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Abstract

We deal with the class of functions defined as a sum of a uniformly
convergent series of functions continuous both on a closed set and on
its complement. Such functions are mentioned in the literature, e.g., in
[1], [2], [3], [4]. We investigate the particular class of derivatives.

We deal with classes of real functions defined on the interval (0, 1). As usual
the symbols C,D,B1,∆, and A stand for the class of continuous, Darboux,
Baire 1 functions, functions that are derivatives or approximately continuous
functions, respectively.

Consider the following three properties of a function f on (0, 1).
(*) There exists a closed set A ⊂ (0, 1) such that f �A and f �∼A are

continuous;
(**) There exists a sequence of functions fn ∈ F (C), n = 1, 2, . . ., such

that the series
∞∑

n=1
fn uniformly converges to f ;

(***) There exists a closed set A ⊂ (0, 1) such that f �A= 0 and f �∼A is
continuous.

Definition 1. Let F be a subclass of B1. Let F (C) = {f ∈ F , f satisfies (∗)}.

Remark 2. In Definition 1, it suffices to consider nowhere dense sets A.

Remark 3. Evidently, D (C) ⊂ DB1.

Definition 4. Let F be a subclass of B1 such that F +F ⊂ F and F with
the metric of uniform convergence is closed. Let σF (C) = {f ∈ F ; f
satisfies (∗∗)}.
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Remark 5. Because ∆ + ∆ ⊂ ∆ and ∆ [unif ] is closed, the definition of
σ∆(C) ⊂ ∆ is correct.

The main result of the present paper is the following theorem.

Theorem 6. Consider ∆ furnished with the metric of uniform convergence.
Then, σ∆(C) is a closed nowhere dense set in the space ∆.

First of all we show that σ∆(C) $ ∆.

Lemma 7. Let fn, n = 1, 2, . . ., be functions in D (C) such that the partial

sums sk =
k∑

n=1
fn, k = 1, 2, . . . , belong to D and the series

∞∑
n=1

fn uniformly

converges to the function f . Then, for each pair of real numbers α and β,
α < β, and for every open interval I ⊂ (0, 1), if f−1 (α, β)∩ I 6= ∅, then there
exists an interval J ⊂ I such that f (J) ⊂ (α, β).

Proof. Let x0 ∈ f−1 (α, β) ∩ I. Without loss of generality, we may assume

that f (x0) = 0 and x0 ∈ f−1 (−α, α)∩I. The series
∞∑

n=1
fn converges uniformly

to f . Hence for ε = α
2 there is k (ε) ∈ N such that

∣∣∣f (x)−
k∑

n=1
fn

∣∣∣ < ε for every

k > k (ε) , x ∈ I. Take a fixed integer k > k (ε). We show that there exists

a point x∗0 of continuity of the function sk =
k∑

n=1
fn for which | sk (x∗0)| < ε.

Let An, n = 1, 2, . . . , be closed nowhere dense sets such that fn �An , fn �∼An

are continuous functions and let

x0 ∈ An for n = 1, 2, . . . ,m0,

x0 /∈ An for n = m0 + 1, . . . , k.

Let

f10 =
m0∑
n=1

fn, f20 =
k∑

n=m0+1

fn.

Since the functions fn �An
, n = 1, 2, . . . ,m0, and f20 are continuous at x0, for

positive real numbers λ0, ζ0, λ0+ζ0+| sk (x0)| < ε, there exists a neighborhood
O (x0) ⊂ I of x0 such that

|fn (x)− fn (x0)| <
λ0

m0
for every x ∈ An ∩O (x0) , n = 1, 2, . . . ,m0,∣∣ f20 (x)− f20 (x0)

∣∣ < ζ0 for every x ∈ O (x0)
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and
k⋃

n=m0+1
An ∩ O (x0) = ∅. If | sk (x)| < ε for every x ∈ O (x0), then

there exists x1 ∈ O (x0) \
k⋃

n=1
An. The function sk is continuous at the point

x∗0 = x1 and |sk (x∗0)| < ε. Otherwise, |sk (x∗1)| ≥ ε for any x∗1 ∈ O (x0). The
function sk has the Darboux property. Hence for certain x1 lying between x0

and x∗1, we have

λ0 + ζ0 + |sk (x0)| < |sk (x1)| < ε ≤ |sk (x∗1)| .

With a suitable change of subscripts, we get

x1 ∈ An for n = 1, 2, . . . ,m1,

x1 /∈ An for n = m1 + 1, . . . , k.

Evidently, m1 ≤ m0. Equality m1 = m0 leads to the contradiction of the
selection of x1, because in this case

|sk (x1)| =
∣∣f10 (x1) + f20 (x1)

∣∣
≤

m0∑
n=1

|fn (x1)− fn (x0)|+
∣∣f20 (x1)− f20 (x0)

∣∣+ |sk (x0)|

< λ0 + ζ0 + |sk (x0)| .

That is, m1 < m0. Now, we shall repeat the procedure. Let

f11 =
m1∑
n=1

fn, f21 =
k∑

n=m1+1

fn

and let λ1, ζ1 be positive real numbers, λ1 + ζ1 + | sk (x1)| < ε, and let O (x1)
be a neighborhood of x1, O (x1) ⊂ O (x0) , such that

|fn (x)− fn (x1)| <
λ1

m1
for every x ∈ An ∩O (x1) , n = 1, 2, . . . ,m1,

∣∣f21 (x)− f21 (x1)
∣∣ < ζ1 for every x ∈ O (x1)

and
k⋃

n=m1+1
An ∩ O (x1) = ∅. Again, if |sk (x)| < ε for all x ∈ O (x1), then

there is x2 ∈ O (x1) \
k⋃

n=1
An. The function sk is continuous at the point
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x∗0 = x2 and |sk (x∗0)| < ε. In the opposite case, we can analogously as above
find x2, such that |sk (x2)| < ε,

x2 ∈ An for n = 1, 2, . . . ,m2,

x2 /∈ An for n = m2 + 1, . . . , k

and moreover, m2 < m1. Continuing this way, after a finite number of steps,

we shall find x∗0 ∈ I such that x∗0 /∈
k⋃

n=1
An and |sk (x∗0)| < ε. From the

continuity of the functions sk at the point x∗0, it follows that there exists an
interval J ⊂ I such that x∗0 ∈ J and |sk (x)| < ε for every x ∈ J . From there,

|f (x)| ≤ |f (x)− sk (x)|+ |sk (x)| < ε + ε = α for every x ∈ J,

and then J ⊂ f−1 (−α, α) .

Example 8. Let K be a perfect, nowhere dense subset of the interval (0, 1)
of positive Lebesgue measure, λ (K) > 0, and let E be a subset of K such that
E is of type Fσ and the density d (x, E) = 1 for all x ∈ E. Then, from [1]
Theorem 6.5. we get the existence of a function f ∈ bA such that

0 <f (x) ≤ 1 for all x ∈ E

f (x)= 0 for all x /∈ E.

From the inclusion bA ⊂ b∆, it follows that f ∈ ∆, but immediately from
Lemma 7, f /∈ σ∆ (C). Indeed, for any 0 < α < β ≤ 1, the set f−1 ((α, β)) ⊂
K is nonempty and nowhere dense.

Next, we prove that σ∆(C) is closed in the space ∆.

Definition 9. Define ∆0 (C) = {f ∈ ∆; f satisfies (∗ ∗ ∗)}.

Lemma 10. Let fi ∈ ∆(C), i = 1, 2, . . . , n. If
∣∣∣∣ n∑
i=1

fi

∣∣∣∣ < ε, then for every δ > 0

there exists an open set U and a sequence of functions g0 ∈ C, g1, . . . , gn ∈
∆0 (C) such that λ (U) < δ and

(a)
n∑

i=1

fi =
n∑

i=0

gi,

(b)
∣∣∣∣ k∑
i=0

gi

∣∣∣∣ < ε for every k = 0, 1, . . . , n,

(c) gi (x) = 0 for every x /∈ U, i = 1, . . . , n.
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Proof. In the proof of the lemma, we use the induction principle. Let f1 ∈
∆(C), |f1| < ε and let the functions f1 �A1 and f1 �∼A1 be continuous, where
A1 is a closed set. Choose an open set V ⊃ A1 such that λ (V \A1) < δ and
let U = V \ A1. Since f1 �∼U is continuous, according to Tietze‘s extension
theorem there is a continuous function g0 defined on (0, 1) such that |g0| < ε,
g0 �∼U= f1 �∼U . Then g1 = f1 − g0 ∈ ∆, g1 �∼U= 0 and g1 �U is continuous;
that is, g1 ∈ ∆0 (C) and conditions (a) , (b) , (c) are true.

Now let the assertion of the lemma hold for an arbitrary sum of n − 1
functions. We show the validity of the lemma for an arbitrary sum of n

functions. Assume fi ∈ ∆(C), i = 1, 2, . . . , n,

∣∣∣∣ n∑
i=1

fi

∣∣∣∣ < ε, and let the closed

set Ai correspond to the function fi in the sense of the definition of ∆(C).
Let Jk = (ak, bk), k = 1, 2, . . . , be the sequence of contiguous intervals of the

closed set A =
n⋂

i=1

Ai. On every interval Jk, we construct a decreasing sequence

xj
k ↘ ak and an increasing sequence yj

k ↗ bk, j = 1, 2, . . . , such that xj
k,

yj
k /∈

n⋃
i=1

Ai and x1
k < y1

k. We can require for the sequence of intervals Ij
k, j =

1, 2, . . . , generated from intervals
〈
xj+1

k , xj
k

〉
,
〈
x1

k, y1
k

〉
,
〈
yj

k, yj+1
k

〉
that for every

j = 1, 2, . . ., there exists at least one Ai such that Ij
k∩Ai = ∅. That means that

on every interval Ij
k, at least one function fi is continuous. Therefore, the sum

n∑
i=1

fi can be expressed on every interval Ij
k as a sum of n − 1 functions from

∆(C). According to (inductive hypothesis) the assumption, there exists an
open set V j

k ⊂ Ij
k and a sequence of functions h1 ∈ C, h2, h3, . . . , hn ∈ ∆0 (C)

such that λ
(
V j

k

)
is sufficiently small and

n∑
i=1

fi =
n∑

i=1

hi,
∣∣∣ k∑

i=1

hi

∣∣∣ < ε for every

k = 1, . . . , n, hi (x) = 0 for every x /∈ V j
k , i = 2, . . . , n. Then, on every interval

Jk, we define an open set Vk =
∞⋃

j=1

V j
k and a sequence of functions h1 ∈ C,

h2, h3, . . . , hn ∈ ∆0 (C). We can demand that λ (Vk) < δ
2k λ (Jk), and for the

densities we have d (ak, Vk) = d (bk, Vk) = 0 to be valid. Define the functions
h1, . . . , hn on the set A by

h1 (x) =
n∑

i=1

fi (x) , and h2 (x) = . . . = hn (x) = 0, x ∈ A.
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Evidently, {
x, h1 (x) 6=

n∑
i=1

fi (x)

}
⊂ V =

∞⋃
k=1

Vk, λ (V ) < δ

and
hi (x) = 0 for every x /∈ V, i = 2, . . . , n.

Moreover, d (x, V ) = 0 for every x ∈ A. Because
∣∣∣∣ k∑
i=1

hi

∣∣∣∣ < ε for every

k = 1, . . . , n, the functions h1, . . . , hn are bounded. To show that they belong
to the class ∆, it suffices to verify that for every x0,

hi (x0) = lim
Em→x0

1
λ (Em)

∫
Em

hi dλ (1)

for each sequence Em, m = 1, 2, . . . , of intervals contracting to x0 ([1] Theorem
8.4. p. 41). If x0 /∈ A, according to inductive hypothesis, the condition above

yields (1). Now let x0 ∈ A. Then,
n∑

i=1

fi ∈ b∆ and

h1 (x0) =
n∑

i=1

fi (x0) = lim
Em→x0

1
λ (Em)

∫
Em

n∑
i=1

fi dλ

= lim
Em→x0

1
λ (Em)

∫
Em

h1 dλ− 1
λ (Em)

∫
Em

h1 −
n∑

i=1

fi dλ

= lim
Em→x0

1
λ (Em)

∫
Em

h1 dλ− 1
λ (Em)

∫
Em∩V

h1 −
n∑

i=1

fi dλ

= lim
Em→x0

1
λ (Em)

∫
Em

h1 dλ.

This follows from the boundedness of h1 −
n∑

i=1

fi and from the fact that

d (x0, V ) = 0. Thus, h1 ∈ ∆, the functions h1 �A, h1 �∼A are continuous,
and hence h1 ∈ ∆(C). Using the same arguments, we get

lim
Em→x0

1
λ (Em)

∫
Em

hi dλ = lim
Em→x0

1
λ (Em)

∫
Em∩V

hi dλ = 0 = hi (x0)
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for every i = 2, . . . , n, and hence, hi ∈ ∆0 (C) .
Since h1 ∈ ∆(C) and |h1| < ε, according to the first part of the proof, for

every δ1, 0 < δ1 < δ − λ (V ) there exists an open set W, λ (W ) < δ1, and

functions g0 ∈ C and g1 ∈ ∆0 (C) such that g0 + g1 = h1,

∣∣∣∣ k∑
i=0

gi

∣∣∣∣ < ε for

every k = 0, 1, and g1 (x) = 0 for every x /∈ W. Let U = W ∪ V, gi = hi for
i = 2, . . . , n. Because λ (U) < δ and g0 ∈ C, g1, . . . , gn ∈ ∆0 (C) satisfy the
conditions (a) , (b) , (c), and the proof of Lemma 10 is complete.

Next, we shall show that σ∆(C) is closed in the space ∆ with the metric
of uniform convergence. If a sequence fn ∈ σ∆(C), n = 1, 2, . . . , uniformly
converges to a function f , then

f = f1 +
∞∑

n=1

(fn+1 − fn).

Since for each n, fn is the sum of a uniformly convergent series, instead of
the function fn we can consider a partial sum sn of functions from ∆(C) such
that sn ⇒ f and |sn+p − sn| < 1

2n for every p ∈ N . Evidently,

f = s1 +
∞∑

n=1

(sn+1 − sn).

According to Lemma 10 above, for every n ∈ N there exists a sequence of
functions gn1 , gn2 , . . . , gnkn

∈ ∆ (C) such that

sn+1 − sn =
kn∑
i=1

gni ,∣∣∣∣∣
k∑

i=1

gni

∣∣∣∣∣ < 1
2n

for every k = 1, 2, . . . , kn .

For f = s1 +
∞∑

n=1

kn∑
i=1

gni
, we have f ∈ σ∆(C), because the sequence of partial

sums sn +
k∑

i=1

gni
, n = 1, 2, . . . , k = 1, 2, . . . , kn, of the series s1 +

∞∑
n=1

kn∑
i=1

gni

is uniformly convergent, which follows from the inequality∣∣∣∣∣f −
(

sn +
k∑

i=1

gni

)∣∣∣∣∣ ≤ |f − sn|+

∣∣∣∣∣
k∑

i=1

gni

∣∣∣∣∣ < |f − sn|+
1
2n
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and from sn ⇒ f .
It remains to show that the set ∆\σ∆ (C) is dense in ∆. Let f ∈ ∆, ε > 0.

Since f ∈ B1 ⊃ ∆, we can choose points x1 < x2 of continuity of the function
f , such that

|f (x)− f (x1)| <
ε

3
for every x ∈ 〈x1, x2〉 .

Define the function g by

g(x) =

{
f(x) if x /∈ (x1, x2)
linear on 〈x1, x2〉

and the function h, by

h(x) =

{
0 if x /∈ (x1, x2)

a copy of the function of Example 8 is on (x1, x2).

Then w = g + ε
3h /∈ σ∆(C) but |f − w| ≤ |f − g| + ε

3 < 2 ε
3 + ε

3 = ε, which
means that σ∆ (C) is nowhere dense in ∆.

References

[1] A. M. Bruckner, Differentiation of Real Functions, Lecture notes in Math.
659, Springer-Verlag, Berlin, (1978).

[2] J. G. Ceder, T. L. Pearson, A Survey of Darboux Baire 1 Functions, Real.
Anal. Exch., 9 (1984), 179–194.

[3] Z. Grande, On a Theorem of Menkyna, Real. Anal. Exch., 18(2) (1992-
1993), 585–589.

[4] R. Menkyna, Classifying the Set Where a Baire 1 Function is Approxi-
mately Continuous, Real. Anal. Exch., 14(2) (1988-1989), 413–419.


