ON THE MAXIMAL FAMILIES FOR SOME CLASSES OF STRONGLY QUASICONTINUOUS FUNCTIONS ON \mathbb{R}^{m}

Abstract

Some generalizations of the notions of approximate quasicontinuity on \mathbb{R}^{m} and the maximal families (additive, multiplicative, lattice and with respect to the composition) for these classes of functions are investigated.

1 Preliminaries.

Let $\mathbb{R}, \mathbb{Q}, \mathbb{Z}$ and \mathbb{N} denote, respectively, the set of all real numbers, of all rationals, of all integers and of all positive integers.

Throughout the present paper we shall use the following differentiation basis \mathcal{P} in the product space \mathbb{R}^{m} for $m \in \mathbb{N}$. For every $n \in \mathbb{N}$ and for each system of integers k_{1}, \ldots, k_{m} we define the m-dimensional cube

$$
P_{k_{1}, \ldots, k_{m}}^{n}=\left[\frac{k_{1}-1}{2^{n}}, \frac{k_{1}}{2^{n}}\right) \times\left[\frac{k_{2}-1}{2^{n}}, \frac{k_{2}}{2^{n}}\right) \times \cdots \times\left[\frac{k_{m}-1}{2^{n}}, \frac{k_{m}}{2^{n}}\right) .
$$

Moreover, let

$$
\mathcal{P}_{n}=\left\{P_{k_{1}, \ldots, k_{m}}^{n} ; k_{1}, \ldots, k_{m} \in \mathbb{Z}\right\} \text { and } \mathcal{P}=\bigcup_{n=1}^{\infty} \mathcal{P}_{n}
$$

Observe that:
(1) if $\left(k_{1}, \ldots, k_{m}\right) \neq\left(l_{1}, \ldots, l_{m}\right)$, then $P_{k_{1}, \ldots, k_{m}}^{n} \cap P_{l_{1}, \ldots l_{m}}^{n}=\emptyset$,

[^0](2) $\mathbb{R}^{m}=\bigcup_{k_{1}, \ldots, k_{m} \in \mathbb{Z}} P_{k_{1}, \ldots, k_{m}}^{n}$,
(3) if $n_{1}>n_{2}$, then for each system $\left(k_{1}, \ldots, k_{m}\right)$ there is a unique system $\left(l_{1}, \ldots l_{m}\right)$ such that $P_{k_{1}, \ldots, k_{m}}^{n_{1}} \subset P_{l_{1}, \ldots, l_{m}}^{n_{2}}$,
(4) for each point $\mathbf{x} \in \mathbb{R}^{m}$ and for each $n \in \mathbb{N}$ there is a unique system $\left(k_{1}(\mathbf{x}), \ldots, k_{m}(\mathbf{x})\right)$ such that $\mathbf{x} \in P_{k_{1(\mathbf{x})}, \ldots, k_{m(\mathbf{x})}}^{n}=P^{n}(\mathbf{x})$.

Evidently, for each index $k \in \mathbb{N}$ and each point $\mathbf{x} \in \mathbb{R}^{m}$, we have

$$
P^{k+1}(\mathbf{x}) \subset P^{k}(\mathbf{x}),\{\mathbf{x}\}=\bigcap_{k=1}^{\infty} P^{k}(\mathbf{x}) \text { and } \lim _{k \rightarrow \infty} \operatorname{diam}\left(P^{k}(\mathbf{x})\right)=0
$$

where $\operatorname{diam}(P)$ denotes the diameter of the cube P.
Let $\lambda_{m}^{*},\left(\lambda_{m}\right)$ denote outer Lebesgue measure in \mathbb{R}^{m}, (Lebesgue measure in \mathbb{R}^{m} respectively), let \mathcal{L}_{m} denote the family of all λ_{m}-measurable sets (i.e., the sets measurable in the Lebesgue sense) in \mathbb{R}^{m} and let $A \subset \mathbb{R}^{m}$ be an arbitrary set.

For $\mathbf{x} \in \mathbb{R}^{m}$ we define the upper outer density (the lower density) of the set A at the point \mathbf{x} by

$$
d_{u}(A, \mathbf{x})=\lim _{n \rightarrow \infty} \sup \frac{\lambda_{m}^{*}\left(A \cap P^{n}(\mathbf{x})\right)}{\lambda_{m}\left(P^{n}(\mathbf{x})\right)},\left(d_{l}(A, \mathbf{x})=\lim _{n \rightarrow \infty} \inf \frac{\lambda_{m}^{*}\left(A \cap P^{n}(\mathbf{x})\right)}{\lambda_{m}\left(P^{n}(\mathbf{x})\right)}\right)
$$

A point $\mathbf{x} \in \mathbb{R}^{m}$ is called an outer density point (with respect to the basis \mathcal{P}) of the set $A \subset \mathbb{R}^{m}$ iff $d_{l}(A, \mathbf{x})=1$. A point $\mathbf{x} \in \mathbb{R}^{m}$ is called a density point (with respect to the basis \mathcal{P}) of the set $A \subset \mathbb{R}^{m}$ iff there exists a λ_{m}-measurable set $B \subset A$ such that $d_{l}(B, \mathbf{x})=1$. Let

$$
\phi(A)=\left\{\mathbf{x} \in \mathbb{R}^{m} ; \mathbf{x} \text { is a density point of } \mathrm{A} \text { with respect to } \mathcal{P}\right\}
$$

and put

$$
\mathcal{T}_{d}=\left\{A \in \mathcal{L}_{m} ; A \subset \phi(A)\right\}
$$

The family \mathcal{T}_{d} is a topology called the density topology ([1], [2] and [15]). Denote by \mathcal{T}_{e} the Euclidean topology in \mathbb{R}^{m}. Observe that $\mathcal{T}_{e} \subset \mathcal{T}_{d}$ and $\mathcal{T}_{e} \neq \mathcal{T}_{d}$. If $A \in \mathcal{T}_{e}$, then we will say that A is an open set.

If $\mathbf{x} \in \mathbb{R}^{m}$ is a continuity point of the mapping $f:\left(\mathbb{R}^{m}, \mathcal{T}_{e}\right) \rightarrow\left(\mathbb{R}, \mathcal{T}_{e}\right)$, then we say simply that \mathbf{x} is continuity point of the function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$.

A point $\mathbf{x} \in \mathbb{R}^{m}$ is called an approximate continuity point of the function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ if \mathbf{x} is a continuity point of the mapping $f:\left(\mathbb{R}^{m}, \mathcal{T}_{d}\right) \rightarrow\left(\mathbb{R}, \mathcal{T}_{e}\right)$.

We will denote by $C(f)$ (by $A(f)$) the set of all continuity points (approximate continuity points respectively) of the function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$. The set
$D(f)=\mathbb{R}^{m} \backslash C(f)$ denotes the set of all discontinuity points of the function f.

Moreover, denote by \mathcal{C}, (by $\mathcal{A})$, [by $\left.\mathcal{C}_{a e}\right]$ the class of all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ (approximately continuous functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$), [the class of all functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ which are λ_{m}-almost everywhere continuous ; i.e., for which $\lambda_{m}(D(f))=0$, respectively].

Let \mathcal{T} be any topology of subsets of the space \mathbb{R}^{m} and let $\mathbf{x} \in \mathbb{R}^{m}$ be a point.
Definition 1. The function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is \mathcal{T} - quasicontinuous at the point \mathbf{x} if for every $\varepsilon>0$ and for every set $U \in \mathcal{T}$ containing \mathbf{x} there is a nonempty set $V \in \mathcal{T}$ such that $V \subset U$ and $f(V) \subset(f(\mathbf{x})-\varepsilon, f(\mathbf{x})+\varepsilon)$.

If $\mathcal{T}=\mathcal{T}_{e}$, then we say simply that f is quasicontinuous at $\mathbf{x}([10],[11])$. If $\mathcal{T}=\mathcal{T}_{d}$, then f is called approximately quasicontinuous (with respect to \mathcal{P}) at the point \mathbf{x} and we write $f \in Q_{a p}(\mathbf{x})$. If for every $\mathbf{x} \in \mathbb{R}^{m}, f \in Q_{a p}(\mathbf{x})$, then we say that f is approximately quasicontinuous (with respect to \mathcal{P}). The class of all approximately quasicontinuous functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ we denote by $Q_{a p}$ ([4], [5]).

Let $A \subset \mathbb{R}$ be an arbitrary set. For $x \in \mathbb{R}$ we define the lower bilateral density of the set A at x by

$$
D_{l}(A, x)=\lim _{h \rightarrow 0} \frac{\lambda_{1}([x-h, x+h] \cap A)}{2 h} .
$$

A point $x \in \mathbb{R}$ is called a bilateral density point of the set $A \subset \mathbb{R}$ iff there is a λ_{1}-measurable set $B \subset A$ such that $D_{l}(B, x)=1$. Let

$$
\Phi(A)=\{x \in \mathbb{R}: x \text { is a bilateral density point of } A\} .
$$

The family $\tau_{d}=\left\{A \in \mathcal{L}_{1} ; A \subset \Phi(A)\right\}$ is a topology called the density topology ([1], [15]).

Similarly as above, a point $x \in \mathbb{R}$ is called an approximate continuity point of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ if x is a continuity point of the mapping $f:\left(\mathbb{R}, \tau_{d}\right) \rightarrow\left(\mathbb{R}, \mathcal{T}_{e}\right)$. If $\mathcal{T}=\tau_{d}$, then a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is $\tau_{d^{-}}$ quasicontinuous is called approximately quasicontinuous ([4], [5]).

Definition 2. [(Grande [7])]. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be strongly τ_{d}-quasicontinuous at a point $x \in \mathbb{R}$ if for every $\eta>0$ and for every set $U \in \tau_{d}$ containing x there is an open interval I such that $U \cap I \neq \emptyset$ and $|f(t)-f(x)|<\eta$ for every $t \in I \cap U$.

Denote by $\operatorname{int}(A)$ the interior (Euclidean) of the set A. The family

$$
\mathcal{T}_{a e}=\left\{A \in \mathcal{T}_{d} ; \lambda_{m}(A \backslash \operatorname{int}(A))=0\right\}
$$

is also a topology ([12]). If a point $\mathbf{x} \in \mathbb{R}^{m}$ is a continuity point of the mapping $f:\left(\mathbb{R}^{m}, \mathcal{T}_{\text {ae }}\right) \rightarrow\left(\mathbb{R}, \mathcal{T}_{e}\right)$, then we say that the function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is $\mathcal{T}_{\text {ae }}$ - continuous at a point \mathbf{x}. A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is $\mathcal{T}_{\text {ae }}$-continuous (everywhere) iff $f \in \mathcal{A} \cap \mathcal{C}_{a e}$ ([12], [3]). The class of all $\mathcal{T}_{a e}$-continuous functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ we denote by $\mathcal{C}\left(\mathcal{T}_{a e}\right)$.

2 New Definitions and Notions.

Now we define some classes of strongly quasicontinuous functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, which we will investigate in this paper. By analogy, classes of such functions for the case $m=1$ were introduced by Z. Grande ([9]) with respect to the bilateral density.
Definition 3. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a function and let $\mathbf{x} \in \mathbb{R}^{m}$ be a point. Then

- $f \in Q_{s}(\mathbf{x})$; i.e., f is called strongly quasicontinuous at a point \mathbf{x} if for every real $\varepsilon>0$ and for each set $A \in \mathcal{T}_{d}$ containing \mathbf{x}, there is a nonempty open set O such that $A \cap O \neq \emptyset$ and $f(O \cap A) \subset(f(\mathbf{x})-\varepsilon, f(\mathbf{x})+\varepsilon)$.
If for every $\mathbf{x} \in \mathbb{R}^{m}, f \in Q_{s}(\mathbf{x})$, then we say that f is strongly quasicontinuous. Denote by Q_{s} the class of all strongly quasicontinuous functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$.
- $f \in Q_{s_{1}}(\mathbf{x})\left(f \in Q_{s_{2}}(\mathbf{x})\right)$; i.e., f is called s_{1}-strongly quasicontinuous (f is called $s_{2^{-}}$strongly quasicontinuous respectively) at a point \mathbf{x} if for each real $\varepsilon>0$ and for each set $A \in \mathcal{T}_{d}$ containing \mathbf{x} there exists a nonempty open set O such that $O \cap A \neq \emptyset, O \cap A \subset C(f)(O \cap A \subset A(f)$ respectively) and $f(O \cap A) \subset(f(\mathbf{x})-\varepsilon, f(\mathbf{x})+\varepsilon)$.
If for each $\mathbf{x} \in \mathbb{R}^{m}, f \in Q_{s_{1}}(\mathbf{x})\left(f \in Q_{s_{2}}(\mathbf{x})\right)$, then we say that f is s_{1-} strongly quasicontinuous (f is s_{2}-strongly quasicontinuous respectively). Denote by $Q_{s_{1}}$, by $Q_{s_{2}}$) the class of all functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ which are s_{1}-strongly quasicontinuous (s_{2}-strongly quasicontinuous respectively).
The notion of strong quasicontinuity (for the bilateral density topology in \mathbb{R}) introduced by Z. Grande in $[7]$ is more general than that above (for $m=1$). For example, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}0 & \text { for } x \leq 0 \\ 1 & \text { for } x>0\end{cases}
$$

then the function f is strongly quasicontinuous at 0 in the sense of Grande, but $f \notin Q_{s}(0)$. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is strongly quasicontinuous at x in the above
sense $\left(f \in Q_{s}(x)\right)$, then f is strongly quasicontinuous at x in the sense of Grande.

From the definitions above it follows that $Q_{s_{1}} \subset Q_{s_{2}} \subset Q_{s} \subset Q_{a p}$. The inclusions above are proper ([13]); moreover, $Q_{s} \subset \mathcal{C}_{a e}$, ([6]).

Let $\xi(\mathbf{x})$ be a property of a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ at a point \mathbf{x} (we will write $f \in \xi(\mathbf{x})$) such that the following are true.

- If f is continuous at \mathbf{x}, then $f \in \xi(\mathbf{x})$;
- if $f \in \xi(\mathbf{x})$, then $-f \in \xi(\mathbf{x})$;
- if $f \in \xi(\mathbf{x})$ and the restricted function $\left.g\right|_{O}=\left.f\right|_{O}$ for some open set O containing \mathbf{x}, then $g \in \xi(\mathbf{x})$.

Denote by S the family of all functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that for every real $\varepsilon>0$, for every point \mathbf{x} and for every set $A \in \mathcal{T}_{d}$ containing \mathbf{x} there is a nonempty open set O such that $O \cap A \neq \emptyset, f(O \cap A) \subset(f(\mathbf{x})-\varepsilon, f(\mathbf{x})+\varepsilon)$ and $f \in \xi(\mathbf{t})$ for every $\mathbf{t} \in O \cap A$.

For a set $H \subset \mathbb{R}^{m}$ and for a real $\eta>0$, let

$$
\mathcal{O}(H, \eta)=\bigcup_{\mathbf{x} \in H} K(\mathbf{x}, \eta) \text {, where } K(\mathbf{x}, \eta)=\left\{\mathbf{u} \in \mathbb{R}^{m} ;|\mathbf{x}-\mathbf{u}|<\eta\right\} .
$$

The following lemma will be used in the proofs of the next results.
Lemma 1. Let $\mathbf{x} \in \mathbb{R}^{m}$ and let $H \subset \mathbb{R}^{m}$ be a nonempty set such that the upper density $d_{u}(\operatorname{int}(H), \mathbf{x})=c>0$. Then, there exists a sequence of pairwise disjoint sets $H_{n} \subset \operatorname{int}(H),(n=1,2, \ldots)$ such that
(1) each set $H_{n}, n=1,2, \ldots$, is the union of a finite family of cubes from \mathcal{P} whose closures are pairwise disjoint;
(2) $\mathbf{x} \notin H_{n}$ for each $n=1,2, \ldots$;
(3) the family $\left(H_{n}\right)_{n}$ converges to the point \mathbf{x} in the sense of the Hausdorff metric;
(4) the upper density $d_{u}\left(\bigcup_{n \in \mathbb{N}} \operatorname{int}\left(H_{n}\right), \mathbf{x}\right)=c$.

Proof. Let $U=\mathcal{O}(H, 1)$. There is the first positive integer $n(1)$ such that the cube $P^{n(1)}(\mathbf{x}) \in \mathcal{P}_{n(1)}$ is contained in U and

$$
\frac{\lambda_{m}\left((\operatorname{int}(H)) \cap P^{n(1)}(\mathbf{x})\right)}{\lambda_{m}\left(P^{n(1)}(\mathbf{x})\right)}>\frac{1}{2} \cdot c .
$$

There is also a finite family of cubes

$$
Q_{1, n(1)}, Q_{2, n(1)}, \ldots, Q_{i(n(1)), n(1)} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{n(1)}(\mathbf{x}) \cap H\right) \backslash\{\mathbf{x}\}$ and

$$
\frac{\lambda_{m}\left(\bigcup_{i=1}^{i(n(1))} Q_{i, n(1)}\right)}{\lambda_{m}\left(P^{n(1)}(\mathbf{x})\right)} \geq\left(1-\frac{1}{2}\right) \cdot c .
$$

Let $H_{1}=\bigcup_{i \leq i(n(1))} Q_{i, n(1)}$ and observe that $\operatorname{cl}\left(H_{1}\right)=\bigcup_{i \leq i(n(1))} \operatorname{cl}\left(Q_{i, n(1)}\right)$.
In general, for $j>1$ we find the first positive integer $n(j)$ such that the cube $P^{n(j)}(\mathbf{x}) \in \mathcal{P}_{n(j)}, P^{n(j)}(\mathbf{x}) \subset P^{n(j-1)}(\mathbf{x}) \backslash \operatorname{cl}\left(H_{j-1}\right)$ with diam $\left(P^{n(j)}(\mathbf{x})\right)<$ $\frac{1}{2} \cdot \operatorname{diam}\left(P^{n(j-1)}(\mathbf{x})\right)$ and

$$
\frac{\lambda_{m}\left(\operatorname{int}(H) \cap P^{n(j)}(\mathbf{x})\right)}{\lambda\left(P^{n(j)}(\mathbf{x})\right)}>\left(1-\frac{1}{2^{j}}\right) \cdot c
$$

For such an integer $n(j)$ there is a finite family of cubes

$$
Q_{1, n(j)}, Q_{2, n(j)}, \ldots, Q_{i(n(j)), n(j)} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in the set $\int\left(P^{n(j)}(\mathbf{x}) \cap H\right) \backslash$ $\{\mathbf{x}\}$ and such that

$$
\frac{\lambda_{m}\left(\bigcup_{i=1}^{i(n(j))} Q_{i, n(j)}\right)}{\lambda_{m}\left(P^{n(j)}(\mathbf{x})\right)} \geq\left(1-\frac{1}{2^{j}}\right) \cdot c
$$

Let $H_{j}=\bigcup_{i \leq i(n(j))} Q_{i, n(j)}$ and observe that

$$
\operatorname{cl}\left(H_{j}\right)=\bigcup_{i \leq i(n(j))} \operatorname{cl}\left(Q_{i, n(j)}\right)
$$

The sequence $\left(H_{j}\right)_{j}$ satisfies the conditions (1)-(4) of our lemma.

3 The Maximal Families.

In this paper the main results are the m-dimensional analogs of the results from [8, 14]. Now, let

- $\operatorname{Max}_{a d d}(S)=\left\{f: \mathbb{R}^{m} \rightarrow \mathbb{R} ; f+g \in S\right.$ for every $\left.g \in S\right\}$;
- $\operatorname{Max}_{\text {mult }}(S)=\left\{f: \mathbb{R}^{m} \rightarrow \mathbb{R} ; f \cdot g \in S\right.$ for every $\left.g \in S\right\}$;
- $\operatorname{Max}_{\max }(S)=\left\{f: \mathbb{R}^{m} \rightarrow \mathbb{R} ; \max (f, g) \in S\right.$ for every $\left.g \in S\right\}$;
- $\operatorname{Max}_{\text {min }}(S)=\left\{f: \mathbb{R}^{m} \rightarrow \mathbb{R} ; \min (f, g) \in S\right.$ for every $\left.g \in S\right\}$;
- $\operatorname{Max}_{\text {comp }}(S)=\{f: \mathbb{R} \rightarrow \mathbb{R} ; f \circ g \in S$ for every $g \in S\}$.

Remark 1. Evidently, $\mathcal{C} \subset S \cup \mathcal{C}\left(\mathcal{T}_{a e}\right) \subset Q_{s}$. So, every function $f \in S$ is λ_{m}-almost everywhere continuous ($f \in \mathcal{C}_{a e}$) ([6],[7]).

Remark 2. The inclusion

$$
\operatorname{Max}_{\text {add }}(S) \cup \operatorname{Max}_{\operatorname{mult}(S) \cup \operatorname{Max}_{\max }(S) \cup \operatorname{Max}_{\min }(S) \subset S}
$$

is true.
Proof. Since the constant functions $g_{1}=0$ and $g_{2}=1$ belong to S, for all functions $f_{1} \in \operatorname{Max}_{\text {add }}(S), f_{2} \in \operatorname{Max}_{\text {mult }}(S)$ we obtain that $f_{1}=f_{1}+g_{1} \in S$ and $f_{2}=f_{2} \cdot g_{2} \in S$. So, $\operatorname{Max}_{\text {add }}(S) \cup \operatorname{Max}_{\text {mult }}(S) \subset S$.

If $f \notin S$, then there are a real $\varepsilon>0$, a point \mathbf{x} and a set $A \in \mathcal{T}_{d}$ containing \mathbf{x} such that for every nonempty open set O with $O \cap A \neq \emptyset$ there is a point $\mathbf{t} \in O \cap$ A such that $|f(\mathbf{t})-f(\mathbf{x})| \geq \varepsilon$ or $f \notin \xi(\mathbf{t})$. Then the functions $\max (f, f(\mathbf{x})-\varepsilon)$ and $\min (f, f(\mathbf{x})+\varepsilon)$ are not in $\xi(\mathbf{x})$. So, $f \notin \operatorname{Max}_{\max }(S) \cup \operatorname{Max}_{\min }(S)$, and the proof is completed.

3.1 The Family $\operatorname{Max}_{\text {add }}(S)$.

In this part we suppose that the property $\xi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$, is such that if $f, g \in \xi(\mathbf{x})$, then $f+g \in \xi(\mathbf{x})$; i.e., that $\xi(\cdot)$ has the additive property.
Theorem 1. Assume that $\xi(\mathrm{x}), \mathrm{x} \in \mathbb{R}^{m}$, has the additive property. Then $\mathcal{C}\left(\mathcal{T}_{a e}\right) \cap S=\operatorname{Max}_{a d d}(S)$.

Proof. Let $f \in \mathcal{C}\left(\mathcal{T}_{a e}\right) \cap S$ and $g \in S$. Fix a real $\varepsilon>0$, a point $\mathbf{x} \in \mathbb{R}^{m}$ and a set $A \in \mathcal{T}_{d}$ containing \mathbf{x}. Since $f \in \mathcal{C}\left(\mathcal{T}_{a e}\right)$, the point \mathbf{x} is a density point of the set

$$
B=\operatorname{int}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ;|f(\mathbf{t})-f(\mathbf{x})|<\frac{\varepsilon}{2}\right\}\right) .
$$

Consequently, \mathbf{x} is a density point of the set $B \cap A$. Since $g \in S$, there is a nonempty open set $O \subset B$ such that $O \cap A \neq \emptyset,|g(\mathbf{t})-g(\mathbf{x})|<\frac{\varepsilon}{2}$ and $g \in \xi(\mathbf{t})$ for every $\mathbf{t} \in O \cap A$. From the relation $f \in S$ it follows that there is a nonempty open set $O^{\prime} \subset O$ such that $O^{\prime} \cap A \neq \emptyset$ and $f \in \xi(\mathbf{t})$ for each point $\mathbf{t} \in O^{\prime} \cap A$. Consequently, $O^{\prime} \cap A \neq \emptyset, f+g \in \xi(\mathbf{t})$ and

$$
|(f(\mathbf{t})+g(\mathbf{t}))-(f(\mathbf{x})+g(\mathbf{x}))|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

for each point $\mathbf{t} \in O \cap A$. So, $f \in \operatorname{Max}_{a d d}(S)$ and the inclusion $\mathcal{C}\left(\mathcal{T}_{a e}\right) \cap S \subset$ $\operatorname{Max}_{\text {add }}(S)$ is proved.

For the proof of the inclusion $\operatorname{Max}_{a d d}(S) \subset \mathcal{C}\left(\mathcal{T}_{a e}\right) \cap S$, fix a function $f \in \operatorname{Max}_{a d d}(S)$. By Remark 2, the function $f \in S$. If $f \notin \mathcal{C}\left(\mathcal{T}_{a e}\right)$, there are a point $\mathbf{x} \in \mathbb{R}^{m}$ and a real $\varepsilon>0$ such that the set $\operatorname{cl}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ;|f(\mathbf{t})-f(\mathbf{x})|>\varepsilon\right\}\right)$ has a positive upper density at a point \mathbf{x}. Without loss of generality, we can assume that

$$
d_{u}\left(\operatorname{cl}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})>f(\mathbf{x})+\varepsilon\right\}\right), \mathbf{x}\right)>0
$$

Since $f \in S \subset Q_{s}$ is λ_{m}-almost everywhere continuous ([6]), we obtain

$$
\lambda_{m}(\operatorname{cl}(\{\mathbf{t} ; f(\mathbf{t})>f(\mathbf{x})+\varepsilon\}) \backslash\{\mathbf{t} ; f(\mathbf{t}) \geq f(\mathbf{x})+\varepsilon\})=0
$$

and consequently,

$$
d_{u}\left(\operatorname{int}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})>f(\mathbf{x})+\frac{\varepsilon}{2}\right\}\right), \mathbf{x}\right)>0
$$

For $H=\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})>f(\mathbf{x})+\frac{\varepsilon}{2}\right\}$, there exists a sequence of pairwise disjoint sets $H_{n} \subset \operatorname{int}(H), n=1,2, \ldots$ which satisfies conditions (1)-(4) of Lemma 1.

Now, put

$$
g(\mathbf{t})= \begin{cases}-f(\mathbf{x})+\frac{\varepsilon}{2} & \text { if }(\mathbf{t}=\mathbf{x}) \vee\left(\mathbf{t} \in H_{n}, n=1,2, \ldots\right) \\ -f(\mathbf{t}) & \text { otherwise on } \mathbb{R}^{m}\end{cases}
$$

The function $g \in S$. Indeed, fix a real $\eta>0$, a point $\mathbf{u} \in \mathbb{R}^{m}$ and a set $A \in \mathcal{T}_{d}$ containing \mathbf{u}. If $\mathbf{u} \in H_{n}$ for some $n \in \mathbb{N}$, then there is a nonempty open set $O \subset H_{n}$ with $O \cap A \neq \emptyset$ and $g(O \cap A) \subset(g(\mathbf{u})-\eta, g(\mathbf{u})+\eta)$. Moreover, $g \in \xi(\mathbf{u})$ for each point $\mathbf{u} \in O \cap A$ (in this case the function $\left.g\right|_{O}$ is constant and equals $-f(\mathbf{x})+\frac{\varepsilon}{2}$ on the set $\left.O\right)$. Note, if $\mathbf{u}=\mathbf{x}$, then by (4) of Lemma 1 there is an index $n \in \mathbb{N}$ with $A \cap \operatorname{int}\left(H_{n}\right) \neq \emptyset$. So, it is enough to suppose that $O=\operatorname{int}\left(H_{n}\right)$ in this case. If $\mathbf{u} \notin \bigcup_{n=1}^{\infty} H_{n} \cup\{\mathbf{x}\}$, then there is an open set O such that $O \cap\left(\bigcup_{n=1}^{\infty} H_{n} \cup\{\mathbf{x}\}\right)=\emptyset$ and $O \cap A \neq \emptyset$. Since $\left.g\right|_{O}=-\left.f\right|_{O}$, $f(O \cap A) \subset(f(\mathbf{u})-\eta, f(\mathbf{u})+\eta)$ and $f \in \xi(\mathbf{u})$ for every $\mathbf{u} \in O \cap A$, we obtain

$$
g(O \cap A)=-f(O \cap A) \subset(-f(\mathbf{u})-\eta,-f(\mathbf{u})+\eta)=(g(\mathbf{u})-\eta, g(\mathbf{u})+\eta)
$$

and $g \in \xi(\mathbf{u})$ for each point $\mathbf{u} \in O \cap A$.
But, observe that $f(\mathbf{x})+g(\mathbf{x})=\frac{\varepsilon}{2}, f(\mathbf{t})+g(\mathbf{t})>\varepsilon$ for $\mathbf{t} \in H_{n}, \quad(n=$ $1,2, \ldots)$ and $f(\mathbf{t})+g(\mathbf{t})=0$ otherwise on \mathbb{R}^{m}. So, $f+g \notin S$ and consequently $f \notin \operatorname{Max}_{a d d}(S)$. This contradiction finishes the proof.

Corollary 1. If the property $\xi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$, denotes that

- $f(\mathbf{x}) \in \mathbb{R}^{m}$, then $S=Q_{s}$ and $\operatorname{Max}_{a d d}\left(Q_{s}\right)=\mathcal{C}\left(\mathcal{T}_{a e}\right) \cap Q_{s}$;
- $\mathbf{x} \in C(f)$, then $S=Q_{s_{1}}$ and $\operatorname{Max}_{a d d}\left(Q_{s_{1}}\right)=\mathcal{C}\left(\mathcal{T}_{a e}\right) \cap Q_{s_{1}}$;
- $\mathbf{x} \in A(f)$, then $S=Q_{s_{2}}$ and $\operatorname{Max}_{a d d}\left(Q_{s_{2}}\right)=\mathcal{C}\left(\mathcal{T}_{a e}\right) \cap Q_{s_{2}}$.
3.2 The Families $\operatorname{Max}_{\max }(S)$ and $\operatorname{Max}_{\min }(S)$.

In this part we suppose that if $f, g \in \xi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$, then $\max (f, g), \min (f, g) \in$ $\xi(\mathbf{x})$. Then, we say that $\xi(\cdot)$ has the lattice property.

Theorem 2. Let $\xi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$, has the lattice property. Then,

$$
\operatorname{Max}_{\max }(S)=\operatorname{Max}_{\min }(S)=\mathcal{C}\left(\mathcal{T}_{a e}\right) \cap S
$$

Proof. For the proof of the inclusion

$$
\mathcal{C}\left(\mathcal{T}_{a e}\right) \cap S \subset \operatorname{Max}_{\max }(S) \cap \operatorname{Max}_{\min }(S)
$$

we take a function $f \in \mathcal{C}\left(\mathcal{T}_{a e}\right) \cap S$ and a function $g \in S$. Fix a real $\varepsilon>0$, a point $\mathbf{x} \in \mathbb{R}^{m}$ and a set $A \in \mathcal{T}_{d}$ containing \mathbf{x}. Let $h=\max (f, g)$. Consider the following cases.
(1) $f(\mathbf{x})>g(\mathbf{x})$. Let $a=f(\mathbf{x})-g(\mathbf{x})$ and let $b=\min \left(\frac{a}{2}, \varepsilon\right)$. Since $f \in \mathcal{C}\left(\mathcal{T}_{a e}\right), \mathbf{x}$ is a density point of the set $B=\operatorname{int}(\{\mathbf{t} ;|f(\mathbf{t})-f(\mathbf{x})|<b\})$. By the relation $g \in S$ being applied to the point \mathbf{x} and the set $B \cap A \in \mathcal{T}_{d}$, it follows that there is an open set O such that $O \cap(A \cap B) \neq \emptyset, g \in \xi(\mathbf{t})$ and $|g(\mathbf{t})-g(\mathbf{x})|<b$ for each point $\mathbf{t} \in O \cap(A \cap B)$.

Since $f \in S$, there is an open set $O^{\prime} \subset O \cap B$ with $O^{\prime} \cap(A \cap B) \neq \emptyset$ and $f \in \xi(\mathbf{t})$ for each point $\mathbf{t} \in O^{\prime} \cap(A \cap B)$. Observe that for $\mathbf{u} \in O^{\prime} \cap(A \cap B)$, we have

$$
f(\mathbf{u})>f(\mathbf{x})-b \geq g(\mathbf{x})+2 b-b=g(\mathbf{x})+b>g(\mathbf{u}),
$$

so $h(\mathbf{u})=f(\mathbf{u})$. Moreover, $h(\mathbf{x})=f(\mathbf{x})$, and for each point $\mathbf{u} \in O \cap(A \cap B)$ we have $h \in \xi(\mathbf{u})$ and $|h(\mathbf{u})-h(\mathbf{x})|=|f(\mathbf{u})-f(\mathbf{x})|<b \leq \varepsilon$.
(2) $f(\mathbf{x})<g(\mathbf{x})$. In this case the proof is analogous as above.
(3) $f(\mathbf{x})=g(\mathbf{x})$. Let $b=\varepsilon$ and choose an open set O^{\prime} as above in case (1). Then, $O^{\prime} \cap(A \cap B) \neq \emptyset$ and for $\mathbf{u} \in O^{\prime} \cap(A \cap B)$ we obtain $h \in \xi(\mathbf{u})$ and

$$
|h(\mathbf{u})-h(\mathbf{x})| \leq \max (|f(\mathbf{u})-f(\mathbf{x})|,|g(\mathbf{u})-g(\mathbf{x})|)<b=\varepsilon
$$

So, $h=\max (f, g) \in S$. The proof $\min (f, g) \in S$ is analogous.

Finally, since by Remark 2 the inclusion $\operatorname{Max}_{\max }(S) \cup \operatorname{Max}_{\min }(S) \subset S$ is true, we shall show the inclusion

$$
\operatorname{Max}_{\max }(S) \cup \operatorname{Max}_{\min }(S) \subset \mathcal{C}\left(\mathcal{T}_{a e}\right)
$$

Let $f \in \operatorname{Max}_{\max }(S)$ be a function. By Remark $2, f \in S$. If $f \notin \mathcal{C}\left(\mathcal{T}_{a e}\right)$, then there are a point $\mathbf{x} \in \mathbb{R}^{m}$ and a real $\varepsilon>0$ such that

$$
d_{u}\left(\operatorname{cl}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ;|f(\mathbf{t})-f(\mathbf{x})|>\varepsilon\right\}\right), \mathbf{x}\right)>0
$$

If $d_{u}\left(\operatorname{cl}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})>f(\mathbf{x})+\varepsilon\right\}\right), \mathbf{x}\right)>0$, then, as before in the proof of Theorem 1, for $H=\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})>f(\mathbf{x})+\frac{\varepsilon}{2}\right\}$, there exists a sequence of pairwise disjoint sets $H_{n} \subset \operatorname{int}(H), \quad n=1,2, \ldots$ such that conditions (1)-(4) of Lemma 1 are satisfied. Let the function $g_{1}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be defined by

$$
g_{1}(\mathbf{t})= \begin{cases}f(\mathbf{x})-\varepsilon & \text { if }(\mathbf{t}=\mathbf{x}) \vee\left(\mathbf{t} \in H_{n}, n=1,2, \ldots\right) \\ f(\mathbf{x})+\varepsilon & \text { otherwise on } \mathbb{R}^{m}\end{cases}
$$

Note that $g_{1} \in S$. Moreover, $\max \left(f(\mathbf{x}), g_{1}(\mathbf{x})\right)=f(\mathbf{x})$ and $\max \left(f(\mathbf{t}), g_{1}(\mathbf{t})\right)>$ $f(\mathbf{x})+\frac{\varepsilon}{2}$ for $\mathbf{t} \neq \mathbf{x}$. So, $\max \left(f, g_{1}\right) \notin S$ and consequently $f \notin \operatorname{Max} \max (S)$, yielding a contradiction.

Now, consider the case $d_{u}\left(\operatorname{cl}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})<f(\mathbf{x})-\varepsilon\right\}\right), \mathbf{x}\right)>0$. Then, as before in this proof, there are disjoint sets

$$
K_{n} \subset \operatorname{int}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})<f(\mathbf{x})-\frac{\varepsilon}{2}\right\}\right), n=1,2, \ldots
$$

which satisfy conditions (1)-(4) of Lemma 1 . Let the function $g_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be defined as g_{1} before, but for the sets $K_{n}, n=1,2, \ldots$ Then, $g_{2} \in S$ and $\max \left(f(\mathbf{x}), g_{2}(\mathbf{x})\right)=f(\mathbf{x}), \max \left(f(\mathbf{t}), g_{2}(\mathbf{t})\right)<f(\mathbf{x})-\frac{\varepsilon}{2}$ for $\mathbf{t} \in K_{n}, \quad(n=$ $1,2, \ldots)$ and $\max \left(f(\mathbf{t}), g_{2}(\mathbf{t})\right) \geq f(\mathbf{x})+\varepsilon$ otherwise on \mathbb{R}^{m}. So, in this case also, $\max \left(f, g_{2}\right) \notin S$ and consequently $f \notin \operatorname{Max}_{\max }(S)$, yielding a contradiction.

We can prove the inclusion $\operatorname{Max}_{\min }(S) \subset \mathcal{C}\left(\mathcal{T}_{a e}\right)$ analogously.
Corollary 2. If the property $\xi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$, denotes that

- $f(\mathbf{x}) \in \mathbb{R}^{m}$, then $S=Q_{s}$ and $\operatorname{Max}_{\max }\left(Q_{s}\right)=\operatorname{Max}_{\min }\left(Q_{s}\right)=\mathcal{C}\left(\mathcal{T}_{\text {ae }}\right) \cap$ Q_{s};
- $\mathbf{x} \in C(f)$, then $S=Q_{s_{1}}$ and $\operatorname{Max}_{\max }\left(Q_{s_{1}}\right)=\operatorname{Max}_{\min }\left(Q_{s_{1}}\right)=\mathcal{C}\left(\mathcal{T}_{a e}\right) \cap$ $Q_{s_{1}}$;
- $\mathbf{x} \in A(f)$, then $S=Q_{s_{2}}$ and $\operatorname{Max}_{\max }\left(Q_{s_{2}}\right)=\operatorname{Max}_{\min }\left(Q_{s_{2}}\right)=\mathcal{C}\left(\mathcal{T}_{a e}\right) \cap$ $Q_{s_{2}}$.

3.3 The Family $\operatorname{Max}_{\text {comp }}(S)$.

Suppose that for every functions $f: \mathbb{R} \rightarrow \mathbb{R}$ belonging to \mathcal{C} and for every function $g \in \xi(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^{m}$, we have $f \circ g \in \xi(\mathbf{x})$, i.e., $\xi(\cdot)$ is invariant with respect to the composition with the continuous functions from \mathbb{R} to \mathbb{R}.

Theorem 3. Assume that $\xi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$, is invariant with respect to the composition with the continuous functions from \mathcal{C}. Then, $\operatorname{Max}_{\text {comp }}(S)=\mathcal{C}$.

Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and let $g \in S$ be a function. Fix a real $\varepsilon>0$, a point \mathbf{x} and a set $A \in \mathcal{T}_{d}$ containing \mathbf{x}. Since f is continuous at $g(\mathbf{x})$, there is a real $\delta>0$ such that if $|\mathbf{u}-g(\mathbf{x})|<\delta$, then $|f(\mathbf{u})-f(g(\mathbf{x}))|<$ ε. Since $g \in S$, there is a nonempty open set O such that $O \cap A \neq \emptyset, g \in \xi(\mathbf{t})$ and $|g(\mathbf{t})-g(\mathbf{x})|<\delta$ for each point $\mathbf{t} \in O \cap A$. Observe that for every point $\mathbf{t} \in O \cap A$ we obtain $f \circ g \in \xi(\mathbf{t})$ and $|f(g(\mathbf{t}))-f(g(\mathbf{x}))|<\varepsilon$. So, $f \circ g \in S$, and consequently $\mathcal{C} \subset \operatorname{Max}_{\text {comp }}(S)$.

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is not continuous at a point $y \in \mathbb{R}$. Then there is a sequence of points $y_{n} \neq y, n=1,2, \ldots$, such that $\lim _{n \rightarrow \infty} y_{n}=y$ and $\lim _{n \rightarrow \infty} f\left(y_{n}\right) \neq f(y)$. Let $P^{1}(\mathbf{0}) \in \mathcal{P}_{1}$ be a cube containing a point $\mathbf{x}=\mathbf{0}$. For $\mathbf{x}=\mathbf{0}$ and $H=P^{1}(\mathbf{0})$ there exists a family of sets $H_{j} \subset \operatorname{int}\left(P^{1}(\mathbf{0})\right), j=1,2, \ldots$ which satisfies conditions (1)-(4) of Lemma 1. Put

$$
g(\mathbf{x})= \begin{cases}y_{n} & \text { if } \mathbf{x} \in H_{n}, n=1,2, \ldots \\ y & \text { if } \mathbf{x}=\mathbf{0} \\ y_{1} & \text { otherwise on } \mathbb{R}^{m}\end{cases}
$$

The function $g \in S$. Indeed, fix a real $\varepsilon>0$, a point $\mathbf{x} \in \mathbb{R}^{m}$ and a set $A \in \mathcal{T}_{d}$ containing \mathbf{x}. If $\mathbf{x} \neq \mathbf{0}$, then there exists a cube $P(\mathbf{x}) \in \mathcal{P}$ containing \mathbf{x} such that the restricted function $\left.g\right|_{\mathrm{cl}(P(\mathbf{x}))}$ is constant and there exists an open set $O \subset P(\mathbf{x})$ such that $O \cap A \neq \emptyset, g(O \cap A) \subset(g(\mathbf{x})-\varepsilon, g(\mathbf{x})+\varepsilon)$ and $g \in \xi(\mathbf{u})$ for each point $\mathbf{u} \in U \cap A$. If $\mathbf{x}=\mathbf{0}$, then there exists an index $n \in \mathbb{N}$ such that $\left|y_{n}-y\right|<\varepsilon$ and there is a nonempty open set $O \subset H_{n}$ such that $O \cap A \neq \emptyset$. Obviously, $\left.g\right|_{O \cap A}$ is constant. So, $g \in \xi(\mathbf{u})$ for each $\mathbf{u} \in O \cap A$ and since $|g(\mathbf{u})-g(\mathbf{0})|=\left|y_{n}-y\right|$ for each $\mathbf{u} \in O$, we obtain $g(O \cap A) \subset(g(\mathbf{0})-\varepsilon, g(\mathbf{0})+\varepsilon)$. But observe, $f \circ g \notin Q_{s}(\mathbf{0})$ and thus $f \circ g \notin S$. This contradiction shows that for every function $g \in S$ if $f \circ g \in S$, then $f \in \mathcal{C}$ and the proof is completed.

Corollary 3. If the property $\xi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$, denotes that

- $f(\mathbf{x}) \in \mathbb{R}^{m}$, then $S=Q_{s}$ and $\operatorname{Max}_{\text {comp }}\left(Q_{s}\right)=\mathcal{C}$;
- $\mathbf{x} \in C(f)$, then $S=Q_{s_{1}}$ and $\operatorname{Max}_{\text {comp }}\left(Q_{s_{1}}\right)=\mathcal{C}$;
- $\mathbf{x} \in A(f)$, then $S=Q_{s_{2}}$ and $\operatorname{Max}_{c o m p}\left(Q_{s_{2}}\right)=\mathcal{C}$.

3.4 The Family $\operatorname{Max}_{m u l t}(S)$.

Suppose that the property $\xi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$, is such that

- if $f, g \in \xi(\mathbf{x})$, then $f \cdot g \in \xi(\mathbf{x})$;
- if $f \in \xi(\mathbf{x})$ and there is an open set O such that $d_{u}(O, \mathbf{x})=1$ and $f(\mathbf{x}) \neq 0 \notin f(O)$, then every extension of the function $h(\mathbf{t})=\frac{1}{f(\mathbf{t})}$ for $\mathbf{t} \in O \cup\{\mathbf{x}\}$ belongs to $\xi(\mathbf{x})$.

Lemma 2. If a function $f \in S$ is not $\mathcal{T}_{\text {ae }}$-continuous at a point $\mathbf{x} \in \mathbb{R}^{m}$ at which $f(\mathbf{x}) \neq 0$, then there is a function $g \in S$ such that the product $f \cdot g \notin S$.

Proof. Arguing as in the proof of Theorem 1, we can show that there is a real $\varepsilon>0$ and a family of sets $H_{n} \subset \operatorname{int}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})>f(\mathbf{x})+\frac{\varepsilon}{2}\right\}\right), n=1,2, \ldots$ which satisfy conditions (1)-(4) of Lemma 1.

Put

$$
g(\mathbf{t})= \begin{cases}1 & \text { if }(\mathbf{t}=\mathbf{x}) \vee\left(\mathbf{t} \in H_{n}, n=1,2, \ldots\right) \\ 0 & \text { otherwise on } \mathbb{R}^{m}\end{cases}
$$

and observe that $g \in S$. But $f(\mathbf{x}) \cdot g(\mathbf{x})=f(\mathbf{x}) \neq 0$ and for every point $\mathbf{t} \neq \mathbf{x}$ we have $f(\mathbf{t}) \cdot g(\mathbf{t})=0$ or $|f(\mathbf{t}) \cdot g(\mathbf{t})-f(\mathbf{x}) \cdot g(\mathbf{x})|=|f(\mathbf{t})-f(\mathbf{x})|>\frac{\varepsilon}{2}$. So, $f \cdot g \notin Q_{s}(\mathbf{x})$, and thus $f \cdot g \notin S$. This completes the proof.

Lemma 3. Let $f \in S$ be a function and let $\mathbf{x} \in \mathbb{R}^{m}$ be a point such that $f(\mathbf{x})=0$. If $d_{u}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})=0\right\}, \mathbf{x}\right)>0$, then for every function $g \in S$, for every real $\varepsilon>0$ and for every set $A \in \mathcal{T}_{d}$ containing \mathbf{x} there is an open set O such that $O \cap A \neq \emptyset$, the product $f \cdot g \in \xi(\mathbf{t})$ and $|f(\mathbf{t}) \cdot g(\mathbf{t})|<\varepsilon$ for each point $\mathbf{t} \in O \cap A$.

Proof. Fix a function $g \in S$, a real $\varepsilon>0$ and a set $A \in \mathcal{T}_{d}$ containing x. Since $f, g \in S$, they are λ_{m}-almost everywhere continuous. Observe that the set

$$
B=\{\mathbf{t} \in A ; f(\mathbf{t})=0 \text { and } f \text { is continuous at } \mathbf{t}\}
$$

is of positive λ_{m}-measure. Find a point $\mathbf{u} \in B$ such that $f(\mathbf{u})=0$ and the function g is continuous at \mathbf{u}. Let O be an open set containing \mathbf{u} such that there is a real $r>0$ with $|g(\mathbf{t})|<r$ for each point $\mathbf{t} \in O$. Observe that $\mathbf{u} \in O \cap A \in \mathcal{T}_{d}$. Since $f \in S$ and $f(\mathbf{u})=0$, there is an open set $O^{\prime} \subset O$ such that $O^{\prime} \cap A \neq \emptyset, f \in \xi(\mathbf{t})$ and $|f(\mathbf{t})|<\frac{\varepsilon}{r}$ for each point $\mathbf{t} \in O^{\prime} \cap A$. But $g \in S$ and $\emptyset \neq O^{\prime} \cap A \in \mathcal{T}_{d}$, so there is an open set $O^{\prime \prime} \subset O^{\prime}$ such that $O^{\prime \prime} \cap A \neq \emptyset$
and $g \in \xi(\mathbf{t})$ for each point $\mathbf{t} \in O^{\prime \prime} \cap A$. Finally, observe that for $\mathbf{t} \in O^{\prime \prime} \cap A$, we have

$$
f \cdot g \in \xi(\mathbf{t}) \text { and }|f(\mathbf{t}) \cdot g(\mathbf{t})-f(\mathbf{x}) \cdot g(\mathbf{x})|=|f(\mathbf{t}) \cdot g(\mathbf{t})|<\frac{\varepsilon}{r} \cdot r=\varepsilon
$$

This completes the proof.
Lemma 4. Suppose that the function $f \in S$ is not $\mathcal{T}_{a e^{-}}$continuous at a point \mathbf{x} at which $f(\mathbf{x})=0$. If

$$
d_{u}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})=0\right\}, \mathbf{x}\right)=0
$$

there is a function $g \in S$ such that $f \cdot g \notin S$.
Proof. Since f is λ_{m}-almost everywhere continuous, we obtain

$$
\begin{gathered}
\lambda_{m}\left(\operatorname{cl}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})=0\right\}\right) \backslash\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})=0\right\}\right)=0 \\
\text { and } d_{u}\left(\operatorname{cl}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})=0\right\}\right), \mathbf{x}\right)=0
\end{gathered}
$$

Since f is not $\mathcal{T}_{\text {ae }}$-continuous at \mathbf{x}, there is a real $\varepsilon>0$ such that the set $\operatorname{cl}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ;|f(\mathbf{t})|>\varepsilon\right\}\right)$ has positive upper density at a point \mathbf{x}. Moreover, since $\left\{\mathbf{t} \in \mathbb{R}^{m} ;|f(\mathbf{t})|>\varepsilon\right\}=\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})>\varepsilon\right\} \cup\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})<-\varepsilon\right\}$, we obtain

$$
\begin{equation*}
d_{u}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})>\varepsilon\right\}, \mathbf{x}\right)>0 \text { or } d_{u}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})<-\varepsilon\right\}, \mathbf{x}\right)>0 \tag{3.1}
\end{equation*}
$$

Without loss of generality, we can assume that the first of the inequalities (3.1) is true. Since f is λ_{m}-almost everywhere continuous, we have $d_{u}(\operatorname{int}(H), \mathbf{x})>$ 0 for $H=\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})>\frac{\varepsilon}{2}\right\} \cap P^{n(1)}(\mathbf{x})$, where $n(1)$ is the first positive integer such that $P^{n(1)}(\mathbf{x}) \in \mathcal{P}_{n(1)}$ and $P^{n(1)}(\mathbf{x}) \subset \mathcal{O}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})>\frac{\varepsilon}{2}\right\}, 1\right)$. By Lemma 1 applied to the set H and the point \mathbf{x}, there exists a sequence $\left(H_{n}\right)_{n}$ of subsets of $\operatorname{int}(H)$ such that conditions (1)-(4) of Lemma 1 are satisfied.
Let $K=\left\{\mathbf{t} \in P^{n(1)}(\mathbf{x}) ; f(\mathbf{t})=0\right\}$. The upper density $d_{u}(\operatorname{cl}(K), \mathbf{x})=0$. We will prove that there is an open (in $\left.P^{n(1)}(\mathbf{x})\right)$ set $V \supset \operatorname{cl}(K) \backslash\{\mathbf{x}\}$ contained in $P^{n(1)}(\mathbf{x}) \backslash \bigcup_{n=1}^{\infty} H_{n} \backslash\{\mathbf{x}\}$ such that

$$
d_{u}(V, \mathbf{x})=0 \text { and } \lambda_{m}(\operatorname{cl}(V) \backslash V)=0
$$

Let $\left(s_{n}\right)_{n}$ be a sequence of positive numbers such that

$$
\lim _{n \rightarrow \infty} \frac{s_{n}}{\lambda_{m}\left(P^{n+2}(\mathbf{x})\right)}=0
$$

Since the set

$$
T=\operatorname{cl}\left(P^{n}(\mathbf{x}) \backslash P^{n+1}(\mathbf{x})\right) \cap \operatorname{cl}(K)
$$

is compact for each $n \geq n(1)$, there exists a finite family of open balls

$$
B_{1}^{n}, B_{2}^{n}, \ldots, B_{i(n)}^{n} \subset P^{n}(\mathbf{x}) \backslash \operatorname{cl}\left(P^{n+2}(\mathbf{x})\right) \backslash \operatorname{cl}\left(\bigcup_{n=1}^{\infty} H_{n}\right)
$$

such that

$$
\bigcup_{i=1}^{i(n)} B_{i}^{n} \supset T \text { and } \lambda_{m}\left(\bigcup_{i=1}^{i(n)} B_{i}^{n} \backslash T\right)<\frac{s_{n}}{4^{n}}
$$

Observe that the set $V=\bigcup_{n \geq n(1)} \bigcup_{i=1}^{i(n)} B_{i}^{n}$ is open and satisfies all requirements. Let

$$
B=P^{n(1)}(\mathbf{x}) \backslash\left(V \cup \bigcup_{n=1}^{\infty} H_{n} \cup\{\mathbf{x}\}\right)
$$

and put

$$
g(\mathbf{t})= \begin{cases}\varepsilon & \text { if }(\mathbf{t}=\mathbf{x}) \vee\left(\mathbf{t} \in H_{n}, n=1,2, \ldots\right) \\ 0 & \text { if }(\mathbf{t} \in V) \vee\left(\mathbf{t} \in B \text { and } d_{u}(V, \mathbf{t})>0\right) \\ \frac{1}{f(\mathbf{t})} & \text { if } \mathbf{t} \in B \text { and } d_{u}(V, \mathbf{t})=0 \\ f(\mathbf{t}) & \text { if } \mathbf{t} \in \mathbb{R}^{m} \backslash P^{n(1)}(\mathbf{x})\end{cases}
$$

We can prove that $g \in S$ by methods used above. But the product $f \cdot g \notin Q_{s}(\mathbf{x})$. Indeed, observe that on $P^{n(1)}(\mathbf{x})$ we have

$$
\begin{aligned}
& f(\mathbf{x}) \cdot g(\mathbf{x})=0 \\
& f(\mathbf{t}) \cdot g(\mathbf{t})>\frac{\varepsilon^{2}}{2} \text { int }\left(\text { for } \mathbf{t} \in H_{n}, n \in \mathbb{N}\right. \\
& f(\mathbf{t}) \cdot g(\mathbf{t})=0 \text { if } \mathbf{t} \in P^{n(1)}(\mathbf{x}) \backslash\left(\bigcup_{n=1}^{\infty} H_{n} \cup\{\mathbf{x}\}\right) \text { and } d_{u}(V, \mathbf{t})>0 \\
& f(\mathbf{t}) \cdot g(\mathbf{t})=1 \text { if } \mathbf{t} \in B \text { and } d_{u}(V, \mathbf{t})=0
\end{aligned}
$$

and for each $\mathbf{t} \in \mathbb{R}^{m} \backslash P^{n(1)}(\mathbf{x})$ we have $g(\mathbf{t}) \cdot f(\mathbf{t})=(f(\mathbf{t}))^{2}$. If A is the set of all density points of the set $B \cup \bigcup_{n=1}^{\infty} H_{n}$ and $\eta=\frac{1}{2} \cdot \min \left\{1, \frac{\varepsilon^{2}}{2}\right\}$, then $\mathbf{x} \in A$ and for each open set O with $O \cap A \neq \emptyset$ the image $f(O \cap A)$ is not contained in $(f(\mathbf{x})-\eta, f(\mathbf{x})+\eta)=(-\eta, \eta)$. So, $f \cdot g \notin S$.

Lemma 5. If a function $f \in S$ is $\mathcal{T}_{a e}$-continuous at a point $\mathbf{x} \in \mathbb{R}^{m}$, then for every function $g \in S$, for every set $A \in \mathcal{T}_{d}$ containing \mathbf{x} and for every real $\varepsilon>0$ there is a nonempty open set O such that $O \cap A \neq \emptyset, f \cdot g \in \xi(\mathbf{t})$ and $|f(\mathbf{t}) \cdot g(\mathbf{t})-f(\mathbf{x}) \cdot g(\mathbf{x})|<\varepsilon$ for each point $\mathbf{t} \in O \cap A$.

Proof. Fix a real $\varepsilon>0$, a set $A \in \mathcal{T}_{d}$ containing \mathbf{x}. Since f is $\mathcal{T}_{a e}$-continuous at \mathbf{x}, the point \mathbf{x} is a density point of the set

$$
B=\operatorname{int}\left\{\mathbf{t} \in \mathbb{R}^{m} ;|f(\mathbf{t})-f(\mathbf{x})|<\frac{\varepsilon}{2 \cdot \max (|g(\mathbf{x})|, 1)}\right\}
$$

Consequently, \mathbf{x} is a density point of the set $B \cap A$. Since $f \in S$, there is a nonempty open set $O \subset B$ such that $O \cap A \neq \emptyset$ and $f \in \xi(\mathbf{t})$ for each point $\mathbf{t} \in O \cap A$. Since $g \in S$, there is a nonempty open set $O^{\prime} \subset O$ such that $O^{\prime} \cap A \neq \emptyset$,

$$
|g(\mathbf{t})-g(\mathbf{x})|<\frac{\varepsilon}{2 \cdot \max \left(\sup _{\mathbf{t} \in O^{\prime} \cap A}|f(\mathbf{t})|, 1\right)}
$$

and $g \in \xi(\mathbf{t})$ for each $\mathbf{t} \in O^{\prime} \cap A$. Consequently, we obtain that $f \cdot g \in S(\mathbf{t})$ and

$$
\begin{gathered}
|f(\mathbf{t}) \cdot g(\mathbf{t})-f(\mathbf{x}) \cdot g(\mathbf{x})| \leq|f(\mathbf{t})| \cdot|g(\mathbf{t})-g(\mathbf{x})|+|g(\mathbf{x})| \cdot|f(\mathbf{t})-f(\mathbf{x})|< \\
\sup _{\mathbf{t} \in O^{\prime} \cap A}|f(\mathbf{t})| \cdot \frac{\varepsilon}{2 \cdot \max \left(\sup _{\mathbf{t} \in O^{\prime} \cap A}|f(\mathbf{t})|, 1\right)}+|g(\mathbf{x})| \cdot \frac{\varepsilon}{2 \cdot \max (|g(\mathbf{x})|, 1)} \leq \varepsilon
\end{gathered}
$$

So, $f \cdot g \in S$ and the proof is completed.
From Lemmas 2, 3, 4 and 5 we immediately obtain the following theorem.
Theorem 4. A function $f \in \operatorname{Max}_{m u l t}(S)$ if and only if $f \in S$ and satisfies the following condition.
(m) if f is not $\mathcal{T}_{\text {ae }}$-continuous at a point $\mathbf{x} \in \mathbb{R}^{m}$, then $f(\mathbf{x})=0$ and $d_{u}\left(\left\{\mathbf{t} \in \mathbb{R}^{m} ; f(\mathbf{t})=0\right\}, \mathbf{x}\right)>0$.

Corollary 4. If the property $\xi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$, denotes that

- $f(\mathbf{x}) \in \mathbb{R}$, then $S=Q_{s}$ and $f \in \operatorname{Max}_{\text {mult }}\left(Q_{s}\right)$ if and only if $f \in Q_{s}$ and satisfies the condition (m);
- $\mathbf{x} \in C(f)$, then $S=Q_{s_{1}}$ and $f \in \operatorname{Max}_{m u l t}\left(Q_{s_{1}}\right)$ if and only if $f \in Q_{s_{1}}$ and satisfies the condition (m);
- $\mathbf{x} \in A(f)$, then $S=Q_{s_{2}}$ and $f \in \operatorname{Max}_{\text {mult }}\left(Q_{s_{2}}\right)$ if and only if $f \in Q_{s_{2}}$ and satisfies the condition (m).

References

[1] A. M. Bruckner, Differentiation of Integrals, Amer. Math. Monthly, 78(9) (1971), 1-54.
[2] C. Goffman, C. Neugebauer and T. Nishiura, Density Topology and Approximate Continuity, Duke Math. J., 28 (1961), 497-506.
[3] Z. Grande, Sur la r-Continuité des Fonctions de Deux Variables, Demonstratio Math., 11 (1978), 937-945.
[4] Z. Grande, Sur les Fonctions Approximativement Quasi-continues, Rev. Roum. Pures and Appl., XXXIV(1) (1988), 17-22.
[5] Z. Grande, Sur la Quasi-continué Approximative, Fund. Math., 129 (1988), 167-172.
[6] Z. Grande and E. Strońska, On Some Properties Connected with Continuity and Measurability, Tatra Mont. Math. Publ., 19 (2000), 117-125.
[7] Z. Grande, Measurability, Quasicontinuity and Cliquishness of Functions of Two Variables, Real Analysis Exch., 20 (1994/95), 744-752.
[8] Z. Grande, On the Maximal Families for the Class of Strongly Quasicontinuous Functions, Real Analysis Exch., 20(2) (1995/96), 631-638.
[9] Z. Grande, On Some Special Notions of Approximate Quasi-continuity, Real Analysis Exch., 24 (1998/99), 171-183.
[10] S. Kempisty, Sur les Fonctions Quasicontinues, Fund. Math., 19 (1932), 184-197.
[11] T. Neubrunn, Quasi-continuity, Real Analysis Exch., 14(2) (1988/89), 259-306.
[12] R. J. O'Malley, Approximately Differentiable Functions. The r Topology, Pac. J. Math., 72 (1977), 207-222.
[13] E. Strońska, On Some Special Notions of Approximate Quasicontinuity on \mathbb{R}^{m}, Demonstratio Math., XXXVIII(3) (2005), 533-550.
[14] E. Strońska, On the Maximal Families for Some Special Classes of Strongly Quasicontinuity Functions, Real Analysis Exch., 23(2) (1997/98), 743-752.
[15] W. Wilczyński, Density Topologies, in Handbook of Measure Theory, Edited by E. Pap, Elsevier Science B.V., Amsterdam (2002), Chap. 15.

[^0]: Key Words: density topology, strong quasicontinuity, maximal families, additive, multiplicative, lattice.

 Mathematical Reviews subject classification: 26A05, 26A15
 Received by the editors September 3, 2004
 Communicated by: B. S. Thomson

