Real Analysis Exchange
ISSN:0147-1937
Vol. 31(2), 2005/2006, pp. 535-546

Branislav Novotny, Katedra matematickej analyzy a numerickej matematiky
Fakulta matematiky, fyziky a informatiky, Univerzita Komenského, Mlynska
dolina, 842 48 Bratislava, Slovakia. email: buno1983@hotmail.com

ON SUBCONTINUITY

Abstract
A new characterization of subcontinuity of functions is given. Rela-
tions among subcontinuity, local boundedness and local compactness are
studied. The set of points of subcontinuity of functions is investigated.

1 Introduction.

Fuller in his paper [FU] introduced and studied the notion of subcontinuous
functions. Mimna and Wingler in their paper [MW] investigated some rela-
tions among subcontinuity, local boundedness and local compactness of func-
tions. Our paper provides some generalizations and improvements of results
from [MW] and also [FU]. We also study the sets of points of continuity
of subcontinuous functions, as well as the sets of points of subcontinuity of
functions.

For a topological space X and a subset A C X we denote by A, int(A),
0A the closure, the interior and the boundary of A, respectively.

If (X, d) is a metric space we denote by G(x,r) (B(z,r)) the open (closed)
ball with the center = and the radius r.

For all basic notions we refer to Engelking’s General Topology [EN].

2 Relations among Subcontinuity, Local Boundedness and
Local Compactness.

Definition 2.1. [FU] Let X and Y be topological spaces. We say that a
function f : X — Y is subcontinuous at = € X if for every net {z, : a € A}
in X converging to x, there is a convergent subnet of {f(z,) : a € A}.

A function f is subcontinuous if it is subcontinuous at every point of X.
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536 BRANISLAV NOVOTNY

Definition 2.2. [MW] Let X and Y be topological spaces. A function f :
X — Y islocally compact at « € X if there is a compact subset K of Y such
that z € int(f~1(K)).

Definition 2.3. [MW] Let X be a topological space and Y be a metric space.
Then function f: X — Y is locally bounded at x € X if there is a neighbor-
hood V of = such that f(V') is bounded.

Definition 2.4. Let X be a topological space and Y be a metric space. Then
function f : X — Y is locally totally bounded (or simply l.t.b.) at x € X if
for every r € R™ there is a finite subset F' of Y and a neighborhood V of x
such that f(V) c U{G(y,r) :y € F}.

It is clear, that function f, which is 1.t.b. at z is also locally bounded at
x, for there is a finite subset F' of Y and a neighborhood V of x such that
f(V) c U{G(y,1) : y € F}; ie., f(V) is bounded.

Theorem 2.1. Let X and Y be topological spaces. f : X — Y 1is subcon-
tinuous at x if and only if for every open cover U of Y there is a finite subset
F of U and a neighborhood V' of x such that f(V) C UF.

PROOF. Suppose that f is subcontinuous at = and there is an open cover U
of Y such that for every neighborhood V of x and every finite subset F of U
there is x(y,7) € V such that f(zy,r)) ¢ UF. Put

A={(V,F):V is a neighborhood of X and F is a finite subset of U/}.

Define the following direction > on A: (Vi,F1) > (Vo,Fs) iff V1 C V4 and
F1 D Fa. It is easy to verify that the net {z(y r) : (V,F) € A} converges to z.
The subcontinuity of f at 2 implies that { f(z(y, 7)) : (V,F) € A} has a cluster
point y € Y. Let U € U be such that y € U. There is (V,F) € A such that
(V,F)> (X,{U}) with f(z(y,r) € U. By the assumption f(xw,z) ¢ UF
and FD {U}; i.e., f(w(v,7)) ¢ U contrary to supposition.

For the second implication suppose that for every open cover U of Y there
is a finite subset F of U and a neighborhood V of x such that f(V) C UF
and f is not subcontinuous at x. Thus there is a net {z, : a € A} converging
to x such that {f(x,) : @ € A} has no cluster point; i.e., for every y € Y
there is an open neighborhood U, of y and a, such that for every a > a, is
flza) € Uy. U= {U, : y € Y} is an open cover of ¥ and therefore there
exists F= {U,,,..., Uy, } and a neighborhood V' of « such that f(V) C UF.
Since {z,} is converging to x there is ag such that for every a > ag is z, € V
and thus f(z,) € UF. Also there is a; such that a; > a¢ and a; > a,, for
i =1,...,n. Hence for every a > a; both of the following are true f(z,) € UF
and f(z,) ¢ Uy, for every ¢ = 1,...,n contrary to supposition. O
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From Theorem 2.1 we have the following corollary, which is an improvement
of the first part of Theorem 2 in [MW].

Corollary 2.1. Let X be a topological space and Y be a metric space. If
f: X =Y is subcontinuous at x, then it is also l.t.b. at x and hence locally
bounded at x.

PRrROOF. Let r € RT. U= {G(y,r) : y € Y} is an open cover of Y. According
to Theorem 2.1, there is a neighborhood V of  and F= {G(y1,7),...,G(yk,7)}
such that f(V) C UF and hence f is L.t.b. at z. O

Corollary 2.2. Let X be a topological space and Y be a locally compact topo-
logical space. If f : X — 'Y is subcontinuous at x then it is also locally compact
at x.

PROOF. SinceY is locally compact, for every y € Y there is an open neighbor-
hood Uy, of y and a compact subset K, of Y such that U, C K,. U={U, : y €
Y} is an open cover of Y and according to Theorem 2.1 there is a neighborhood
V of z and F= {U,,,...,Uy, } such that f(V) Cc UF= U ,U,, C UK,
which is compact and hence f is locally compact at x. O

We can now prove an improvement of the first part of Theorem 3 in [MW].

Theorem 2.2. Let X and Y be topological spaces. If f : X — Y 1is locally
compact at x, then it is subcontinuous at x.

PROOF. Since f is locally compact at x, there is a neighborhood V' of z and
a compact subset K of Y such that f(V) C K. Since K is compact, for every
open cover U of Y, there is a finite subset F of U such that UFD K D f(V)
and hence f is subcontinuous at z. O

Theorem 2.3. Let X be a topological space andY be a complete metric space.
If f: X =Y isltb. atx, it is subcontinuous at x.

PROOF. Suppose that {z, : a € A} is a net in X, converging to = € X.
For every n € N there is a finite set F' and a neighborhood V of & such that
f(V) c U{G(y,1/n) : y € F}. Since {z, : a € A} converges to x, it is
eventually in V' and since f(V) C U{G(y,1/n) : y € F}, there are A, C A
and y, € Y such that {f(z,) : a € A,}C G(yn,1/n) and {z, : ¢ € A,}
is subnet of {z, : a € A}. Since {z, : a € A,} converges to x, we may
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suppose that A,11 C A,. (A, and y,, are constructed by the induction where
Ay = A.) Put B={(a,n) : a € A,,n € NU{0}}. Define the direction = by
B: (a1,n1) = (ag,n9) iff a3 > as and ny > ng. For b = (a,n) € B put z, = x,.
{f(xp) : b € B} is subnet of {f(x,) : @ € A} and it is a Cauchy net, because
for every b > (a,n), f(xp) € G(yn,1/n). Since Y is complete, {f(xp) : b € B}
is convergent and hence f is subcontinuous at x. O

Theorem 2.4. Let X and Y be topological spaces and f : X — Y be a
subcontinuous function. If K is a compact subset of X, then every open cover
Uo of f(K) contains a finite subfamily Fo such that f(K) C U{W : W € Fy}.

PROOF. For an arbitrary open cover Uy of f(K) thereis ald= U U{Y \ f(K)}
an open cover of Y. For every z € K there is an open neighborhood V,, of x
and a finite subset F, of U such that f(V;) C UF,. V={V,:2x € K} is an
open cover of K and therefore there are V,,,...,V,, such that K C U, V;,;
ie, f(K) C f(Ur_Ve,) C U f(Ve,) C U (UF.,) = U(UjZ Fa,). Put
Fo={U:U€cFy,,i=12,..n}\{Y\ f(K)}. Then Fy is a finite subset of
Uy. Since f(K) C UFy, f(K) C U{W : W € Fo}. O

Corollary 2.3. Let X andY be topological spaces, Y Hausdorff and f : X —

Y be a subcontinuous function. If K is a compact subset of X, then f(K) is
H-closed in Y.

The following corollary is an improvement of Theorem 2.1 in [FU]J.

Corollary 2.4. Let X and Y be topological spaces, Y regular and f : X —Y
be a subcontinuous function. If K is a compact subset of X, then f(K) is
compact in'Y .

Corollary 2.5. Let X be a locally compact topological space and let' Y be a
reqular topological space. If f : X — Y is subcontinuous, then it is locally
compact.

PROOF. Let K be a compact neighborhood of z. By Corollary 2.4 f(K) is
compact and thus f is locally compact. O

Definition 2.5. [HOJ] Let Y be a metric space. We say that Y is b-compact
if every closed ball in Y is compact.

The following theorem completes Remark 1 in [MW].
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Theorem 2.5. Let Y be a metric space. The following are equivalent:
1. Y s b-compact,

2. For every topological space X and every function f : X — Y, f is
subcontinuous if and only if it is locally bounded.

PRrROOF. According to Corollary 2.1 and Theorem 2.2, it is sufficient to prove
2 = 1. We prove that an arbitrary closed ball B(y,r) in Y is compact. Since
Y is a metric space, it is sufficient to show, that every sequence {y, : n € N}
in B(y,r) has a cluster point in B(y,r). So let {y, : n € N} be a sequence
in B(y,r). Let X = R be the space of reals with the usual topology. Define

f: X =Y by
Yo x=1/nn=12 ...
f(m>={ §
y  otherwise.

Then of course f is bounded. Thus by the assumption f is subcontinuous.
Since {1/n} — 0, {y, : n € N} has to have a convergent subnet; i.e., {y, :
n € N} has a cluster point z, which is of course in B(y,r). Thus B(y,r) is
compact. O

We can also prove analogous characterizations for locally compact and 1.t.b.
functions.

Theorem 2.6. Let Y be a topological space. The following are equivalent:
1. 'Y is locally compact,
2. For every topological space X and every function f : X — Y, f is

subcontinuous if and only if it is locally compact.

PRrROOF. We will only prove that 2 = 1. Let f be an identity on Y. Hence f
is continuous. Thus by assumption f is locally compact. Let y be a point of
Y. Then there is a neighborhood U of y and a compact subset K of Y such
that K O f(U) = U. Hence Y is locally compact. O

Theorem 2.7. LetY be a metric space. The following are equivalent:

1. Y is complete,

2. For every topological space X and every function f : X — Y, f is
subcontinuous if and only if it is I.t.b..
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PRrROOF. It suffices to prove 2 = 1. Let {y, : n € N} be an arbitrary Cauchy
sequence in Y. Let X = R be the space of reals with the usual topology.
Define f: X — Y by

f(ac):{y" r=1/nn=1,2,...

y1 otherwise.

Since f(X) is totally bounded, f is l.t.b.. By assumption f is subcontinuous
and since 1/n — 0, {y, : » € N} must have a cluster point and consequently
it is convergent. [

3 The Set of Points of Continuity of a Subcontinuous
Function.

Hol4 and Piotrowski [HP] showed that the set of points of continuity of a func-
tion with values in a Hausdorff topological space with the following property:

there is a sequence {G,, : n € N} of open covers of Y such that if
y € G, € G, for each n, and if W is an open set in Y which contains y, then
N{G,; :1<j<n}CW for some n,

is a Gs-set. Notice that all developable spaces fulfil this condition. Bolstein
[BO] showed that every Gs-set in an almost-resolvable space coincides with
the set of points of continuity of a real valued function. Now the question
is whether every Gs-set in an almost-resolvable space is the set of points of
continuity of a subcontinuous function.

Definition 3.1. [BO] A topological space is almost-resolvable if it is a count-
able union of sets with void interiors.

Theorem 3.1. Let X be an almost-resolvable topological space. Let'Y be a
first countable Hausdorff topological space, which contains a non isolated point
Yo- Let H be a Gs-set in X. There is a subcontinuous function f : X — Y
such that C(f) = H.

PROOF. The following proof uses ideas from [BOJ]. Let {y, : n € N} be a
sequence of points of Y, such that y, — yo and let {O(y,) : n € N} be a
sequence of open sets such that y,, € O(y,) and yo € O(y,) for n € N and
O(yn)NO(yym) = 0 for m,n € Nand n # m. Let F = X\ H. Since F is an F,
set, FF = UpenF, where F,, C F,,11 are closed sets. Let E,, = F,, \ F,,_1 where
Fy = (0. Since X is almost-resolvable, X = U,,enAy, where A, are pairwise
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disjoint and have void interiors. Let E,,, = int(E,) N A, so int(E,) =
UmeNnFEmn- Let us define f: X — Y by

Yo g F
f@)=<y, we€B,\int(E,)n=12,...
Yn+m TEEp,mn=12 ...

The function f satisfies f(X \ Fy,) C {Yn+1,Yn+2,---»¥0}s fF(F) C{y1,92,... }
and f(X) C {yo,y1,¥2,--- }. Since for every n € N, X\ F}, is an open neighbor-
hood of the set H and since y,, — g, f is continuous at each point of H. Since
all points of f(F) are isolated in f(X), to show that f is discontinuous at every
point of F' it suffices to show f is not constant on every open V which meets
F. Suppose V meets F. Then V meets E,, for some n. If V meets int(E,),
then since each F,,, has void interior, V meets E,,,, at least for two values m.
Hence f is not constant on V. If V and int(E,,) are disjoint, then V' contains
x € E\int(E,) sox € VNE, C VN(X\F,_1) which is an open neighborhood
of z and it has to meet (X \ E,). So 0 # VN(X\F,—1)N(X\E,) = VN(X\F,).
Since f(X \ Fn) C {Un+1sYn+2,---,%0} and f(x) = yn, f is not constant at
V. We have the subcontinuity of f from the compactness of f(X). O

4 The Set of Points of Subcontinuity of a Function.
In this section we will denote the set of points of subcontinuity of a function
f by SC(f). The following propositions are evident.

Proposition 4.1. Let X be a topological space and Y be a metric space and
f: X =Y be a function. Then the set of points of local boundedness of f is
open.

Proposition 4.2. Let X and Y be topological spaces and f : X — Y be a
function. Then the set of points of local compactness of f is open.

Corollary 4.1. Let X and Y be topological spaces and Y be locally compact.
Let f: X =Y be a function. Then SC(f) is open.

Theorem 4.1. Let X be a topological space and Y be a metric space and
f: X =Y be a function. Then the set of points of I.t.b. of f is Gs.
PROOF. For every n € N put

W, = {z € X : there is a neighborhood V of z and finite subset Fof YV’
such that f(V) Cc U{G(y,1/n):y € F}}.
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Then of course W, is open. The set of points of 1.t.b. of f is NpenyW,, and
thus it is Gjs. O

Corollary 4.2. Let X be a topological space andY be a complete metric space.
Let f: X — Y be a function. Then SC(f) is a Gg-set.

Definition 4.1. A topological space is o-resolvable if it is a union of infinitely
many pairwise disjoint dense sets.

Lemma 4.1. Let X and Y be topological spaces and f : X — Y be a subcon-
tinuous function at x. Every net in W = N{f(V): V is a neighborhood of x}
has a cluster point (not necessarily in W ).

PROOF. Let {y, : a € A} be a net in W. For every neighborhood V of z and
for every a € A there is 2(,y) € V such that f(x(,,v)) = ya. Consider the
natural direction on B= {(a,V) : a € A, V is a neighborhood of z}. Therefore
{zp : b € B} is a net converging to z. Since {f(x}) : b € B} is a subnet of
{Ya : @ € A} and f is subcontinuous at z, {y, : a € A} has a cluster point. [

Theorem 4.2. Let X be a o-resolvable topological space. Let'Y be a non
countably compact topological space. Let H be an open domain; i.e., H =

int(H). Then there is a function f: X —Y such that SC(f) = H.

PROOF. Since Y is not countably compact, there is a sequence {y, : n € N}
without a cluster point. Since X is o-resolvable, X = U,cnAy,, where A, are
pairwise disjoint and dense in X. Define f: X — Y by

fla)y=14"" reA,N(X\H)n=12,...
B 1Yo otherwise.

1. If z € H, then H is an open neighborhood of = and f(H) = {yo}. Hence
f is continuous at z.

2. If z € (X \ H), then for every open neighborhood V of z is V N (X \ H)
open and not empty. Hence for every n € Nis VN (X \ H)N A, #  and
f(V) D {yn : n € N}. According to Lemma 4.1, f is not subcontinuous
at x.
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3. If x € OH. Suppose that there is a neighborhood V of z such that
V C H. Then z € int(H) = H. But x € 0H C X \ H contrary
to supposition. This implies that for every open neighborhood V of
xz, VN (X \ H) is an open and nonempty. Hence for every n € N is
A, NV N (X\ H) not void. Hence f(V) D {y, : n € N} and f is not
subcontinuous at .

Finally SC(f) = H. O

Corollary 4.3. Let X be a o-resolvable topological space and Y be a non
countably compact topological space. Then thereis f : X — Y with SC(f) = 0.

Theorem 4.3. Let X be a o-resolvable metric space andY be a non countably
compact topological space. Then for every open set H in X, there is a function
f: X =Y with SC(f) = H.

PrROOF. W.lo.g. we may suppose that 0H # (), otherwise we can use the
previous theorem. Put H, = {x € H : d(z,0H) > 1/n}. H, is open,
H, C H,1 and H = UpenH,. Let G,, = H, 1 \ H,,. Let yo be a point of Y.
Since Y is not countably compact, there is a sequence {y, : n € N} without a
cluster point. Since X is o-resolvable, X = U,,enAm, where A, are pairwise
disjoint and dense in X. Define f: X — Y by

Ym TEA,N(X\H)m=12,...
f@)=<Sym z€G,NA,n=12,....m=1,2,...,n
Yo otherwise.

1. If x € H, then there is n € N, such that H,, is an open neighborhood of
x and f(Hp) C {Y0,Y1s---,Yn}, which is compact. Hence f is subcon-
tinuous at x.

2. If z € (X \ H), then for every open neighborhood V of z, VN (X \ H) is
open and nonempty. Hence for every m € Nis VN(X\ H)NA,, # ( and
F(V) D {ym : m € N}. According to Lemma 4.1, f is not subcontinuous
at x.

3. If x € OH, then for every open neighborhood V of z meets G,, for
infinitely many n € N. Since V N G,, is open, for every m € N there is
an n € Nyn > m, such that A,, NV NG, is not void. Hence f(V) D
{Ym : m € N} and f is not subcontinuous at x.
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Finally SC(f) = H. O

Theorem 4.4. Let X be a o-resolvable topological space and 'Y be a complete
metric space with a point yo with no compact neighborhood. Let H = NypenHoy,
be a subset of X, where {H, : n € N} is a sequence of open domains. Then
there is a function f: X —Y, such that SC(f) = H.

PRrOOF. Let n € N. Since B(yo, 1/n) is not compact, it contains a sequence
{y" :m € N} without a cluster point. Since X is o—resolvable, X = U,enAn,
where A,, are pairwise disjoint and dense in X. We may also suppose that
H,,1 C H,. Let Hy = X. Define f: X — Y by

gt € Ay N (Hy 1y \Hp)n,m=1,2,...
fla) = { (1 (o )
Yo otherwise.

1. If x € H, then for every n € N is H, 11 an open neighborhood of x and
f(Hpnt1) € B(yo,1/(n+1)) C G(yo,1/n); ie., fis Lt.b. at x and hence
subcontinuous at .

2. If z € (Hpy \ H,), then for every open neighborhood V of x, V N
(i{"—l \ H,,) is open and nonempty. Hence for every m € N, VN (H, 1\

H,)NA, #0and f(V) D {y? : m € N}. According to Lemma 4.1, f
is not subcontinuous at x.

3. If x € OH,,, where n = min{i € N: x € 0H,}, then € H,_;. Suppose
that there is a neighborhood V of z such that V C H,,. Then x €
int(H,) = H,. But € 0H,, C X \ H,, contrary to supposition. This
implies that for every open neighborhood V of =, V. N (H,_1 \ H,) is
open and non-void. Hence for every m € N, A,, "V N (H,_1 \ H,) is

non-void. Hence f(V) D {y? : m € N} and f is not subcontinuous at z.

Finally SC(f) = H. O
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