Robert Menkyna, Department of Engineering Fundamentals, Faculty of Electrical Engineering, University of Žilina, Workplace Liptovský Mikuláš, Slovakia. email: menkyna@lm.utc.sk

ON A SPECIAL SUBCLASS OF THE SET OF DERIVATIVES

Abstract

We deal with the class of functions defined as a sum of a uniformly convergent series of functions continuous both on a closed set and on its complement. Such functions are mentioned in the literature, e.g., in [1], [2], [3], [4]. We investigate the particular class of derivatives.

We deal with classes of real functions defined on the interval (0, 1). As usual the symbols C, D, B_1, Δ , and A stand for the class of continuous, Darboux, Baire 1 functions, functions that are derivatives or approximately continuous functions, respectively.

Consider the following three properties of a function f on (0, 1).

(*) There exists a closed set $A \subset (0,1)$ such that $f \upharpoonright_A$ and $f \upharpoonright_{\sim A}$ are continuous;

(**) There exists a sequence of functions $f_n \in \mathcal{F}(C), n = 1, 2, ...,$ such that the series $\sum_{n=1}^{\infty} f_n$ uniformly converges to f; (***) There exists a closed set $A \subset (0,1)$ such that $f \upharpoonright_A = 0$ and $f \upharpoonright_{\sim A}$ is

continuous.

Definition 1. Let \mathcal{F} be a subclass of B_1 . Let $\mathcal{F}(C) = \{f \in \mathcal{F}, f \text{ satisfies } (*)\}.$

Remark 2. In Definition 1, it suffices to consider nowhere dense sets A.

Remark 3. Evidently, $D(C) \subset DB_1$.

Definition 4. Let \mathcal{F} be a subclass of B_1 such that $\mathcal{F} + \mathcal{F} \subset \mathcal{F}$ and \mathcal{F} with the metric of uniform convergence is closed. Let $\sigma \mathcal{F}(C) = \{f \in \mathcal{F}; f$ satisfies (**).

Key Words: derivative, uniformly convergent series of functions

Mathematical Reviews subject classification: 26A15, 26A21

Received by the editors November 13, 2005 Communicated by: B. S. Thomson

⁷⁹

Remark 5. Because $\Delta + \Delta \subset \Delta$ and $\Delta[unif]$ is closed, the definition of $\sigma\Delta(C) \subset \Delta$ is correct.

The main result of the present paper is the following theorem.

Theorem 6. Consider Δ furnished with the metric of uniform convergence. Then, $\sigma\Delta(C)$ is a closed nowhere dense set in the space Δ .

First of all we show that $\sigma \Delta(C) \subsetneq \Delta$.

Lemma 7. Let f_n , n = 1, 2, ..., be functions in $\mathcal{D}(C)$ such that the partial sums $s_k = \sum_{n=1}^k f_n$, k = 1, 2, ..., belong to D and the series $\sum_{n=1}^{\infty} f_n$ uniformly converges to the function f. Then, for each pair of real numbers α and β , $\alpha < \beta$, and for every open interval $I \subset (0, 1)$, if $f^{-1}(\alpha, \beta) \cap I \neq \emptyset$, then there exists an interval $J \subset I$ such that $f(J) \subset (\alpha, \beta)$.

PROOF. Let $x_0 \in f^{-1}(\alpha,\beta) \cap I$. Without loss of generality, we may assume that $f(x_0) = 0$ and $x_0 \in f^{-1}(-\alpha,\alpha) \cap I$. The series $\sum_{n=1}^{\infty} f_n$ converges uniformly to f. Hence for $\varepsilon = \frac{\alpha}{2}$ there is $k(\varepsilon) \in N$ such that $\left| f(x) - \sum_{n=1}^{k} f_n \right| < \varepsilon$ for every $k > k(\varepsilon)$, $x \in I$. Take a fixed integer $k > k(\varepsilon)$. We show that there exists a point x_0^* of continuity of the function $s_k = \sum_{n=1}^{k} f_n$ for which $|s_k(x_0^*)| < \varepsilon$. Let $A_n, n = 1, 2, \ldots$, be closed nowhere dense sets such that $f_n \upharpoonright_{A_n}, f_n \upharpoonright_{\sim A_n}$ are continuous functions and let

$$x_0 \in A_n$$
 for $n = 1, 2, \dots, m_0$,
 $x_0 \notin A_n$ for $n = m_0 + 1, \dots, k$.

Let

$$f^{10} = \sum_{n=1}^{m_0} f_n, \quad f^{20} = \sum_{n=m_0+1}^k f_n.$$

Since the functions $f_n \upharpoonright_{A_n}, n = 1, 2, ..., m_0$, and f^{20} are continuous at x_0 , for positive real numbers $\lambda_0, \zeta_0, \lambda_0 + \zeta_0 + |s_k(x_0)| < \varepsilon$, there exists a neighborhood $O(x_0) \subset I$ of x_0 such that

$$|f_n(x) - f_n(x_0)| < \frac{\lambda_0}{m_0}$$
 for every $x \in A_n \cap O(x_0), n = 1, 2, \dots, m_0$,
 $|f^{20}(x) - f^{20}(x_0)| < \zeta_0$ for every $x \in O(x_0)$

and
$$\bigcup_{n=m_0+1}^{k} A_n \cap O(x_0) = \emptyset$$
. If $|s_k(x)| < \varepsilon$ for every $x \in O(x_0)$, then

there exists $x_1 \in O(x_0) \setminus \bigcup_{n=1}^k A_n$. The function s_k is continuous at the point $x_0^* = x_1$ and $|s_k(x_0^*)| < \varepsilon$. Otherwise, $|s_k(x_1^*)| \ge \varepsilon$ for any $x_1^* \in O(x_0)$. The function s_k has the Darboux property. Hence for certain x_1 lying between x_0 and x_1^* , we have

$$\lambda_0 + \zeta_0 + |s_k(x_0)| < |s_k(x_1)| < \varepsilon \le |s_k(x_1^*)|.$$

With a suitable change of subscripts, we get

$$x_1 \in A_n$$
 for $n = 1, 2, \dots, m_1$,
 $x_1 \notin A_n$ for $n = m_1 + 1, \dots, k$.

Evidently, $m_1 \leq m_0$. Equality $m_1 = m_0$ leads to the contradiction of the selection of x_1 , because in this case

$$|s_{k}(x_{1})| = \left| f^{10}(x_{1}) + f^{20}(x_{1}) \right|$$

$$\leq \sum_{n=1}^{m_{0}} |f_{n}(x_{1}) - f_{n}(x_{0})| + \left| f^{20}(x_{1}) - f^{20}(x_{0}) \right| + |s_{k}(x_{0})|$$

$$< \lambda_{0} + \zeta_{0} + |s_{k}(x_{0})|.$$

That is, $m_1 < m_0$. Now, we shall repeat the procedure. Let

$$f^{11} = \sum_{n=1}^{m_1} f_n, \quad f^{21} = \sum_{n=m_1+1}^k f_n$$

and let λ_1, ζ_1 be positive real numbers, $\lambda_1 + \zeta_1 + |s_k(x_1)| < \varepsilon$, and let $O(x_1)$ be a neighborhood of $x_1, O(x_1) \subset O(x_0)$, such that

$$|f_n(x) - f_n(x_1)| < \frac{\lambda_1}{m_1} \text{ for every } x \in A_n \cap O(x_1), \ n = 1, 2, \dots, m_1,$$
$$|f^{21}(x) - f^{21}(x_1)| < \zeta_1 \text{ for every } x \in O(x_1)$$

and $\bigcup_{n=m_1+1}^{k} A_n \cap O(x_1) = \emptyset$. Again, if $|s_k(x)| < \varepsilon$ for all $x \in O(x_1)$, then there is $x_2 \in O(x_1) \setminus \bigcup_{n=1}^{k} A_n$. The function s_k is continuous at the point

 $x_0^* = x_2$ and $|s_k(x_0^*)| < \varepsilon$. In the opposite case, we can analogously as above find x_2 , such that $|s_k(x_2)| < \varepsilon$,

$$x_2 \in A_n$$
 for $n = 1, 2, \dots, m_2$,
 $x_2 \notin A_n$ for $n = m_2 + 1, \dots, k$

and moreover, $m_2 < m_1$. Continuing this way, after a finite number of steps, we shall find $x_0^* \in I$ such that $x_0^* \notin \bigcup_{n=1}^k A_n$ and $|s_k(x_0^*)| < \varepsilon$. From the continuity of the functions s_k at the point x_0^* , it follows that there exists an interval $J \subset I$ such that $x_0^* \in J$ and $|s_k(x)| < \varepsilon$ for every $x \in J$. From there,

$$|f(x)| \le |f(x) - s_k(x)| + |s_k(x)| < \varepsilon + \varepsilon = \alpha \text{ for every } x \in J,$$

and then $J \subset f^{-1}(-\alpha, \alpha)$.

Example 8. Let K be a perfect, nowhere dense subset of the interval (0,1) of positive Lebesgue measure, $\lambda(K) > 0$, and let E be a subset of K such that E is of type F_{σ} and the density d(x, E) = 1 for all $x \in E$. Then, from [1] Theorem 6.5. we get the existence of a function $f \in bA$ such that

$$0 < f(x) \le 1 \quad for \ all \ x \in E$$
$$f(x) = 0 \quad for \ all \ x \notin E.$$

From the inclusion $bA \subset b\Delta$, it follows that $f \in \Delta$, but immediately from Lemma 7, $f \notin \sigma\Delta(C)$. Indeed, for any $0 < \alpha < \beta \leq 1$, the set $f^{-1}((\alpha, \beta)) \subset K$ is nonempty and nowhere dense.

Next, we prove that $\sigma \Delta(C)$ is closed in the space Δ .

Definition 9. Define $\Delta^0(C) = \{f \in \Delta; f \text{ satisfies } (***)\}.$

Lemma 10. Let $f_i \in \Delta(C), i = 1, 2, ..., n$. If $\left|\sum_{i=1}^n f_i\right| < \varepsilon$, then for every $\delta > 0$ there exists an open set U and a sequence of functions $g_0 \in C, g_1, ..., g_n \in \Delta^0(C)$ such that $\lambda(U) < \delta$ and

(a)
$$\sum_{i=1}^{n} f_i = \sum_{i=0}^{n} g_i,$$

(b) $\left| \sum_{i=0}^{k} g_i \right| < \varepsilon$ for every $k = 0, 1, \dots, n,$
(c) $g_i(x) = 0$ for every $x \notin U, \quad i = 1, \dots, n.$

PROOF. In the proof of the lemma, we use the induction principle. Let $f_1 \in \Delta(C)$, $|f_1| < \varepsilon$ and let the functions $f_1 \upharpoonright_{A_1}$ and $f_1 \upharpoonright_{\sim A_1}$ be continuous, where A_1 is a closed set. Choose an open set $V \supset A_1$ such that $\lambda(V \setminus A_1) < \delta$ and let $U = V \setminus A_1$. Since $f_1 \upharpoonright_{\sim U}$ is continuous, according to Tietze's extension theorem there is a continuous function g_0 defined on (0, 1) such that $|g_0| < \varepsilon$, $g_0 \upharpoonright_{\sim U} = f_1 \upharpoonright_{\sim U}$. Then $g_1 = f_1 - g_0 \in \Delta$, $g_1 \upharpoonright_{\sim U} = 0$ and $g_1 \upharpoonright_U$ is continuous; that is, $g_1 \in \Delta^0(C)$ and conditions (a), (b), (c) are true.

Now let the assertion of the lemma hold for an arbitrary sum of n-1functions. We show the validity of the lemma for an arbitrary sum of nfunctions. Assume $f_i \in \Delta(C)$, i = 1, 2, ..., n, $\left|\sum_{i=1}^n f_i\right| < \varepsilon$, and let the closed set A_i correspond to the function f_i in the sense of the definition of $\Delta(C)$. Let $J_k = (a_k, b_k), \ k = 1, 2, \dots$, be the sequence of contiguous intervals of the closed set $A = \bigcap_{i=1}^{n} A_i$. On every interval J_k , we construct a decreasing sequence $x_k^j \searrow a_k$ and an increasing sequence $y_k^j \nearrow b_k$, $j = 1, 2, \ldots$, such that x_k^j $y_k^j \notin \bigcup_{i=1}^n A_i$ and $x_k^1 < y_k^1$. We can require for the sequence of intervals I_k^j , j =1,2,..., generated from intervals $\langle x_k^{j+1}, x_k^j \rangle, \langle x_k^1, y_k^1 \rangle, \langle y_k^j, y_k^{j+1} \rangle$ that for every $j = 1, 2, \ldots$, there exists at least one A_i such that $I_k^j \cap A_i = \emptyset$. That means that on every interval I_k^j , at least one function f_i is continuous. Therefore, the sum $\sum_{i=1}^{n} f_i$ can be expressed on every interval I_k^j as a sum of n-1 functions from $\Delta(C)$. According to (inductive hypothesis) the assumption, there exists an open set $V_k^j \subset I_k^j$ and a sequence of functions $h_1 \in C, h_2, h_3, \ldots, h_n \in \Delta^0(C)$ such that $\lambda\left(V_k^j\right)$ is sufficiently small and $\sum_{i=1}^n f_i = \sum_{i=1}^n h_i$, $\left|\sum_{i=1}^k h_i\right| < \varepsilon$ for every $k = 1, \ldots, n, h_i(x) = 0$ for every $x \notin V_k^j, i = 2, \ldots, n$. Then, on every interval J_k , we define an open set $V_k = \bigcup_{j=1}^{\infty} V_k^j$ and a sequence of functions $h_1 \in C$, $h_2, h_3, \ldots, h_n \in \Delta^0(C)$. We can demand that $\lambda(V_k) < \frac{\delta}{2^k} \lambda(J_k)$, and for the densities we have $d(a_k, V_k) = d(b_k, V_k) = 0$ to be valid. Define the functions h_1, \ldots, h_n on the set A by

$$h_1(x) = \sum_{i=1}^n f_i(x)$$
, and $h_2(x) = \ldots = h_n(x) = 0$, $x \in A$.

Evidently,

$$\left\{x, h_1\left(x\right) \neq \sum_{i=1}^{n} f_i\left(x\right)\right\} \subset V = \bigcup_{k=1}^{\infty} V_k, \ \lambda\left(V\right) < \delta$$

and

$$h_i(x) = 0$$
 for every $x \notin V$, $i = 2, \dots, n$.

Moreover, d(x, V) = 0 for every $x \in A$. Because $\left|\sum_{i=1}^{k} h_i\right| < \varepsilon$ for every $k = 1, \ldots, n$, the functions h_1, \ldots, h_n are bounded. To show that they belong to the class Δ , it suffices to verify that for every x_0 ,

$$h_i(x_0) = \lim_{E_m \to x_0} \frac{1}{\lambda(E_m)} \int_{E_m} h_i \, d\lambda \tag{1}$$

for each sequence E_m , m = 1, 2, ..., of intervals contracting to x_0 ([1] Theorem 8.4. p. 41). If $x_0 \notin A$, according to inductive hypothesis, the condition above yields (1). Now let $x_0 \in A$. Then, $\sum_{i=1}^n f_i \in b\Delta$ and

$$h_1(x_0) = \sum_{i=1}^n f_i(x_0) = \lim_{E_m \to x_0} \frac{1}{\lambda(E_m)} \int_{E_m} \sum_{i=1}^n f_i \, d\lambda$$
$$= \lim_{E_m \to x_0} \frac{1}{\lambda(E_m)} \int_{E_m} h_1 \, d\lambda - \frac{1}{\lambda(E_m)} \int_{E_m} h_1 - \sum_{i=1}^n f_i \, d\lambda$$
$$= \lim_{E_m \to x_0} \frac{1}{\lambda(E_m)} \int_{E_m} h_1 \, d\lambda - \frac{1}{\lambda(E_m)} \int_{E_m \cap V} h_1 - \sum_{i=1}^n f_i \, d\lambda$$
$$= \lim_{E_m \to x_0} \frac{1}{\lambda(E_m)} \int_{E_m} h_1 \, d\lambda.$$

This follows from the boundedness of $h_1 - \sum_{i=1}^n f_i$ and from the fact that $d(x_0, V) = 0$. Thus, $h_1 \in \Delta$, the functions $h_1 \upharpoonright_A$, $h_1 \upharpoonright_{\sim A}$ are continuous, and hence $h_1 \in \Delta(C)$. Using the same arguments, we get

$$\lim_{E_m \to x_0} \frac{1}{\lambda(E_m)} \int_{E_m} h_i \ d\lambda = \lim_{E_m \to x_0} \frac{1}{\lambda(E_m)} \int_{E_m \cap V} h_i \ d\lambda = 0 = h_i(x_0)$$

84

for every $i = 2, \ldots, n$, and hence, $h_i \in \Delta^0(C)$.

Since $h_1 \in \Delta(C)$ and $|h_1| < \varepsilon$, according to the first part of the proof, for every δ_1 , $0 < \delta_1 < \delta - \lambda(V)$ there exists an open set W, $\lambda(W) < \delta_1$, and functions $g_0 \in C$ and $g_1 \in \Delta^0(C)$ such that $g_0 + g_1 = h_1$, $\left|\sum_{i=0}^k g_i\right| < \varepsilon$ for every k = 0, 1, and $g_1(x) = 0$ for every $x \notin W$. Let $U = W \cup V$, $g_i = h_i$ for $i = 2, \ldots, n$. Because $\lambda(U) < \delta$ and $g_0 \in C$, $g_1, \ldots, g_n \in \Delta^0(C)$ satisfy the conditions (a), (b), (c), and the proof of Lemma 10 is complete. \Box

Next, we shall show that $\sigma\Delta(C)$ is closed in the space Δ with the metric of uniform convergence. If a sequence $f_n \in \sigma\Delta(C)$, $n = 1, 2, \ldots$, uniformly converges to a function f, then

$$f = f_1 + \sum_{n=1}^{\infty} (f_{n+1} - f_n).$$

Since for each n, f_n is the sum of a uniformly convergent series, instead of the function f_n we can consider a partial sum s_n of functions from $\Delta(C)$ such that $s_n \Rightarrow f$ and $|s_{n+p} - s_n| < \frac{1}{2^n}$ for every $p \in N$. Evidently,

$$f = s_1 + \sum_{n=1}^{\infty} (s_{n+1} - s_n).$$

According to Lemma 10 above, for every $n \in N$ there exists a sequence of functions $g_{n_1}, g_{n_2}, \ldots, g_{n_{k_n}} \in \Delta(C)$ such that

$$s_{n+1} - s_n = \sum_{i=1}^{k_n} g_{n_i},$$
$$\left| \sum_{i=1}^k g_{n_i} \right| < \frac{1}{2^n} \text{ for every } k = 1, 2, \dots, k_n$$

For $f = s_1 + \sum_{n=1}^{\infty} \sum_{i=1}^{k_n} g_{n_i}$, we have $f \in \sigma \Delta(C)$, because the sequence of partial sums $s_n + \sum_{i=1}^{k} g_{n_i}$, $n = 1, 2, \ldots, k = 1, 2, \ldots, k_n$, of the series $s_1 + \sum_{n=1}^{\infty} \sum_{i=1}^{k_n} g_{n_i}$ is uniformly convergent, which follows from the inequality

$$\left| f - \left(s_n + \sum_{i=1}^k g_{n_i} \right) \right| \le |f - s_n| + \left| \sum_{i=1}^k g_{n_i} \right| < |f - s_n| + \frac{1}{2^n}$$

and from $s_n \rightrightarrows f$.

It remains to show that the set $\Delta \setminus \sigma \Delta(C)$ is dense in Δ . Let $f \in \Delta$, $\varepsilon > 0$. Since $f \in B_1 \supset \Delta$, we can choose points $x_1 < x_2$ of continuity of the function f, such that

$$|f(x) - f(x_1)| < \frac{\varepsilon}{3}$$
 for every $x \in \langle x_1, x_2 \rangle$.

Define the function g by

$$g(x) = \begin{cases} f(x) & \text{if } x \notin (x_1, x_2) \\ \text{linear} & \text{on } \langle x_1, x_2 \rangle \end{cases}$$

and the function h, by

$$h(x) = \begin{cases} 0 & \text{if } x \notin (x_1, x_2) \\ & \text{a copy of the function of Example 8 is on } (x_1, x_2). \end{cases}$$

Then $w = g + \frac{\varepsilon}{3}h \notin \sigma\Delta(C)$ but $|f - w| \leq |f - g| + \frac{\varepsilon}{3} < 2\frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$, which means that $\sigma\Delta(C)$ is nowhere dense in Δ .

References

- A. M. Bruckner, Differentiation of Real Functions, Lecture notes in Math. 659, Springer-Verlag, Berlin, (1978).
- [2] J. G. Ceder, T. L. Pearson, A Survey of Darboux Baire 1 Functions, Real. Anal. Exch., 9 (1984), 179–194.
- [3] Z. Grande, On a Theorem of Menkyna, Real. Anal. Exch., 18(2) (1992-1993), 585–589.
- [4] R. Menkyna, Classifying the Set Where a Baire 1 Function is Approximately Continuous, Real. Anal. Exch., 14(2) (1988-1989), 413–419.

86