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ON SUBCONTINUITY

Abstract

A new characterization of subcontinuity of functions is given. Rela-
tions among subcontinuity, local boundedness and local compactness are
studied. The set of points of subcontinuity of functions is investigated.

1 Introduction.

Fuller in his paper [FU] introduced and studied the notion of subcontinuous
functions. Mimna and Wingler in their paper [MW] investigated some rela-
tions among subcontinuity, local boundedness and local compactness of func-
tions. Our paper provides some generalizations and improvements of results
from [MW] and also [FU]. We also study the sets of points of continuity
of subcontinuous functions, as well as the sets of points of subcontinuity of
functions.

For a topological space X and a subset A ⊂ X we denote by A, int(A),
∂A the closure, the interior and the boundary of A, respectively.

If (X, d) is a metric space we denote by G(x, r) (B(x, r)) the open (closed)
ball with the center x and the radius r.

For all basic notions we refer to Engelking’s General Topology [EN].

2 Relations among Subcontinuity, Local Boundedness and
Local Compactness.

Definition 2.1. [FU] Let X and Y be topological spaces. We say that a
function f : X → Y is subcontinuous at x ∈ X if for every net {xa : a ∈ A}
in X converging to x, there is a convergent subnet of {f(xa) : a ∈ A}.
A function f is subcontinuous if it is subcontinuous at every point of X.
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Definition 2.2. [MW] Let X and Y be topological spaces. A function f :
X → Y is locally compact at x ∈ X if there is a compact subset K of Y such
that x ∈ int(f−1(K)).

Definition 2.3. [MW] Let X be a topological space and Y be a metric space.
Then function f : X → Y is locally bounded at x ∈ X if there is a neighbor-
hood V of x such that f(V ) is bounded.

Definition 2.4. Let X be a topological space and Y be a metric space. Then
function f : X → Y is locally totally bounded (or simply l.t.b.) at x ∈ X if
for every r ∈ R+ there is a finite subset F of Y and a neighborhood V of x
such that f(V ) ⊂ ∪{G(y, r) : y ∈ F}.

It is clear, that function f , which is l.t.b. at x is also locally bounded at
x, for there is a finite subset F of Y and a neighborhood V of x such that
f(V ) ⊂ ∪{G(y, 1) : y ∈ F}; i.e., f(V ) is bounded.

Theorem 2.1. Let X and Y be topological spaces. f : X → Y is subcon-
tinuous at x if and only if for every open cover U of Y there is a finite subset
F of U and a neighborhood V of x such that f(V ) ⊂ ∪F .

Proof. Suppose that f is subcontinuous at x and there is an open cover U
of Y such that for every neighborhood V of x and every finite subset F of U
there is x(V,F) ∈ V such that f(x(V,F)) 6∈ ∪F . Put

A = {(V,F) : V is a neighborhood of X and F is a finite subset of U}.

Define the following direction ≥ on A: (V1,F1) ≥ (V2,F2) iff V1 ⊂ V2 and
F1 ⊃ F2. It is easy to verify that the net {x(V,F) : (V,F) ∈ A} converges to x.
The subcontinuity of f at x implies that {f(x(V,F)) : (V,F) ∈ A} has a cluster
point y ∈ Y . Let U ∈ U be such that y ∈ U . There is (V,F) ∈ A such that
(V,F)≥ (X, {U}) with f(x(V,F)) ∈ U . By the assumption f(x(V,F)) 6∈ ∪F
and F⊃ {U}; i.e., f(x(V,F)) 6∈ U contrary to supposition.

For the second implication suppose that for every open cover U of Y there
is a finite subset F of U and a neighborhood V of x such that f(V ) ⊂ ∪F
and f is not subcontinuous at x. Thus there is a net {xa : a ∈ A} converging
to x such that {f(xa) : a ∈ A} has no cluster point; i.e., for every y ∈ Y
there is an open neighborhood Uy of y and ay such that for every a ≥ ay is
f(xa) 6∈ Uy. U= {Uy : y ∈ Y } is an open cover of Y and therefore there
exists F= {Uy1 , . . . , Uyn} and a neighborhood V of x such that f(V ) ⊂ ∪F .
Since {xa} is converging to x there is a0 such that for every a ≥ a0 is xa ∈ V
and thus f(xa) ∈ ∪F . Also there is a1 such that a1 ≥ a0 and a1 ≥ ayi

for
i = 1, . . . , n. Hence for every a ≥ a1 both of the following are true f(xa) ∈ ∪F
and f(xa) 6∈ Uyi

for every i = 1, . . . , n contrary to supposition.
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From Theorem 2.1 we have the following corollary, which is an improvement
of the first part of Theorem 2 in [MW].

Corollary 2.1. Let X be a topological space and Y be a metric space. If
f : X → Y is subcontinuous at x, then it is also l.t.b. at x and hence locally
bounded at x.

Proof. Let r ∈ R+. U= {G(y, r) : y ∈ Y } is an open cover of Y . According
to Theorem 2.1, there is a neighborhood V of x and F= {G(y1, r), . . . , G(yk, r)}
such that f(V ) ⊂ ∪F and hence f is l.t.b. at x.

Corollary 2.2. Let X be a topological space and Y be a locally compact topo-
logical space. If f : X → Y is subcontinuous at x then it is also locally compact
at x.

Proof. Since Y is locally compact, for every y ∈ Y there is an open neighbor-
hood Uy of y and a compact subset Ky of Y such that Uy ⊂ Ky. U= {Uy : y ∈
Y } is an open cover of Y and according to Theorem 2.1 there is a neighborhood
V of x and F= {Uy1 , . . . , Uyn

} such that f(V ) ⊂ ∪F= ∪n
i=1Uyi

⊂ ∪n
i=1Kyi

which is compact and hence f is locally compact at x.

We can now prove an improvement of the first part of Theorem 3 in [MW].

Theorem 2.2. Let X and Y be topological spaces. If f : X → Y is locally
compact at x, then it is subcontinuous at x.

Proof. Since f is locally compact at x, there is a neighborhood V of x and
a compact subset K of Y such that f(V ) ⊂ K. Since K is compact, for every
open cover U of Y , there is a finite subset F of U such that ∪F⊃ K ⊃ f(V )
and hence f is subcontinuous at x.

Theorem 2.3. Let X be a topological space and Y be a complete metric space.
If f : X → Y is l.t.b. at x, it is subcontinuous at x.

Proof. Suppose that {xa : a ∈ A} is a net in X, converging to x ∈ X.
For every n ∈ N there is a finite set F and a neighborhood V of x such that
f(V ) ⊂ ∪{G(y, 1/n) : y ∈ F}. Since {xa : a ∈ A} converges to x, it is
eventually in V and since f(V ) ⊂ ∪{G(y, 1/n) : y ∈ F}, there are An ⊂ A
and yn ∈ Y such that {f(xa) : a ∈ An}⊂ G(yn, 1/n) and {xa : a ∈ An}
is subnet of {xa : a ∈ A}. Since {xa : a ∈ An} converges to x, we may
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suppose that An+1 ⊂ An. (An and yn are constructed by the induction where
A0 = A.) Put B= {(a, n) : a ∈ An, n ∈ N ∪ {0}}. Define the direction � by
B: (a1, n1) � (a2, n2) iff a1 ≥ a2 and n1 ≥ n2. For b = (a, n) ∈ B put xb = xa.
{f(xb) : b ∈ B} is subnet of {f(xa) : a ∈ A} and it is a Cauchy net, because
for every b � (a, n), f(xb) ∈ G(yn, 1/n). Since Y is complete, {f(xb) : b ∈ B}
is convergent and hence f is subcontinuous at x.

Theorem 2.4. Let X and Y be topological spaces and f : X → Y be a
subcontinuous function. If K is a compact subset of X, then every open cover
U0 of f(K) contains a finite subfamily F0 such that f(K) ⊂ ∪{W : W ∈ F0}.

Proof. For an arbitrary open cover U0 of f(K) there is a U= U0∪{Y \f(K)}
an open cover of Y . For every x ∈ K there is an open neighborhood Vx of x
and a finite subset Fx of U such that f(Vx) ⊂ ∪Fx. V= {Vx : x ∈ K} is an
open cover of K and therefore there are Vx1 , . . . , Vxn

such that K ⊂ ∪n
i=1Vxi

;
i.e., f(K) ⊂ f(∪n

i=1Vxi
) ⊂ ∪n

i=1f(Vxi
) ⊂ ∪n

i=1(∪Fxi
) = ∪(∪n

i=1Fxi
). Put

F0 = {U : U ∈ Fxi
, i = 1, 2, . . . n} \ {Y \ f(K)}. Then F0 is a finite subset of

U0. Since f(K) ⊂ ∪F0, f(K) ⊂ ∪{W : W ∈ F0}.

Corollary 2.3. Let X and Y be topological spaces, Y Hausdorff and f : X →
Y be a subcontinuous function. If K is a compact subset of X, then f(K) is
H-closed in Y .

The following corollary is an improvement of Theorem 2.1 in [FU].

Corollary 2.4. Let X and Y be topological spaces, Y regular and f : X → Y
be a subcontinuous function. If K is a compact subset of X, then f(K) is
compact in Y .

Corollary 2.5. Let X be a locally compact topological space and let Y be a
regular topological space. If f : X → Y is subcontinuous, then it is locally
compact.

Proof. Let K be a compact neighborhood of x. By Corollary 2.4 f(K) is
compact and thus f is locally compact.

Definition 2.5. [HO] Let Y be a metric space. We say that Y is b-compact
if every closed ball in Y is compact.

The following theorem completes Remark 1 in [MW].
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Theorem 2.5. Let Y be a metric space. The following are equivalent:

1. Y is b-compact,

2. For every topological space X and every function f : X → Y , f is
subcontinuous if and only if it is locally bounded.

Proof. According to Corollary 2.1 and Theorem 2.2, it is sufficient to prove
2 ⇒ 1. We prove that an arbitrary closed ball B(y, r) in Y is compact. Since
Y is a metric space, it is sufficient to show, that every sequence {yn : n ∈ N}
in B(y, r) has a cluster point in B(y, r). So let {yn : n ∈ N} be a sequence
in B(y, r). Let X = R be the space of reals with the usual topology. Define
f : X → Y by

f(x) =

{
yn x = 1/n n = 1, 2, . . .

y otherwise.

Then of course f is bounded. Thus by the assumption f is subcontinuous.
Since {1/n} → 0, {yn : n ∈ N} has to have a convergent subnet; i.e., {yn :
n ∈ N} has a cluster point z, which is of course in B(y, r). Thus B(y, r) is
compact.

We can also prove analogous characterizations for locally compact and l.t.b.
functions.

Theorem 2.6. Let Y be a topological space. The following are equivalent:

1. Y is locally compact,

2. For every topological space X and every function f : X → Y , f is
subcontinuous if and only if it is locally compact.

Proof. We will only prove that 2 ⇒ 1. Let f be an identity on Y . Hence f
is continuous. Thus by assumption f is locally compact. Let y be a point of
Y . Then there is a neighborhood U of y and a compact subset K of Y such
that K ⊃ f(U) = U . Hence Y is locally compact.

Theorem 2.7. Let Y be a metric space. The following are equivalent:

1. Y is complete,

2. For every topological space X and every function f : X → Y , f is
subcontinuous if and only if it is l.t.b..
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Proof. It suffices to prove 2 ⇒ 1. Let {yn : n ∈ N} be an arbitrary Cauchy
sequence in Y . Let X = R be the space of reals with the usual topology.
Define f : X → Y by

f(x) =

{
yn x = 1/n n = 1, 2, . . .

y1 otherwise.

Since f(X) is totally bounded, f is l.t.b.. By assumption f is subcontinuous
and since 1/n → 0, {yn : n ∈ N} must have a cluster point and consequently
it is convergent.

3 The Set of Points of Continuity of a Subcontinuous
Function.

Holá and Piotrowski [HP] showed that the set of points of continuity of a func-
tion with values in a Hausdorff topological space with the following property:

there is a sequence {Gn : n ∈ N} of open covers of Y such that if
y ∈ Gn ∈ Gn for each n, and if W is an open set in Y which contains y, then

∩{Gj : 1 ≤ j ≤ n} ⊂ W for some n,

is a Gδ-set. Notice that all developable spaces fulfil this condition. Bolstein
[BO] showed that every Gδ-set in an almost-resolvable space coincides with
the set of points of continuity of a real valued function. Now the question
is whether every Gδ-set in an almost-resolvable space is the set of points of
continuity of a subcontinuous function.

Definition 3.1. [BO] A topological space is almost-resolvable if it is a count-
able union of sets with void interiors.

Theorem 3.1. Let X be an almost-resolvable topological space. Let Y be a
first countable Hausdorff topological space, which contains a non isolated point
y0. Let H be a Gδ-set in X. There is a subcontinuous function f : X → Y
such that C(f) = H.

Proof. The following proof uses ideas from [BO]. Let {yn : n ∈ N} be a
sequence of points of Y , such that yn → y0 and let {O(yn) : n ∈ N} be a
sequence of open sets such that yn ∈ O(yn) and y0 6∈ O(yn) for n ∈ N and
O(yn)∩O(ym) = ∅ for m,n ∈ N and n 6= m. Let F = X \H. Since F is an Fσ

set, F = ∪n∈NFn where Fn ⊂ Fn+1 are closed sets. Let En = Fn \Fn−1 where
F0 = ∅. Since X is almost-resolvable, X = ∪m∈NAm where Am are pairwise
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disjoint and have void interiors. Let Emn = int(En) ∩ Am so int(En) =
∪m∈NEmn. Let us define f : X → Y by

f(x) =


y0 x 6∈ F

yn x ∈ En \ int(En) n = 1, 2, . . .

yn+m x ∈ Emn m, n = 1, 2, . . . .

The function f satisfies f(X \Fn) ⊂ {yn+1, yn+2, . . . , y0}, f(F ) ⊂ {y1, y2, . . . }
and f(X) ⊂ {y0, y1, y2, . . . }. Since for every n ∈ N, X\Fn is an open neighbor-
hood of the set H and since yn → y0, f is continuous at each point of H. Since
all points of f(F ) are isolated in f(X), to show that f is discontinuous at every
point of F it suffices to show f is not constant on every open V which meets
F . Suppose V meets F . Then V meets En for some n. If V meets int(En),
then since each Emn has void interior, V meets Emn at least for two values m.
Hence f is not constant on V . If V and int(En) are disjoint, then V contains
x ∈ En\int(En) so x ∈ V ∩En ⊂ V ∩(X\Fn−1) which is an open neighborhood
of x and it has to meet (X\En). So ∅ 6= V ∩(X\Fn−1)∩(X\En) = V ∩(X\Fn).
Since f(X \ Fn) ⊂ {yn+1, yn+2, . . . , y0} and f(x) = yn, f is not constant at
V . We have the subcontinuity of f from the compactness of f(X).

4 The Set of Points of Subcontinuity of a Function.

In this section we will denote the set of points of subcontinuity of a function
f by SC(f). The following propositions are evident.

Proposition 4.1. Let X be a topological space and Y be a metric space and
f : X → Y be a function. Then the set of points of local boundedness of f is
open.

Proposition 4.2. Let X and Y be topological spaces and f : X → Y be a
function. Then the set of points of local compactness of f is open.

Corollary 4.1. Let X and Y be topological spaces and Y be locally compact.
Let f : X → Y be a function. Then SC(f) is open.

Theorem 4.1. Let X be a topological space and Y be a metric space and
f : X → Y be a function. Then the set of points of l.t.b. of f is Gδ.

Proof. For every n ∈ N put

Wn = {x ∈ X : there is a neighborhood V of x and finite subset Fof Y

such that f(V ) ⊂ ∪{G(y, 1/n) : y ∈ F}}.
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Then of course Wn is open. The set of points of l.t.b. of f is ∩n∈NWn and
thus it is Gδ.

Corollary 4.2. Let X be a topological space and Y be a complete metric space.
Let f : X → Y be a function. Then SC(f) is a Gδ-set.

Definition 4.1. A topological space is σ-resolvable if it is a union of infinitely
many pairwise disjoint dense sets.

Lemma 4.1. Let X and Y be topological spaces and f : X → Y be a subcon-
tinuous function at x. Every net in W = ∩{f(V ) : V is a neighborhood of x}
has a cluster point (not necessarily in W ).

Proof. Let {ya : a ∈ A} be a net in W . For every neighborhood V of x and
for every a ∈ A there is x(a,V ) ∈ V such that f(x(a,V )) = ya. Consider the
natural direction on B= {(a, V ) : a ∈ A, V is a neighborhood of x}. Therefore
{xb : b ∈ B} is a net converging to x. Since {f(xb) : b ∈ B} is a subnet of
{ya : a ∈ A} and f is subcontinuous at x, {ya : a ∈ A} has a cluster point.

Theorem 4.2. Let X be a σ-resolvable topological space. Let Y be a non
countably compact topological space. Let H be an open domain; i.e., H =
int(H). Then there is a function f : X → Y such that SC(f) = H.

Proof. Since Y is not countably compact, there is a sequence {yn : n ∈ N}
without a cluster point. Since X is σ-resolvable, X = ∪n∈NAn, where An are
pairwise disjoint and dense in X. Define f : X → Y by

f(x) =

{
yn x ∈ An ∩ (X \H) n = 1, 2, . . .

y0 otherwise.

1. If x ∈ H, then H is an open neighborhood of x and f(H) = {y0}. Hence
f is continuous at x.

2. If x ∈ (X \H), then for every open neighborhood V of x is V ∩ (X \H)
open and not empty. Hence for every n ∈ N is V ∩ (X \H)∩An 6= ∅ and
f(V ) ⊃ {yn : n ∈ N}. According to Lemma 4.1, f is not subcontinuous
at x.



On Subcontinuity 543

3. If x ∈ ∂H. Suppose that there is a neighborhood V of x such that
V ⊂ H. Then x ∈ int(H) = H. But x ∈ ∂H ⊂ X \ H contrary
to supposition. This implies that for every open neighborhood V of
x, V ∩ (X \ H) is an open and nonempty. Hence for every n ∈ N is
An ∩ V ∩ (X \ H) not void. Hence f(V ) ⊃ {yn : n ∈ N} and f is not
subcontinuous at x.

Finally SC(f) = H.

Corollary 4.3. Let X be a σ-resolvable topological space and Y be a non
countably compact topological space. Then there is f : X → Y with SC(f) = ∅.

Theorem 4.3. Let X be a σ-resolvable metric space and Y be a non countably
compact topological space. Then for every open set H in X, there is a function
f : X → Y with SC(f) = H.

Proof. W.l.o.g. we may suppose that ∂H 6= ∅, otherwise we can use the
previous theorem. Put Hn = {x ∈ H : d(x, ∂H) > 1/n}. Hn is open,
Hn ⊂ Hn+1 and H = ∪n∈NHn. Let Gn = Hn+1 \Hn. Let y0 be a point of Y .
Since Y is not countably compact, there is a sequence {yn : n ∈ N} without a
cluster point. Since X is σ-resolvable, X = ∪m∈NAm, where Am are pairwise
disjoint and dense in X. Define f : X → Y by

f(x) =


ym x ∈ Am ∩ (X \H) m = 1, 2, . . .

ym x ∈ Gn ∩Am n = 1, 2, . . . ;m = 1, 2, . . . , n

y0 otherwise.

1. If x ∈ H, then there is n ∈ N, such that Hn is an open neighborhood of
x and f(Hn) ⊂ {y0, y1, . . . , yn}, which is compact. Hence f is subcon-
tinuous at x.

2. If x ∈ (X \H), then for every open neighborhood V of x, V ∩ (X \H) is
open and nonempty. Hence for every m ∈ N is V ∩(X \H)∩Am 6= ∅ and
f(V ) ⊃ {ym : m ∈ N}. According to Lemma 4.1, f is not subcontinuous
at x.

3. If x ∈ ∂H, then for every open neighborhood V of x meets Gn for
infinitely many n ∈ N. Since V ∩ Gn is open, for every m ∈ N there is
an n ∈ N, n > m, such that Am ∩ V ∩ Gn is not void. Hence f(V ) ⊃
{ym : m ∈ N} and f is not subcontinuous at x.
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Finally SC(f) = H.

Theorem 4.4. Let X be a σ-resolvable topological space and Y be a complete
metric space with a point y0 with no compact neighborhood. Let H = ∩n∈NHn

be a subset of X, where {Hn : n ∈ N} is a sequence of open domains. Then
there is a function f : X → Y , such that SC(f) = H.

Proof. Let n ∈ N. Since B(y0, 1/n) is not compact, it contains a sequence
{yn

m : m ∈ N} without a cluster point. Since X is σ−resolvable, X = ∪n∈NAn,
where An are pairwise disjoint and dense in X. We may also suppose that
Hn+1 ⊂ Hn. Let H0 = X. Define f : X → Y by

f(x) =

{
yn

m x ∈ Am ∩ (Hn−1 \Hn) n, m = 1, 2, . . .

y0 otherwise.

1. If x ∈ H, then for every n ∈ N is Hn+1 an open neighborhood of x and
f(Hn+1) ⊂ B(y0, 1/(n + 1)) ⊂ G(y0, 1/n); i.e., f is l.t.b. at x and hence
subcontinuous at x.

2. If x ∈ (Hn−1 \ Hn), then for every open neighborhood V of x, V ∩
(Hn−1 \Hn) is open and nonempty. Hence for every m ∈ N, V ∩(Hn−1 \
Hn) ∩ Am 6= ∅ and f(V ) ⊃ {yn

m : m ∈ N}. According to Lemma 4.1, f
is not subcontinuous at x.

3. If x ∈ ∂Hn, where n = min{i ∈ N : x ∈ ∂Hi}, then x ∈ Hn−1. Suppose
that there is a neighborhood V of x such that V ⊂ Hn. Then x ∈
int(Hn) = Hn. But x ∈ ∂Hn ⊂ X \ Hn contrary to supposition. This
implies that for every open neighborhood V of x, V ∩ (Hn−1 \ Hn) is
open and non-void. Hence for every m ∈ N, Am ∩ V ∩ (Hn−1 \ Hn) is
non-void. Hence f(V ) ⊃ {yn

m : m ∈ N} and f is not subcontinuous at x.

Finally SC(f) = H.
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[HO] L’. Holá, The Attouch-Wets topology and a characterisation of normable
linear spaces, Bull. Austr. Math. Soc., 44 (1991), 11–18.
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