ON A SPECIAL SUBCLASS OF THE SET OF DERIVATIVES

Abstract

We deal with the class of functions defined as a sum of a uniformly convergent series of functions continuous both on a closed set and on its complement. Such functions are mentioned in the literature, e.g., in [1], [2], [3], [4]. We investigate the particular class of derivatives.

We deal with classes of real functions defined on the interval (0,1). As usual the symbols C, D, B_{1}, Δ, and A stand for the class of continuous, Darboux, Baire 1 functions, functions that are derivatives or approximately continuous functions, respectively.

Consider the following three properties of a function f on $(0,1)$.
(*) There exists a closed set $A \subset(0,1)$ such that $f \upharpoonright_{A}$ and $f \upharpoonright_{\sim A}$ are continuous;
$\left({ }^{* *}\right)$ There exists a sequence of functions $f_{n} \in \mathcal{F}(C), n=1,2, \ldots$, such that the series $\sum_{n=1}^{\infty} f_{n}$ uniformly converges to f;
$(* * *)$ There exists a closed set $A \subset(0,1)$ such that $f \upharpoonright_{A}=0$ and $f \upharpoonright_{\sim A}$ is continuous.

Definition 1. Let \mathcal{F} be a subclass of B_{1}. Let $\mathcal{F}(C)=\{f \in \mathcal{F}, f$ satisfies $(*)\}$.
Remark 2. In Definition 1, it suffices to consider nowhere dense sets A.
Remark 3. Evidently, $D(C) \subset D B_{1}$.
Definition 4. Let \mathcal{F} be a subclass of B_{1} such that $\mathcal{F}+\mathcal{F} \subset \mathcal{F}$ and \mathcal{F} with the metric of uniform convergence is closed. Let $\sigma \mathcal{F}(C)=\{f \in \mathcal{F} ; f$ satisfies $(* *)\}$.

[^0]Remark 5. Because $\Delta+\Delta \subset \Delta$ and $\Delta[u n i f]$ is closed, the definition of $\sigma \Delta(C) \subset \Delta$ is correct.

The main result of the present paper is the following theorem.
Theorem 6. Consider Δ furnished with the metric of uniform convergence. Then, $\sigma \Delta(C)$ is a closed nowhere dense set in the space Δ.

First of all we show that $\sigma \Delta(C) \varsubsetneqq \Delta$.
Lemma 7. Let $f_{n}, n=1,2, \ldots$, be functions in $\mathcal{D}(C)$ such that the partial sums $s_{k}=\sum_{n=1}^{k} f_{n}, k=1,2, \ldots$, belong to D and the series $\sum_{n=1}^{\infty} f_{n}$ uniformly converges to the function f. Then, for each pair of real numbers α and β, $\alpha<\beta$, and for every open interval $I \subset(0,1)$, if $f^{-1}(\alpha, \beta) \cap I \neq \emptyset$, then there exists an interval $J \subset I$ such that $f(J) \subset(\alpha, \beta)$.

Proof. Let $x_{0} \in f^{-1}(\alpha, \beta) \cap I$. Without loss of generality, we may assume that $f\left(x_{0}\right)=0$ and $x_{0} \in f^{-1}(-\alpha, \alpha) \cap I$. The series $\sum_{n=1}^{\infty} f_{n}$ converges uniformly to f. Hence for $\varepsilon=\frac{\alpha}{2}$ there is $k(\varepsilon) \in N$ such that $\left|f(x)-\sum_{n=1}^{k} f_{n}\right|<\varepsilon$ for every $k>k(\varepsilon), x \in I$. Take a fixed integer $k>k(\varepsilon)$. We show that there exists a point x_{0}^{*} of continuity of the function $s_{k}=\sum_{n=1}^{k} f_{n}$ for which $\left|s_{k}\left(x_{0}^{*}\right)\right|<\varepsilon$. Let $A_{n}, n=1,2, \ldots$, be closed nowhere dense sets such that $f_{n} \upharpoonright_{A_{n}}, f_{n} \upharpoonright \sim A_{n}$ are continuous functions and let

$$
\begin{aligned}
& x_{0} \in A_{n} \text { for } n=1,2, \ldots, m_{0} \\
& x_{0} \notin A_{n} \text { for } n=m_{0}+1, \ldots, k
\end{aligned}
$$

Let

$$
f^{10}=\sum_{n=1}^{m_{0}} f_{n}, \quad f^{20}=\sum_{n=m_{0}+1}^{k} f_{n}
$$

Since the functions $f_{n} \upharpoonright_{A_{n}}, n=1,2, \ldots, m_{0}$, and f^{20} are continuous at x_{0}, for positive real numbers $\lambda_{0}, \zeta_{0}, \lambda_{0}+\zeta_{0}+\left|s_{k}\left(x_{0}\right)\right|<\varepsilon$, there exists a neighborhood $O\left(x_{0}\right) \subset I$ of x_{0} such that

$$
\begin{gathered}
\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\frac{\lambda_{0}}{m_{0}} \text { for every } x \in A_{n} \cap O\left(x_{0}\right), n=1,2, \ldots, m_{0} \\
\left|f^{20}(x)-f^{20}\left(x_{0}\right)\right|<\zeta_{0} \text { for every } x \in O\left(x_{0}\right)
\end{gathered}
$$

and $\bigcup_{n=m_{0}+1}^{k} A_{n} \cap O\left(x_{0}\right)=\emptyset$. If $\left|s_{k}(x)\right|<\varepsilon$ for every $x \in O\left(x_{0}\right)$, then there exists $x_{1} \in O\left(x_{0}\right) \backslash \bigcup_{n=1}^{k} A_{n}$. The function s_{k} is continuous at the point $x_{0}^{*}=x_{1}$ and $\left|s_{k}\left(x_{0}^{*}\right)\right|<\varepsilon$. Otherwise, $\left|s_{k}\left(x_{1}^{*}\right)\right| \geq \varepsilon$ for any $x_{1}^{*} \in O\left(x_{0}\right)$. The function s_{k} has the Darboux property. Hence for certain x_{1} lying between x_{0} and x_{1}^{*}, we have

$$
\lambda_{0}+\zeta_{0}+\left|s_{k}\left(x_{0}\right)\right|<\left|s_{k}\left(x_{1}\right)\right|<\varepsilon \leq\left|s_{k}\left(x_{1}^{*}\right)\right|
$$

With a suitable change of subscripts, we get

$$
\begin{aligned}
& x_{1} \in A_{n} \text { for } n=1,2, \ldots, m_{1}, \\
& x_{1} \notin A_{n} \text { for } n=m_{1}+1, \ldots, k .
\end{aligned}
$$

Evidently, $m_{1} \leq m_{0}$. Equality $m_{1}=m_{0}$ leads to the contradiction of the selection of x_{1}, because in this case

$$
\begin{aligned}
\left|s_{k}\left(x_{1}\right)\right| & =\left|f^{10}\left(x_{1}\right)+f^{20}\left(x_{1}\right)\right| \\
& \leq \sum_{n=1}^{m_{0}}\left|f_{n}\left(x_{1}\right)-f_{n}\left(x_{0}\right)\right|+\left|f^{20}\left(x_{1}\right)-f^{20}\left(x_{0}\right)\right|+\left|s_{k}\left(x_{0}\right)\right| \\
& <\lambda_{0}+\zeta_{0}+\left|s_{k}\left(x_{0}\right)\right| .
\end{aligned}
$$

That is, $m_{1}<m_{0}$. Now, we shall repeat the procedure. Let

$$
f^{11}=\sum_{n=1}^{m_{1}} f_{n}, \quad f^{21}=\sum_{n=m_{1}+1}^{k} f_{n}
$$

and let λ_{1}, ζ_{1} be positive real numbers, $\lambda_{1}+\zeta_{1}+\left|s_{k}\left(x_{1}\right)\right|<\varepsilon$, and let $O\left(x_{1}\right)$ be a neighborhood of $x_{1}, O\left(x_{1}\right) \subset O\left(x_{0}\right)$, such that

$$
\begin{gathered}
\left|f_{n}(x)-f_{n}\left(x_{1}\right)\right|<\frac{\lambda_{1}}{m_{1}} \text { for every } x \in A_{n} \cap O\left(x_{1}\right), n=1,2, \ldots, m_{1}, \\
\left|f^{21}(x)-f^{21}\left(x_{1}\right)\right|<\zeta_{1} \text { for every } x \in O\left(x_{1}\right)
\end{gathered}
$$

and $\bigcup_{n=m_{1}+1}^{k} A_{n} \cap O\left(x_{1}\right)=\varnothing$. Again, if $\left|s_{k}(x)\right|<\varepsilon$ for all $x \in O\left(x_{1}\right)$, then there is $x_{2} \in O\left(x_{1}\right) \backslash \bigcup_{n=1}^{k} A_{n}$. The function s_{k} is continuous at the point
$x_{0}^{*}=x_{2}$ and $\left|s_{k}\left(x_{0}^{*}\right)\right|<\varepsilon$. In the opposite case, we can analogously as above find x_{2}, such that $\left|s_{k}\left(x_{2}\right)\right|<\varepsilon$,

$$
\begin{aligned}
& x_{2} \in A_{n} \text { for } n=1,2, \ldots, m_{2}, \\
& x_{2} \notin A_{n} \text { for } n=m_{2}+1, \ldots, k
\end{aligned}
$$

and moreover, $m_{2}<m_{1}$. Continuing this way, after a finite number of steps, we shall find $x_{0}^{*} \in I$ such that $x_{0}^{*} \notin \bigcup_{n=1}^{k} A_{n}$ and $\left|s_{k}\left(x_{0}^{*}\right)\right|<\varepsilon$. From the continuity of the functions s_{k} at the point x_{0}^{*}, it follows that there exists an interval $J \subset I$ such that $x_{0}^{*} \in J$ and $\left|s_{k}(x)\right|<\varepsilon$ for every $x \in J$. From there,

$$
|f(x)| \leq\left|f(x)-s_{k}(x)\right|+\left|s_{k}(x)\right|<\varepsilon+\varepsilon=\alpha \text { for every } x \in J
$$

and then $J \subset f^{-1}(-\alpha, \alpha)$.
Example 8. Let K be a perfect, nowhere dense subset of the interval $(0,1)$ of positive Lebesgue measure, $\lambda(K)>0$, and let E be a subset of K such that E is of type F_{σ} and the density $d(x, E)=1$ for all $x \in E$. Then, from [1] Theorem 6.5. we get the existence of a function $f \in b A$ such that

$$
\begin{array}{cl}
0<f(x) \leq 1 & \text { for all } x \in E \\
f(x)=0 & \text { for all } x \notin E
\end{array}
$$

From the inclusion $b A \subset b \Delta$, it follows that $f \in \Delta$, but immediately from Lemma 7, $f \notin \sigma \Delta(C)$. Indeed, for any $0<\alpha<\beta \leq 1$, the set $f^{-1}((\alpha, \beta)) \subset$ K is nonempty and nowhere dense.

Next, we prove that $\sigma \Delta(C)$ is closed in the space Δ.
Definition 9. Define $\Delta^{0}(C)=\{f \in \Delta ; f$ satisfies $(* * *)\}$.
Lemma 10. Let $f_{i} \in \Delta(C), i=1,2, \ldots, n$. If $\left|\sum_{i=1}^{n} f_{i}\right|<\varepsilon$, then for every $\delta>0$ there exists an open set U and a sequence of functions $g_{0} \in C, g_{1}, \ldots, g_{n} \in$ $\Delta^{0}(C)$ such that $\lambda(U)<\delta$ and
(a) $\sum_{i=1}^{n} f_{i}=\sum_{i=0}^{n} g_{i}$,
(b) $\left|\sum_{i=0}^{k} g_{i}\right|<\varepsilon$ for every $k=0,1, \ldots, n$,
(c) $g_{i}(x)=0$ for every $x \notin U, \quad i=1, \ldots, n$.

Proof. In the proof of the lemma, we use the induction principle. Let $f_{1} \in$ $\Delta(C),\left|f_{1}\right|<\varepsilon$ and let the functions $f_{1} \upharpoonright A_{1}$ and $f_{1} \upharpoonright \sim A_{1}$ be continuous, where A_{1} is a closed set. Choose an open set $V \supset A_{1}$ such that $\lambda\left(V \backslash A_{1}\right)<\delta$ and let $U=V \backslash A_{1}$. Since $f_{1} \upharpoonright_{\sim U}$ is continuous, according to Tietze's extension theorem there is a continuous function g_{0} defined on $(0,1)$ such that $\left|g_{0}\right|<\varepsilon$, $g_{0} \upharpoonright \sim U=f_{1} \upharpoonright \sim U$. Then $g_{1}=f_{1}-g_{0} \in \Delta, g_{1} \upharpoonright \sim U=0$ and $g_{1} \upharpoonright_{U}$ is continuous; that is, $g_{1} \in \Delta^{0}(C)$ and conditions $(a),(b),(c)$ are true.

Now let the assertion of the lemma hold for an arbitrary sum of $n-1$ functions. We show the validity of the lemma for an arbitrary sum of n functions. Assume $f_{i} \in \Delta(C), i=1,2, \ldots, n,\left|\sum_{i=1}^{n} f_{i}\right|<\varepsilon$, and let the closed set A_{i} correspond to the function f_{i} in the sense of the definition of $\Delta(C)$. Let $J_{k}=\left(a_{k}, b_{k}\right), k=1,2, \ldots$, be the sequence of contiguous intervals of the closed set $A=\bigcap_{i=1}^{n} A_{i}$. On every interval J_{k}, we construct a decreasing sequence $x_{k}^{j} \searrow a_{k}$ and an increasing sequence $y_{k}^{j} \nearrow b_{k}, j=1,2, \ldots$, such that x_{k}^{j}, $y_{k}^{j} \notin \bigcup_{i=1}^{n} A_{i}$ and $x_{k}^{1}<y_{k}^{1}$. We can require for the sequence of intervals $I_{k}^{j}, j=$ $1,2, \ldots$, generated from intervals $\left\langle x_{k}^{j+1}, x_{k}^{j}\right\rangle,\left\langle x_{k}^{1}, y_{k}^{1}\right\rangle,\left\langle y_{k}^{j}, y_{k}^{j+1}\right\rangle$ that for every $j=1,2, \ldots$, there exists at least one A_{i} such that $I_{k}^{j} \cap A_{i}=\emptyset$. That means that on every interval I_{k}^{j}, at least one function f_{i} is continuous. Therefore, the sum $\sum_{i=1}^{n} f_{i}$ can be expressed on every interval I_{k}^{j} as a sum of $n-1$ functions from $\Delta(C)$. According to (inductive hypothesis) the assumption, there exists an open set $V_{k}^{j} \subset I_{k}^{j}$ and a sequence of functions $h_{1} \in C, h_{2}, h_{3}, \ldots, h_{n} \in \Delta^{0}(C)$ such that $\lambda\left(V_{k}^{j}\right)$ is sufficiently small and $\sum_{i=1}^{n} f_{i}=\sum_{i=1}^{n} h_{i},\left|\sum_{i=1}^{k} h_{i}\right|<\varepsilon$ for every $k=1, \ldots, n, h_{i}(x)=0$ for every $x \notin V_{k}^{j}, i=2, \ldots, n$. Then, on every interval J_{k}, we define an open set $V_{k}=\bigcup_{j=1}^{\infty} V_{k}^{j}$ and a sequence of functions $h_{1} \in C$, $h_{2}, h_{3}, \ldots, h_{n} \in \Delta^{0}(C)$. We can demand that $\lambda\left(V_{k}\right)<\frac{\delta}{2^{k}} \lambda\left(J_{k}\right)$, and for the densities we have $d\left(a_{k}, V_{k}\right)=d\left(b_{k}, V_{k}\right)=0$ to be valid. Define the functions h_{1}, \ldots, h_{n} on the set A by

$$
h_{1}(x)=\sum_{i=1}^{n} f_{i}(x), \text { and } h_{2}(x)=\ldots=h_{n}(x)=0, x \in A
$$

Evidently,

$$
\left\{x, h_{1}(x) \neq \sum_{i=1}^{n} f_{i}(x)\right\} \subset V=\bigcup_{k=1}^{\infty} V_{k}, \quad \lambda(V)<\delta
$$

and

$$
h_{i}(x)=0 \text { for every } x \notin V, \quad i=2, \ldots, n
$$

Moreover, $d(x, V)=0$ for every $x \in A$. Because $\left|\sum_{i=1}^{k} h_{i}\right|<\varepsilon$ for every $k=1, \ldots, n$, the functions h_{1}, \ldots, h_{n} are bounded. To show that they belong to the class Δ, it suffices to verify that for every x_{0},

$$
\begin{equation*}
h_{i}\left(x_{0}\right)=\lim _{E_{m} \rightarrow x_{0}} \frac{1}{\lambda\left(E_{m}\right)} \int_{E_{m}} h_{i} d \lambda \tag{1}
\end{equation*}
$$

for each sequence $E_{m}, m=1,2, \ldots$, of intervals contracting to x_{0} ([1] Theorem 8.4. p. 41). If $x_{0} \notin A$, according to inductive hypothesis, the condition above yields (1). Now let $x_{0} \in A$. Then, $\sum_{i=1}^{n} f_{i} \in b \Delta$ and

$$
\begin{aligned}
h_{1}\left(x_{0}\right) & =\sum_{i=1}^{n} f_{i}\left(x_{0}\right)=\lim _{E_{m} \rightarrow x_{0}} \frac{1}{\lambda\left(E_{m}\right)} \int_{E_{m}} \sum_{i=1}^{n} f_{i} d \lambda \\
& =\lim _{E_{m} \rightarrow x_{0}} \frac{1}{\lambda\left(E_{m}\right)} \int_{E_{m}} h_{1} d \lambda-\frac{1}{\lambda\left(E_{m}\right)} \int_{E_{m}} h_{1}-\sum_{i=1}^{n} f_{i} d \lambda \\
& =\lim _{E_{m} \rightarrow x_{0}} \frac{1}{\lambda\left(E_{m}\right)} \int_{E_{m}} h_{1} d \lambda-\frac{1}{\lambda\left(E_{m}\right)} \int_{E_{m} \cap V} h_{1}-\sum_{i=1}^{n} f_{i} d \lambda \\
& =\lim _{E_{m} \rightarrow x_{0}} \frac{1}{\lambda\left(E_{m}\right)} \int_{E_{m}} h_{1} d \lambda .
\end{aligned}
$$

This follows from the boundedness of $h_{1}-\sum_{i=1}^{n} f_{i}$ and from the fact that $d\left(x_{0}, V\right)=0$. Thus, $h_{1} \in \Delta$, the functions $h_{1} \upharpoonright_{A}, h_{1} \upharpoonright_{\sim A}$ are continuous, and hence $h_{1} \in \Delta(C)$. Using the same arguments, we get

$$
\lim _{E_{m} \rightarrow x_{0}} \frac{1}{\lambda\left(E_{m}\right)} \int_{E_{m}} h_{i} d \lambda=\lim _{E_{m} \rightarrow x_{0}} \frac{1}{\lambda\left(E_{m}\right)} \int_{E_{m} \cap V} h_{i} d \lambda=0=h_{i}\left(x_{0}\right)
$$

for every $i=2, \ldots, n$, and hence, $h_{i} \in \Delta^{0}(C)$.
Since $h_{1} \in \Delta(C)$ and $\left|h_{1}\right|<\varepsilon$, according to the first part of the proof, for every $\delta_{1}, 0<\delta_{1}<\delta-\lambda(V)$ there exists an open set $W, \lambda(W)<\delta_{1}$, and functions $g_{0} \in C$ and $g_{1} \in \Delta^{0}(C)$ such that $g_{0}+g_{1}=h_{1},\left|\sum_{i=0}^{k} g_{i}\right|<\varepsilon$ for every $k=0,1$, and $g_{1}(x)=0$ for every $x \notin W$. Let $U=W \cup V, g_{i}=h_{i}$ for $i=2, \ldots, n$. Because $\lambda(U)<\delta$ and $g_{0} \in C, g_{1}, \ldots, g_{n} \in \Delta^{0}(C)$ satisfy the conditions $(a),(b),(c)$, and the proof of Lemma 10 is complete.

Next, we shall show that $\sigma \Delta(C)$ is closed in the space Δ with the metric of uniform convergence. If a sequence $f_{n} \in \sigma \Delta(C), n=1,2, \ldots$, uniformly converges to a function f, then

$$
f=f_{1}+\sum_{n=1}^{\infty}\left(f_{n+1}-f_{n}\right)
$$

Since for each n, f_{n} is the sum of a uniformly convergent series, instead of the function f_{n} we can consider a partial sum s_{n} of functions from $\Delta(C)$ such that $s_{n} \rightrightarrows f$ and $\left|s_{n+p}-s_{n}\right|<\frac{1}{2^{n}}$ for every $p \in N$. Evidently,

$$
f=s_{1}+\sum_{n=1}^{\infty}\left(s_{n+1}-s_{n}\right)
$$

According to Lemma 10 above, for every $n \in N$ there exists a sequence of functions $g_{n_{1}}, g_{n_{2}}, \ldots, g_{n_{k_{n}}} \in \Delta(C)$ such that

$$
\begin{aligned}
s_{n+1}-s_{n} & =\sum_{i=1}^{k_{n}} g_{n_{i}} \\
\left|\sum_{i=1}^{k} g_{n_{i}}\right| & <\frac{1}{2^{n}} \text { for every } k=1,2, \ldots, k_{n}
\end{aligned}
$$

For $f=s_{1}+\sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} g_{n_{i}}$, we have $f \in \sigma \Delta(C)$, because the sequence of partial sums $s_{n}+\sum_{i=1}^{k} g_{n_{i}}, n=1,2, \ldots, k=1,2, \ldots, k_{n}$, of the series $s_{1}+\sum_{n=1}^{\infty} \sum_{i=1}^{k_{n}} g_{n_{i}}$ is uniformly convergent, which follows from the inequality

$$
\left|f-\left(s_{n}+\sum_{i=1}^{k} g_{n_{i}}\right)\right| \leq\left|f-s_{n}\right|+\left|\sum_{i=1}^{k} g_{n_{i}}\right|<\left|f-s_{n}\right|+\frac{1}{2^{n}}
$$

and from $s_{n} \rightrightarrows f$.
It remains to show that the set $\Delta \backslash \sigma \Delta(C)$ is dense in Δ. Let $f \in \Delta, \varepsilon>0$. Since $f \in B_{1} \supset \Delta$, we can choose points $x_{1}<x_{2}$ of continuity of the function f, such that

$$
\left|f(x)-f\left(x_{1}\right)\right|<\frac{\varepsilon}{3} \text { for every } x \in\left\langle x_{1}, x_{2}\right\rangle
$$

Define the function g by

$$
g(x)= \begin{cases}f(x) & \text { if } x \notin\left(x_{1}, x_{2}\right) \\ \text { linear } & \text { on }\left\langle x_{1}, x_{2}\right\rangle\end{cases}
$$

and the function h, by

$$
h(x)= \begin{cases}0 & \text { if } x \notin\left(x_{1}, x_{2}\right) \\ \quad \text { a copy of the function of Example } 8 \text { is on }\left(x_{1}, x_{2}\right)\end{cases}
$$

Then $w=g+\frac{\varepsilon}{3} h \notin \sigma \Delta(C)$ but $|f-w| \leq|f-g|+\frac{\varepsilon}{3}<2 \frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$, which means that $\sigma \Delta(C)$ is nowhere dense in Δ.

References

[1] A. M. Bruckner, Differentiation of Real Functions, Lecture notes in Math. 659, Springer-Verlag, Berlin, (1978).
[2] J. G. Ceder, T. L. Pearson, A Survey of Darboux Baire 1 Functions, Real. Anal. Exch., 9 (1984), 179-194.
[3] Z. Grande, On a Theorem of Menkyna, Real. Anal. Exch., 18(2) (19921993), 585-589.
[4] R. Menkyna, Classifying the Set Where a Baire 1 Function is Approximately Continuous, Real. Anal. Exch., 14(2) (1988-1989), 413-419.

[^0]: Key Words: derivative, uniformly convergent series of functions
 Mathematical Reviews subject classification: 26A15, 26A21
 Received by the editors November 13, 2005
 Communicated by: B. S. Thomson

