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ON THE MAXIMAL FAMILIES FOR SOME
CLASSES OF STRONGLY

QUASICONTINUOUS FUNCTIONS ON Rm

Abstract

Some generalizations of the notions of approximate quasicontinuity
on Rm and the maximal families (additive, multiplicative, lattice and
with respect to the composition) for these classes of functions are inves-
tigated.

1 Preliminaries.

Let R, Q, Z and N denote, respectively, the set of all real numbers, of all
rationals, of all integers and of all positive integers.

Throughout the present paper we shall use the following differentiation
basis P in the product space Rm for m ∈ N. For every n ∈ N and for each
system of integers k1, . . . , km we define the m-dimensional cube

Pn
k1,...,km

=
[
k1 − 1

2n
,
k1

2n

)
×
[
k2 − 1

2n
,
k2

2n

)
× · · · ×

[
km − 1

2n
,
km

2n

)
.

Moreover, let

Pn = {Pn
k1,...,km

; k1, . . . , km ∈ Z} and P =
∞⋃

n=1

Pn.

Observe that:

(1) if (k1, . . . , km) 6= (l1, . . . , lm), then Pn
k1,...,km

∩ Pn
l1,...lm

= ∅,
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(2) Rm =
⋃

k1,...,km∈Z Pn
k1,...,km

,

(3) if n1 > n2, then for each system (k1, . . . , km) there is a unique system
(l1, . . . lm) such that Pn1

k1,...,km
⊂ Pn2

l1,...,lm
,

(4) for each point x ∈ Rm and for each n ∈ N there is a unique system
(k1(x), . . . , km(x)) such that x ∈ Pn

k1(x),...,km(x)
= Pn(x).

Evidently, for each index k ∈ N and each point x ∈ Rm, we have

P k+1(x) ⊂ P k(x), {x} =
∞⋂

k=1

P k(x) and lim
k→∞

diam(P k(x)) = 0,

where diam(P ) denotes the diameter of the cube P.
Let λ∗m, (λm) denote outer Lebesgue measure in Rm, (Lebesgue measure in

Rm respectively), let Lm denote the family of all λm-measurable sets (i.e., the
sets measurable in the Lebesgue sense) in Rm and let A ⊂ Rm be an arbitrary
set.

For x ∈ Rm we define the upper outer density (the lower density) of the set
A at the point x by

du(A, x) = lim
n→∞

sup
λ∗m(A ∩ Pn(x))

λm(Pn(x))
,
(
dl(A, x) = lim

n→∞
inf

λ∗m(A ∩ Pn(x))
λm(Pn(x))

)
.

A point x ∈ Rm is called an outer density point (with respect to the basis
P) of the set A ⊂ Rm iff dl(A, x) = 1. A point x ∈ Rm is called a density
point (with respect to the basis P ) of the set A ⊂ Rm iff there exists a
λm-measurable set B ⊂ A such that dl(B, x) = 1. Let

φ(A) = {x ∈ Rm;x is a density point of A with respect to P}

and put
Td = {A ∈ Lm;A ⊂ φ(A)}.

The family Td is a topology called the density topology ([1], [2] and [15]).
Denote by Te the Euclidean topology in Rm. Observe that Te ⊂ Td and Te 6= Td.
If A ∈ Te, then we will say that A is an open set.

If x ∈ Rm is a continuity point of the mapping f : (Rm, Te) → (R, Te),
then we say simply that x is continuity point of the function f : Rm → R.

A point x ∈ Rm is called an approximate continuity point of the function
f : Rm → R if x is a continuity point of the mapping f : (Rm, Td) → (R, Te).

We will denote by C(f) (by A(f)) the set of all continuity points (approx-
imate continuity points respectively) of the function f : Rm → R. The set
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D(f) = Rm \ C(f) denotes the set of all discontinuity points of the function
f.

Moreover, denote by C, (by A), [by Cae] the class of all continuous functions
f : R → R (approximately continuous functions f : Rm → R), [the class of all
functions f : Rm → R which are λm-almost everywhere continuous ; i.e., for
which λm(D(f)) = 0, respectively ].

Let T be any topology of subsets of the space Rm and let x ∈ Rm be a
point.

Definition 1. The function f : Rm → R is T - quasicontinuous at the point
x if for every ε > 0 and for every set U ∈ T containing x there is a nonempty
set V ∈ T such that V ⊂ U and f(V ) ⊂ (f(x)− ε, f(x) + ε).

If T = Te, then we say simply that f is quasicontinuous at x ([10], [11]). If
T = Td, then f is called approximately quasicontinuous (with respect to P) at
the point x and we write f ∈ Qap(x). If for every x ∈ Rm, f ∈ Qap(x), then
we say that f is approximately quasicontinuous (with respect to P). The class
of all approximately quasicontinuous functions f : Rm → R we denote by Qap

([4], [5]).
Let A ⊂ R be an arbitrary set. For x ∈ R we define the lower bilateral

density of the set A at x by

Dl(A, x) = lim
h→0

λ1([x− h, x + h] ∩A)
2h

.

A point x ∈ R is called a bilateral density point of the set A ⊂ R iff there is a
λ1-measurable set B ⊂ A such that Dl(B, x) = 1. Let

Φ(A) = {x ∈ R : x is a bilateral density point of A}.

The family τd = {A ∈ L1;A ⊂ Φ(A)} is a topology called the density topology
([1], [15]).

Similarly as above, a point x ∈ R is called an approximate continuity
point of the function f : R → R if x is a continuity point of the mapping
f : (R, τd) → (R, Te). If T = τd, then a function f : R → R which is τd-
quasicontinuous is called approximately quasicontinuous ([4], [5]).

Definition 2. [(Grande [7])]. A function f : R → R is said to be strongly
τd-quasicontinuous at a point x ∈ R if for every η > 0 and for every set
U ∈ τd containing x there is an open interval I such that U ∩ I 6= ∅ and
|f(t)− f(x)| < η for every t ∈ I ∩ U.

Denote by int(A) the interior (Euclidean) of the set A. The family

Tae = {A ∈ Td;λm(A \ int(A)) = 0}
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is also a topology ([12]). If a point x ∈ Rm is a continuity point of the
mapping f : (Rm, Tae) → (R, Te), then we say that the function f : Rm → R
is Tae- continuous at a point x. A function f : Rm → R is Tae-continuous
(everywhere) iff f ∈ A ∩ Cae ([12], [3]). The class of all Tae-continuous
functions f : Rm → R we denote by C(Tae).

2 New Definitions and Notions.

Now we define some classes of strongly quasicontinuous functions f : Rm → R,
which we will investigate in this paper. By analogy, classes of such functions
for the case m = 1 were introduced by Z. Grande ([9]) with respect to the
bilateral density.

Definition 3. Let f : Rm → R be a function and let x ∈ Rm be a point.
Then

• f ∈ Qs(x); i.e., f is called strongly quasicontinuous at a point x if for
every real ε > 0 and for each set A ∈ Td containing x, there is a nonempty
open set O such that A ∩O 6= ∅ and f(O ∩A) ⊂ (f(x)− ε, f(x) + ε).

If for every x ∈ Rm, f ∈ Qs(x), then we say that f is strongly quasicon-
tinuous. Denote by Qs the class of all strongly quasicontinuous functions
f : Rm → R.

• f ∈ Qs1(x) (f ∈ Qs2(x)); i.e., f is called s1-strongly quasicontinuous
(f is called s2- strongly quasicontinuous respectively) at a point x if
for each real ε > 0 and for each set A ∈ Td containing x there exists a
nonempty open set O such that O∩A 6= ∅, O∩A ⊂ C(f) (O∩A ⊂ A(f)
respectively) and f(O ∩A) ⊂ (f(x)− ε, f(x) + ε).

If for each x ∈ Rm, f ∈ Qs1(x) (f ∈ Qs2(x)), then we say that f is s1-
strongly quasicontinuous (f is s2-strongly quasicontinuous respectively ).
Denote by Qs1 , by Qs2) the class of all functions f : Rm → R which are
s1-strongly quasicontinuous (s2-strongly quasicontinuous respectively).

The notion of strong quasicontinuity (for the bilateral density topology in
R) introduced by Z. Grande in [7] is more general than that above (for m = 1).
For example, if f : R → R is defined by

f(x) =

{
0 for x ≤ 0
1 for x > 0,

then the function f is strongly quasicontinuous at 0 in the sense of Grande,
but f 6∈ Qs(0). If f : R → R is strongly quasicontinuous at x in the above
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sense (f ∈ Qs(x)), then f is strongly quasicontinuous at x in the sense of
Grande.

From the definitions above it follows that Qs1 ⊂ Qs2 ⊂ Qs ⊂ Qap. The
inclusions above are proper ([13]); moreover, Qs ⊂ Cae, ([6]).

Let ξ(x) be a property of a function f : Rm → R at a point x (we will
write f ∈ ξ(x)) such that the following are true.

- If f is continuous at x, then f ∈ ξ(x);

- if f ∈ ξ(x), then −f ∈ ξ(x);

- if f ∈ ξ(x) and the restricted function g|O = f |O for some open set O
containing x, then g ∈ ξ(x).

Denote by S the family of all functions f : Rm → R such that for every
real ε > 0, for every point x and for every set A ∈ Td containing x there is a
nonempty open set O such that O ∩ A 6= ∅, f(O ∩ A) ⊂ (f(x) − ε, f(x) + ε)
and f ∈ ξ(t) for every t ∈ O ∩A.

For a set H ⊂ Rm and for a real η > 0, let

O(H, η) =
⋃

x∈H

K(x, η), where K(x, η) = {u ∈ Rm; |x− u| < η}.

The following lemma will be used in the proofs of the next results.

Lemma 1. Let x ∈ Rm and let H ⊂ Rm be a nonempty set such that the
upper density du(int(H),x) = c > 0. Then, there exists a sequence of pairwise
disjoint sets Hn ⊂ int(H), (n = 1, 2, . . .) such that

(1) each set Hn, n = 1, 2, . . . , is the union of a finite family of cubes from
P whose closures are pairwise disjoint;

(2) x 6∈ Hn for each n = 1, 2, . . . ;

(3) the family (Hn)n converges to the point x in the sense of the Hausdorff
metric;

(4) the upper density du

(⋃
n∈N int(Hn),x

)
= c.

Proof. Let U = O(H, 1). There is the first positive integer n(1) such that
the cube Pn(1)(x) ∈ Pn(1) is contained in U and

λm

(
(int(H)) ∩ Pn(1)(x)

)
λm

(
Pn(1)(x)

) >
1
2
· c.
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There is also a finite family of cubes

Q1,n(1), Q2,n(1), . . . , Qi(n(1)),n(1) ∈ P

whose closures are pairwise disjoint and contained in int(Pn(1)(x) ∩H) \ {x}
and

λm

(⋃i(n(1))
i=1 Qi,n(1)

)
λm(Pn(1)(x))

≥
(

1− 1
2

)
· c.

Let H1 =
⋃

i≤i(n(1)) Qi,n(1) and observe that cl(H1) =
⋃

i≤i(n(1)) cl
(
Qi,n(1)

)
.

In general, for j > 1 we find the first positive integer n(j) such that the cube
Pn(j)(x) ∈ Pn(j), Pn(j)(x) ⊂ Pn(j−1)(x) \ cl(Hj−1) with diam

(
Pn(j)(x)

)
<

1
2 · diam

(
Pn(j−1)(x)

)
and

λm

(
int(H) ∩ Pn(j)(x)

)
λ
(
Pn(j)(x)

) >

(
1− 1

2j

)
· c.

For such an integer n(j) there is a finite family of cubes

Q1,n(j), Q2,n(j), . . . , Qi(n(j)),n(j) ∈ P

whose closures are pairwise disjoint and contained in the set
∫ (

Pn(j)(x) ∩H
)
\

{x} and such that

λm

(⋃i(n(j))
i=1 Qi,n(j)

)
λm(Pn(j)(x))

≥
(

1− 1
2j

)
· c.

Let Hj =
⋃

i≤i(n(j)) Qi,n(j) and observe that

cl(Hj) =
⋃

i≤i(n(j))

cl
(
Qi,n(j)

)
.

The sequence (Hj)j satisfies the conditions (1)–(4) of our lemma.

3 The Maximal Families.

In this paper the main results are the m-dimensional analogs of the results
from [8, 14]. Now, let

• Maxadd(S) = {f : Rm → R; f + g ∈ S for every g ∈ S};

• Maxmult(S) = {f : Rm → R; f · g ∈ S for every g ∈ S};
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• Maxmax(S) = {f : Rm → R;max(f, g) ∈ S for every g ∈ S};

• Maxmin(S) = {f : Rm → R;min(f, g) ∈ S for every g ∈ S};

• Maxcomp(S) = {f : R → R; f ◦ g ∈ S for every g ∈ S}.

Remark 1. Evidently, C ⊂ S ∪ C(Tae) ⊂ Qs. So, every function f ∈ S is
λm-almost everywhere continuous (f ∈ Cae) ([6],[7]).

Remark 2. The inclusion

Maxadd(S) ∪Maxmult(S) ∪Maxmax(S) ∪Maxmin(S) ⊂ S

is true.

Proof. Since the constant functions g1 = 0 and g2 = 1 belong to S, for all
functions f1 ∈ Maxadd(S), f2 ∈ Maxmult(S) we obtain that f1 = f1 + g1 ∈ S
and f2 = f2 · g2 ∈ S. So, Maxadd(S) ∪Maxmult(S) ⊂ S.

If f 6∈ S, then there are a real ε > 0, a point x and a set A ∈ Td containing x
such that for every nonempty open set O with O∩A 6= ∅ there is a point t ∈ O∩
A such that |f(t)−f(x)| ≥ ε or f 6∈ ξ(t). Then the functions max(f, f(x)−ε)
and min(f, f(x) + ε) are not in ξ(x). So, f 6∈ Maxmax(S) ∪Maxmin(S), and
the proof is completed.

3.1 The Family Maxadd(S).

In this part we suppose that the property ξ(x), x ∈ Rm, is such that if
f, g ∈ ξ(x), then f + g ∈ ξ(x); i.e., that ξ(·) has the additive property.

Theorem 1. Assume that ξ(x), x ∈ Rm, has the additive property. Then
C(Tae) ∩ S = Maxadd(S).

Proof. Let f ∈ C(Tae) ∩ S and g ∈ S. Fix a real ε > 0, a point x ∈ Rm and
a set A ∈ Td containing x. Since f ∈ C(Tae), the point x is a density point of
the set

B = int
({

t ∈ Rm; |f(t)− f(x)| < ε

2

})
.

Consequently, x is a density point of the set B ∩ A. Since g ∈ S, there is a
nonempty open set O ⊂ B such that O∩A 6= ∅, |g(t)−g(x)| < ε

2 and g ∈ ξ(t)
for every t ∈ O∩A. From the relation f ∈ S it follows that there is a nonempty
open set O′ ⊂ O such that O′ ∩A 6= ∅ and f ∈ ξ(t) for each point t ∈ O′ ∩A.
Consequently, O′ ∩A 6= ∅, f + g ∈ ξ(t) and

|(f(t) + g(t))− (f(x) + g(x))| < ε

2
+

ε

2
= ε
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for each point t ∈ O ∩ A. So, f ∈ Maxadd(S) and the inclusion C(Tae) ∩ S ⊂
Maxadd(S) is proved.

For the proof of the inclusion Maxadd(S) ⊂ C(Tae) ∩ S, fix a function
f ∈ Maxadd(S). By Remark 2, the function f ∈ S. If f 6∈ C(Tae), there are a
point x ∈ Rm and a real ε > 0 such that the set cl({t ∈ Rm; |f(t)−f(x)| > ε})
has a positive upper density at a point x. Without loss of generality, we can
assume that

du(cl({t ∈ Rm; f(t) > f(x) + ε}), x) > 0.

Since f ∈ S ⊂ Qs is λm-almost everywhere continuous ([6]), we obtain

λm(cl({t; f(t) > f(x) + ε}) \ {t; f(t) ≥ f(x) + ε}) = 0,

and consequently,

du

(
int
({

t ∈ Rm; f(t) > f(x) +
ε

2

})
, x
)

> 0.

For H =
{
t ∈ Rm; f(t) > f(x) + ε

2

}
, there exists a sequence of pairwise dis-

joint sets Hn ⊂ int(H), n = 1, 2, . . . which satisfies conditions (1)–(4) of
Lemma 1.

Now, put

g(t) =

{
−f(x) + ε

2 if(t = x) ∨ (t ∈ Hn, n = 1, 2, . . .)
−f(t) otherwise on Rm.

The function g ∈ S. Indeed, fix a real η > 0, a point u ∈ Rm and a set A ∈ Td

containing u. If u ∈ Hn for some n ∈ N, then there is a nonempty open set
O ⊂ Hn with O ∩ A 6= ∅ and g(O ∩ A) ⊂ (g(u) − η, g(u) + η). Moreover,
g ∈ ξ(u) for each point u ∈ O ∩ A (in this case the function g|O is constant
and equals −f(x) + ε

2 on the set O). Note, if u = x, then by (4) of Lemma
1 there is an index n ∈ N with A ∩ int(Hn) 6= ∅. So, it is enough to suppose
that O = int(Hn) in this case. If u 6∈

⋃∞
n=1 Hn ∪ {x}, then there is an open

set O such that O ∩ (
⋃∞

n=1 Hn ∪ {x}) = ∅ and O ∩ A 6= ∅. Since g|O = −f |O,
f(O∩A) ⊂ (f(u)−η, f(u)+η) and f ∈ ξ(u) for every u ∈ O∩A, we obtain

g(O ∩A) = −f(O ∩A) ⊂ (−f(u)− η,−f(u) + η) = (g(u)− η, g(u) + η)

and g ∈ ξ(u) for each point u ∈ O ∩A.
But, observe that f(x) + g(x) = ε

2 , f(t) + g(t) > ε for t ∈ Hn, (n =
1, 2, . . .) and f(t) + g(t) = 0 otherwise on Rm. So, f + g 6∈ S and
consequently f 6∈ Maxadd(S). This contradiction finishes the proof.
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Corollary 1. If the property ξ(x), x ∈ Rm, denotes that

• f(x) ∈ Rm, then S = Qs and Maxadd(Qs) = C(Tae) ∩Qs;

• x ∈ C(f), then S = Qs1 and Maxadd(Qs1) = C(Tae) ∩Qs1 ;

• x ∈ A(f), then S = Qs2 and Maxadd(Qs2) = C(Tae) ∩Qs2 .

3.2 The Families Maxmax(S) and Maxmin(S).

In this part we suppose that if f, g ∈ ξ(x), x ∈ Rm, then max(f, g), min(f, g) ∈
ξ(x). Then, we say that ξ(·) has the lattice property.

Theorem 2. Let ξ(x), x ∈ Rm, has the lattice property. Then,

Maxmax(S) = Maxmin(S) = C(Tae) ∩ S.

Proof. For the proof of the inclusion

C(Tae) ∩ S ⊂ Maxmax(S) ∩Maxmin(S),

we take a function f ∈ C(Tae) ∩ S and a function g ∈ S. Fix a real ε > 0, a
point x ∈ Rm and a set A ∈ Td containing x. Let h = max(f, g). Consider the
following cases.

(1) f(x) > g(x). Let a = f(x) − g(x) and let b = min
(

a
2 , ε
)
. Since

f ∈ C(Tae), x is a density point of the set B = int({t; |f(t)− f(x)| < b}). By
the relation g ∈ S being applied to the point x and the set B ∩ A ∈ Td, it
follows that there is an open set O such that O ∩ (A ∩ B) 6= ∅, g ∈ ξ(t) and
|g(t)− g(x)| < b for each point t ∈ O ∩ (A ∩B).

Since f ∈ S, there is an open set O′ ⊂ O ∩ B with O′ ∩ (A ∩ B) 6= ∅ and
f ∈ ξ(t) for each point t ∈ O′ ∩ (A ∩ B). Observe that for u ∈ O′ ∩ (A ∩ B),
we have

f(u) > f(x)− b ≥ g(x) + 2b− b = g(x) + b > g(u),

so h(u) = f(u). Moreover, h(x) = f(x), and for each point u ∈ O ∩ (A ∩ B)
we have h ∈ ξ(u) and |h(u)− h(x)| = |f(u)− f(x)| < b ≤ ε.

(2) f(x) < g(x). In this case the proof is analogous as above.
(3) f(x) = g(x). Let b = ε and choose an open set O′ as above in case

(1). Then, O′ ∩ (A∩B) 6= ∅ and for u ∈ O′ ∩ (A∩B) we obtain h ∈ ξ(u) and

|h(u)− h(x)| ≤ max(|f(u)− f(x)|, |g(u)− g(x)|) < b = ε.

So, h = max(f, g) ∈ S. The proof min(f, g) ∈ S is analogous.
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Finally, since by Remark 2 the inclusion Maxmax(S) ∪Maxmin(S) ⊂ S
is true, we shall show the inclusion

Maxmax(S) ∪Maxmin(S) ⊂ C(Tae).

Let f ∈ Maxmax(S) be a function. By Remark 2, f ∈ S. If f 6∈ C(Tae),
then there are a point x ∈ Rm and a real ε > 0 such that

du(cl({t ∈ Rm; |f(t)− f(x)| > ε}), x) > 0.

If du(cl({t ∈ Rm; f(t) > f(x) + ε}),x) > 0, then, as before in the proof of
Theorem 1, for H =

{
t ∈ Rm; f(t) > f(x) + ε

2

}
, there exists a sequence of

pairwise disjoint sets Hn ⊂ int(H), n = 1, 2, . . . such that conditions (1)–(4)
of Lemma 1 are satisfied. Let the function g1 : Rm → R be defined by

g1(t) =

{
f(x)− ε if (t = x) ∨ (t ∈ Hn, n = 1, 2, . . .)
f(x) + ε otherwise on Rm.

Note that g1 ∈ S. Moreover, max(f(x), g1(x)) = f(x) and max(f(t), g1(t)) >
f(x) + ε

2 for t 6= x. So, max(f, g1) 6∈ S and consequently f 6∈ Maxmax(S),
yielding a contradiction.

Now, consider the case du(cl({t ∈ Rm; f(t) < f(x)− ε}), x) > 0. Then, as
before in this proof, there are disjoint sets

Kn ⊂ int
({

t ∈ Rm; f(t) < f(x)− ε

2

})
, n = 1, 2, . . .

which satisfy conditions (1)–(4) of Lemma 1. Let the function g2 : Rm → R
be defined as g1 before, but for the sets Kn, n = 1, 2, . . . . Then, g2 ∈ S
and max(f(x), g2(x)) = f(x), max(f(t), g2(t)) < f(x) − ε

2 for t ∈ Kn, (n =
1, 2, . . .) and max(f(t), g2(t)) ≥ f(x)+ε otherwise on Rm. So, in this case also,
max(f, g2) 6∈ S and consequently f 6∈ Maxmax(S), yielding a contradiction.

We can prove the inclusion Maxmin(S) ⊂ C(Tae) analogously.

Corollary 2. If the property ξ(x), x ∈ Rm, denotes that

• f(x) ∈ Rm, then S = Qs and Maxmax(Qs) = Maxmin(Qs) = C(Tae) ∩
Qs;

• x ∈ C(f), then S = Qs1 and Maxmax(Qs1) = Maxmin(Qs1) = C(Tae)∩
Qs1 ;

• x ∈ A(f), then S = Qs2 and Maxmax(Qs2) = Maxmin(Qs2) = C(Tae)∩
Qs2 .
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3.3 The Family Maxcomp(S).

Suppose that for every functions f : R → R belonging to C and for every
function g ∈ ξ(x), x ∈ Rm, we have f ◦ g ∈ ξ(x), i.e., ξ(·) is invariant with
respect to the composition with the continuous functions from R to R.

Theorem 3. Assume that ξ(x), x ∈ Rm, is invariant with respect to the
composition with the continuous functions from C. Then, Maxcomp(S) = C.

Proof. Let f : R → R be a continuous function and let g ∈ S be a function.
Fix a real ε > 0, a point x and a set A ∈ Td containing x. Since f is continuous
at g(x), there is a real δ > 0 such that if |u−g(x)| < δ, then |f(u)−f(g(x))| <
ε. Since g ∈ S, there is a nonempty open set O such that O ∩ A 6= ∅, g ∈ ξ(t)
and |g(t) − g(x)| < δ for each point t ∈ O ∩ A. Observe that for every point
t ∈ O ∩ A we obtain f ◦ g ∈ ξ(t) and |f(g(t)) − f(g(x))| < ε. So, f ◦ g ∈ S,
and consequently C ⊂ Maxcomp(S).

Suppose that f : R → R is not continuous at a point y ∈ R. Then there
is a sequence of points yn 6= y, n = 1, 2, . . . , such that limn→∞ yn = y and
limn→∞ f(yn) 6= f(y). Let P 1(0) ∈ P1 be a cube containing a point x = 0. For
x = 0 and H = P 1(0) there exists a family of sets Hj ⊂ int(P 1(0)), j = 1, 2, . . .
which satisfies conditions (1)–(4) of Lemma 1. Put

g(x) =


yn if x ∈ Hn, n = 1, 2, . . .

y if x = 0
y1 otherwise on Rm.

The function g ∈ S. Indeed, fix a real ε > 0, a point x ∈ Rm and a set
A ∈ Td containing x. If x 6= 0, then there exists a cube P (x) ∈ P containing
x such that the restricted function g|cl(P (x)) is constant and there exists an
open set O ⊂ P (x) such that O ∩ A 6= ∅, g(O ∩ A) ⊂ (g(x) − ε, g(x) + ε)
and g ∈ ξ(u) for each point u ∈ U ∩ A. If x = 0, then there exists an index
n ∈ N such that |yn − y| < ε and there is a nonempty open set O ⊂ Hn

such that O ∩ A 6= ∅. Obviously, g|O∩A is constant. So, g ∈ ξ(u) for each
u ∈ O ∩ A and since |g(u) − g(0)| = |yn − y| for each u ∈ O, we obtain
g(O∩A) ⊂ (g(0)− ε, g(0)+ ε). But observe, f ◦ g 6∈ Qs(0) and thus f ◦ g 6∈ S.
This contradiction shows that for every function g ∈ S if f ◦g ∈ S, then f ∈ C
and the proof is completed.

Corollary 3. If the property ξ(x), x ∈ Rm, denotes that

• f(x) ∈ Rm, then S = Qs and Maxcomp(Qs) = C;

• x ∈ C(f), then S = Qs1 and Maxcomp(Qs1) = C;
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• x ∈ A(f), then S = Qs2 and Maxcomp(Qs2) = C.

3.4 The Family Maxmult(S).

Suppose that the property ξ(x), x ∈ Rm, is such that

- if f, g ∈ ξ(x), then f · g ∈ ξ(x);

- if f ∈ ξ(x) and there is an open set O such that du(O,x) = 1 and
f(x) 6= 0 6∈ f(O), then every extension of the function h(t) = 1

f(t) for
t ∈ O ∪ {x} belongs to ξ(x).

Lemma 2. If a function f ∈ S is not Tae-continuous at a point x ∈ Rm at
which f(x) 6= 0, then there is a function g ∈ S such that the product f · g 6∈ S.

Proof. Arguing as in the proof of Theorem 1, we can show that there is a real
ε > 0 and a family of sets Hn ⊂ int

({
t ∈ Rm; f(t) > f(x) + ε

2

})
, n = 1, 2, . . .

which satisfy conditions (1)–(4) of Lemma 1.
Put

g(t) =

{
1 if (t = x) ∨ (t ∈ Hn, n = 1, 2, . . .),
0 otherwise on Rm,

and observe that g ∈ S. But f(x) · g(x) = f(x) 6= 0 and for every point t 6= x
we have f(t) · g(t) = 0 or |f(t) · g(t) − f(x) · g(x)| = |f(t) − f(x)| > ε

2 . So,
f · g 6∈ Qs(x), and thus f · g 6∈ S. This completes the proof.

Lemma 3. Let f ∈ S be a function and let x ∈ Rm be a point such that
f(x) = 0. If du({t ∈ Rm; f(t) = 0},x) > 0, then for every function g ∈ S, for
every real ε > 0 and for every set A ∈ Td containing x there is an open set
O such that O ∩ A 6= ∅, the product f · g ∈ ξ(t) and |f(t) · g(t)| < ε for each
point t ∈ O ∩A.

Proof. Fix a function g ∈ S, a real ε > 0 and a set A ∈ Td containing x.
Since f, g ∈ S, they are λm-almost everywhere continuous. Observe that the
set

B = {t ∈ A; f(t) = 0 and f is continuous at t}

is of positive λm-measure. Find a point u ∈ B such that f(u) = 0 and the
function g is continuous at u. Let O be an open set containing u such that
there is a real r > 0 with |g(t)| < r for each point t ∈ O. Observe that
u ∈ O ∩ A ∈ Td. Since f ∈ S and f(u) = 0, there is an open set O′ ⊂ O such
that O′ ∩A 6= ∅, f ∈ ξ(t) and |f(t)| < ε

r for each point t ∈ O′ ∩A. But g ∈ S
and ∅ 6= O′ ∩ A ∈ Td, so there is an open set O′′ ⊂ O′ such that O′′ ∩ A 6= ∅
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and g ∈ ξ(t) for each point t ∈ O′′ ∩ A. Finally, observe that for t ∈ O′′ ∩ A,
we have

f · g ∈ ξ(t) and |f(t) · g(t)− f(x) · g(x)| = |f(t) · g(t)| < ε

r
· r = ε.

This completes the proof.

Lemma 4. Suppose that the function f ∈ S is not Tae- continuous at a point
x at which f(x) = 0. If

du({t ∈ Rm; f(t) = 0}, x) = 0,

there is a function g ∈ S such that f · g 6∈ S.

Proof. Since f is λm-almost everywhere continuous, we obtain

λm (cl ({t ∈ Rm; f(t) = 0}) \ {t ∈ Rm; f(t) = 0}) = 0

and du (cl ({t ∈ Rm; f(t) = 0}) , x) = 0.

Since f is not Tae-continuous at x, there is a real ε > 0 such that the set
cl({t ∈ Rm; |f(t)| > ε}) has positive upper density at a point x. Moreover,
since {t ∈ Rm; |f(t)| > ε} = {t ∈ Rm; f(t) > ε} ∪ {t ∈ Rm; f(t) < −ε}, we
obtain

du({t ∈ Rm; f(t) > ε}, x) > 0 or du({t ∈ Rm; f(t) < −ε}, x) > 0. (3.1)

Without loss of generality, we can assume that the first of the inequalities (3.1)
is true. Since f is λm-almost everywhere continuous, we have du(int(H), x) >
0 for H =

{
t ∈ Rm; f(t) > ε

2

}
∩Pn(1)(x), where n(1) is the first positive integer

such that Pn(1)(x) ∈ Pn(1) and Pn(1)(x) ⊂ O
({

t ∈ Rm; f(t) > ε
2

}
, 1
)
. By

Lemma 1 applied to the set H and the point x, there exists a sequence (Hn)n

of subsets of int(H) such that conditions (1)–(4) of Lemma 1 are satisfied.
Let K = {t ∈ Pn(1)(x); f(t) = 0}. The upper density du(cl(K), x) = 0. We
will prove that there is an open (in Pn(1)(x)) set V ⊃ cl(K) \ {x} contained
in Pn(1)(x) \

⋃∞
n=1 Hn \ {x} such that

du(V, x) = 0 and λm(cl(V ) \ V ) = 0.

Let (sn)n be a sequence of positive numbers such that

lim
n→∞

sn

λm (Pn+2(x))
= 0.



16 Ewa Strońska

Since the set
T = cl

(
Pn(x) \ Pn+1(x)

)
∩ cl(K)

is compact for each n ≥ n(1), there exists a finite family of open balls

Bn
1 , Bn

2 , . . . , Bn
i(n) ⊂ Pn(x) \ cl

(
Pn+2(x)

)
\ cl

( ∞⋃
n=1

Hn

)

such that
i(n)⋃
i=1

Bn
i ⊃ T and λm

i(n)⋃
i=1

Bn
i \ T

 <
sn

4n
.

Observe that the set V =
⋃

n≥n(1)

⋃i(n)
i=1 Bn

i is open and satisfies all require-
ments. Let

B = Pn(1)(x) \

(
V ∪

∞⋃
n=1

Hn ∪ {x}

)
and put

g(t) =


ε if (t = x) ∨ (t ∈ Hn, n = 1, 2, . . .),
0 if (t ∈ V ) ∨ (t ∈ B and du(V, t) > 0),

1
f(t) if t ∈ B and du(V, t) = 0,

f(t) if t ∈ Rm \ Pn(1)(x).

We can prove that g ∈ S by methods used above. But the product f ·g 6∈ Qs(x).
Indeed, observe that on Pn(1)(x) we have

f(x) · g(x) = 0,

f(t) · g(t) > ε2

2 int( for t ∈ Hn, n ∈ N,

f(t) · g(t) = 0 if t ∈ Pn(1)(x) \ (
⋃∞

n=1 Hn ∪ {x}) and du(V, t) > 0,

f(t) · g(t) = 1 if t ∈ B and du(V, t) = 0,

and for each t ∈ Rm \Pn(1)(x) we have g(t) · f(t) = (f(t))2. If A is the set of
all density points of the set B ∪

⋃∞
n=1 Hn and η = 1

2 ·min
{

1, ε2

2

}
, then x ∈ A

and for each open set O with O ∩A 6= ∅ the image f(O ∩A) is not contained
in (f(x)− η, f(x) + η) = (−η, η). So, f · g 6∈ S.
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Lemma 5. If a function f ∈ S is Tae-continuous at a point x ∈ Rm, then
for every function g ∈ S, for every set A ∈ Td containing x and for every real
ε > 0 there is a nonempty open set O such that O ∩ A 6= ∅, f · g ∈ ξ(t) and
|f(t) · g(t)− f(x) · g(x)| < ε for each point t ∈ O ∩A.

Proof. Fix a real ε > 0, a set A ∈ Td containing x. Since f is Tae-continuous
at x, the point x is a density point of the set

B = int
{
t ∈ Rm; |f(t)− f(x)| < ε

2 ·max(|g(x)|, 1)

}
,

Consequently, x is a density point of the set B ∩ A. Since f ∈ S, there is a
nonempty open set O ⊂ B such that O ∩ A 6= ∅ and f ∈ ξ(t) for each point
t ∈ O ∩ A. Since g ∈ S, there is a nonempty open set O′ ⊂ O such that
O′ ∩A 6= ∅,

|g(t)− g(x)| < ε

2 ·max(supt∈O′∩A |f(t)|, 1)

and g ∈ ξ(t) for each t ∈ O′ ∩ A. Consequently, we obtain that f · g ∈ S(t)
and

|f(t) · g(t)− f(x) · g(x)| ≤ |f(t)| · |g(t)− g(x)|+ |g(x)| · |f(t)− f(x)| <

sup
t∈O′∩A

|f(t)| · ε

2 ·max(supt∈O′∩A |f(t)|, 1)
+ |g(x)| · ε

2 ·max(|g(x)|, 1)
≤ ε.

So, f · g ∈ S and the proof is completed.

From Lemmas 2, 3, 4 and 5 we immediately obtain the following theorem.

Theorem 4. A function f ∈ Maxmult(S) if and only if f ∈ S and satisfies
the following condition.

(m) if f is not Tae-continuous at a point x ∈ Rm, then f(x) = 0 and
du({t ∈ Rm; f(t) = 0},x) > 0.

Corollary 4. If the property ξ(x),x ∈ Rm, denotes that

• f(x) ∈ R, then S = Qs and f ∈ Maxmult(Qs) if and only if f ∈ Qs and
satisfies the condition (m);

• x ∈ C(f), then S = Qs1 and f ∈ Maxmult(Qs1) if and only if f ∈ Qs1

and satisfies the condition (m);

• x ∈ A(f), then S = Qs2 and f ∈ Maxmult(Qs2) if and only if f ∈ Qs2

and satisfies the condition (m).
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