\alpha}{4} \tag{21}
\end{equation*}
$$

Taking $k_{i}=z\left(t, n_{i}\right)$ and using (21) as well as the second inequality in (20), we have $z\left(t, n_{i}+1\right)>u_{k_{i}}$, which implies that $t \in J_{k_{i}}$. Thus we have $M \subseteq J^{\infty}$. Note that for $k \geq n^{*}$ and by the first inequality in (17), (18) and (16),

$$
\begin{equation*}
\frac{u_{k}}{k}-1 \geq-\frac{2 \log k}{k \log p_{r}} ; \text { i.e., } p_{r}^{u_{k}-k} \leq k^{-2} \tag{22}
\end{equation*}
$$

Therefore for any $m \geq n^{*}$,

$$
\mu\left(N^{+} \cap T\right) \leq \mu(M) \leq \mu\left(\bigcup_{k \geq m} J_{k}\right) \leq \sum_{k \geq m} p_{r}^{u_{k}-k} \leq \sum_{k \geq m} k^{-2}
$$

by (22). Finally, we obtain $\mu\left(N^{+} \cap T\right)=0$ by letting $m \rightarrow \infty$.

## References

[1] R. Darst, The Hausdorff Dimension of the Nondifferentiability Set of the Cantor Function is $[\ln (2) / \ln (3)]^{2}$, Proc. Amer. Math. Soc., 119 (1993), 105-108.
[2] R. Darst, Hausdorff Dimension of Sets of Non-differentiability Points of Cantor Functions, Math. Proc. Camb. Phi. Soc., 117 (1995), 185-191.
[3] F. M. Dekking, W. X. Li, How Smooth is a Devil's Staircase?, Fractals, 11 (2003), 101-107.
[4] K. J. Falconer, Techniques in Fractal Geometry, John Wiley \& Sons, 1997.
[5] K. J. Falconer, One-sided Multifractal Analysis and Points of Nondifferentiability of Devil's Staircases, Math. Proc. Camb. Phi. Soc., 136 (2004), 167-174.
[6] J. E. Hutchinson, Fractals and Self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
[7] W. X. Li, Non-differentiability Points of Cantor Functions, Math. Nachr., to appear.
[8] J. Morris, The Hausdorff Dimension of the Nondifferentiability Set of a Nonsymmetric Cantor Function, Rocky Mountain Journal of Mathematics, 32 (2002), 357-370.


[^0]:    Key Words: non-differentiability; self-similar sets; self-similar measures; Cantor functions Mathematical Reviews subject classification: 28A80, 28A78
    Received by the editors November 26, 2005
    Communicated by: Zoltán Buczolich
    *Supported by the National Science Foundation of China \#10371043 and Shanghai Priority Academic Discipline

