Marcin Grande, Institute of Mathematics, Bydgoszcz Academy, Plac
Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. email: duncan@ab.edu.pl

ON A PROPERTY OF FUNCTIONS

Abstract

In this article, I propose a new property (a) of functions $f: X \rightarrow Y$, where X and Y are metric spaces. A function $f: X \rightarrow Y$ has the property (a) if for each real $\eta>0$, the union $\bigcup_{x \in X}(K(x, \eta) \times K(f(x), \eta))$ contains the graph of a continuous function $g: X \rightarrow Y$ and $K(x, r)$ denotes the open ball $\left\{t \in X: \rho_{X}(t, x)<r\right\}$ with center x and radius $r>0$. The class of functions with the property (a) contains all functions almost continuous in the sense of Stallings and all functions graph continuous. Moreover, I examine the sums, the products, and the uniform and discrete limits of sequences of functions from this class.

Let $\left(X, \rho_{X}\right)$ and $\left(Y, \rho_{Y}\right)$ be metric spaces. The symbol $K(x, r)$ denotes the open ball $\left\{t \in X: \rho_{X}(t, x)<r\right\}$ with center x and radius $r>0$. For a function $f: X \rightarrow Y$ and a positive real η, let

$$
A_{\eta}(f)=\bigcup_{x \in X}(K(x, \eta) \times K(f(x), \eta))
$$

We say that a function $f: X \rightarrow Y$ has the property (a) if for each positive real η, there is a continuous function $g: X \rightarrow Y$ such that the graph $\operatorname{Gr}(g)$ of g is contained in $A_{\eta}(f)$.

In [7], Stallings introduces the notion of almost continuous functions. Recall that a function $f: X \rightarrow Y$ is almost continuous (in the sense of Stallings) if for each open set $U \subset X \times Y$ containing $G r(f)$, there is a continuous function $g: X \rightarrow Y$ with $G r(g) \subset U$.

Since each set $A_{\eta}(f)$ is open in $X \times Y$ and contains $G r(f)$, we obtain that each almost continuous function $f: X \rightarrow Y$ has the property (a).

In [2], the notion of an A-continuous function is introduced. Later in [5, 6], K. Sakálová calls A-continuous functions graph continuous. Recall that

[^0]a function $f: X \rightarrow Y$ is said to be graph continuous if the closure $\operatorname{cl}(\operatorname{Gr}(f))$ of the graph of f contains the graph $\operatorname{Gr}(g)$ of a continuous function $g: X \rightarrow Y$.

Theorem 1. Each graph continuous function $f: X \rightarrow Y$ has the property (a).

Proof. Observe that for each function $f: X \rightarrow Y$, the equality

$$
\operatorname{cl}(G r(f))=\bigcap_{\eta>0} A_{\eta}(f)=\bigcap_{n \geq 1} A_{\frac{1}{n}}(f)
$$

holds. Of course, if $(x, y) \in \operatorname{cl}(G r(f))$ and $\eta>0$ is a real, then there is a point $(u, f(u)) \in G r(f)$ such that $u \in K(x, \eta)$ and $f(u) \in K(y, \eta)$. Consequently, $(x, y) \in K(u, \eta) \times K(f(u), \eta)$. So, for each $\eta>0$, we have $c l(G r(f)) \subset A_{\eta}(f)$, and consequently,

$$
c l(G r(f)) \subset \bigcap_{\eta>0} A_{\eta}(f)
$$

Now we prove the inclusion $\bigcap_{\eta>0} A_{\eta}(f) \subset \operatorname{cl}(G r(f))$. For this, fix a point $(x, y) \in \bigcap_{\eta>0} A_{\eta}(f)$ and a positive real ε. Since $(x, y) \in A_{\varepsilon}(f)$, there is a point $u \in X$ such that $x \in K(u, \varepsilon)$ and $y \in K(f(u), \varepsilon)$. But ε may be an arbitrary positive real, so $(x, y) \in c l(G r(f))$, and consequently, $\bigcap_{\eta>0} A_{\eta}(f) \subset c l(G r(f))$.

Since for $\eta_{1}>\eta_{2}>0$ the inclusion $A_{\eta_{1}}(f) \supset A_{\eta_{2}}(f)$ is true, the equality

$$
\bigcap_{\eta>0} A_{\eta}(f)=\bigcap_{n \geq 1} A_{\frac{1}{n}}(f)
$$

is evident.
If $f: X \rightarrow Y$ is a graph continuous function, then there is a continuous function $g: X \rightarrow Y$ with

$$
\operatorname{Gr}(g) \subset c l(G r(f)) \subset A_{\eta}(f) \text { for each } \eta>0
$$

so f has the property (a). This completes the proof.

Remark 1. Let $f: X \rightarrow Y$ be a function. If there is an element $y \in Y$ such that the level set $f^{-1}(y)$ is dense in X, then f is graph continuous, and consequently has the property (a).

Remark 2. Let $f: X \rightarrow Y$ be a function. If there is a continuous function $g: X \rightarrow Y$ such that the set $\{x \in X: f(x)=g(x)\}$ is dense in X, then f is graph continuous, and consequently has the property (a).

Remark 3. Let \mathbb{R} be the set of all reals. There are functions $f:[-1,1] \rightarrow \mathbb{R}$ with the property (a) and the closed graph $G r(f)$ which are neither almost continuous nor graph continuous.

Proof. Let

$$
f(0)=0 \text { and } f(x)=\frac{1}{|x|} \text { for } x \in[-1,0) \cup(0,1]
$$

Fix a real $\eta>0$ and observe that the interval

$$
\left[-\frac{\eta}{3}, \frac{\eta}{3}\right] \times\left\{\frac{3}{\eta}\right\} \subset A_{\eta}(f)
$$

Let

$$
g(x)=\frac{3}{\eta} \text { for } x \in\left[-\frac{\eta}{3}, \frac{\eta}{3}\right]
$$

and

$$
g(x)=f(x) \text { otherwise on }[-1,1]
$$

Then the function g is continuous and $G r(g) \subset A_{\eta}(f)$. So, f has the property (a). Moreover, $\operatorname{Gr}(f)$ is a closed subset of $[-1,1] \times \mathbb{R}$, but there is not a continuous function $h:[-1,1] \rightarrow \mathbb{R}$ with $G r(h) \subset G r(f)=\operatorname{cl}(G r(f))$. So f is not graph continuous.

Since f does not have the Darboux property and since each almost continuous function $\phi:[-1,1] \rightarrow \mathbb{R}$ has the Darboux property ([7, 4]), we obtain that f is not almost continuous and the proof is completed.

Remark 4. There is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with closed graph which does not have the property (a).

Proof. For example, such is the function

$$
f(0)=0 \text { and } f(x)=\frac{1}{x} \text { for } x \neq 0
$$

Remark 5. There are monotone bounded and simultaneously on the right continuous functions $f:[0,1] \rightarrow[0,1]$ which do not have the property (a).

Proof. Let $\left(w_{n}\right)$ be an enumeration of all rationals from $[0,1]$ such that $w_{n} \neq w_{m}$ for $n \neq m$ and $w_{1}=\frac{1}{2}$, and let

$$
f(x)=\sum_{w_{n} \leq x} \frac{1}{2^{n}} \text { for } x \in[0,1]
$$

Then f is increasing and continuous on the right hand at each point $x \in$ $[0,1)$, but it does not have the property (a), because for $\eta \in\left(0, \frac{1}{10}\right)$ and for each continuous function $h:[0,1] \rightarrow \mathbb{R}$, the difference $\operatorname{Gr}(h) \backslash A_{\eta}(f)$ is nonempty.

Theorem 2. Let $\left(X, \rho_{X}\right)$ and $\left(Y, \rho_{Y}\right)$ be metric spaces. If functions $f_{n}: X \rightarrow$ Y have the property (a) for $n \geq 1$ and if the sequence $\left(f_{n}\right)$ uniformly converges to a function $f: X \rightarrow Y$, then f has also the property (a).

Proof. Fix a real $\eta>0$. There is an index k with

$$
\rho_{Y}\left(f_{k}(x), f(x)\right)<\frac{\eta}{3} \text { for all } x \in X
$$

Since f_{k} has the property (a), there is a continuous function $h: X \rightarrow Y$ such that $G r(h) \subset A_{\frac{\eta}{3}}\left(f_{k}\right)$. Observe that

$$
\begin{equation*}
A_{\frac{\eta}{3}}\left(f_{k}\right) \subset A_{\eta}(f) \tag{*}
\end{equation*}
$$

Of course, if $(x, y) \in A_{\frac{\eta}{3}}\left(f_{k}\right)$, then there is a point $u \in X$ with

$$
\rho_{X}(u, x)<\frac{\eta}{3} \text { and } \rho_{Y}\left(f_{k}(u), y\right)<\frac{\eta}{3} .
$$

Since $\rho_{Y}\left(f_{k}, f\right)<\frac{\eta}{3}$, we obtain

$$
\rho_{Y}(f(u), y) \leq \rho_{Y}\left(f(u), f_{k}(u)\right)+\rho_{Y}\left(f_{k}(u), y\right)<\frac{\eta}{3}+\frac{\eta}{3}<\eta
$$

So $(x, y) \in A_{\eta}(f)$ and the inclusion $(*)$ holds. Consequently, $G r(h) \subset A_{\frac{\eta}{3}}\left(f_{k}\right) \subset$ $A_{\eta}(f)$, and the proof is completed.

It is well known ([4]) that each function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the pointwise limit of a sequence of almost continuous functions and the sum of two almost continuous functions. In this article, I prove the following theorems.

Theorem 3. Let $\left(X, \rho_{X}\right)$ be a metric space dense in itself, and let $\left(Y, \rho_{Y},+\right)$ be a metric group. Then for each function $f: X \rightarrow Y$, there are two graph continuous functions $f_{1}, f_{2}: X \rightarrow Y$ (so having the property (a)) such that $f=f_{1}+f_{2}$.

Proof. There are two disjoint sets $A, B \subset X$ dense in X. Let

$$
\begin{aligned}
& f_{1}(x)=0 \text { and } f_{2}(x)=f(x) \text { for } x \in A \\
& f_{2}(x)=0 \text { and } f_{1}(x)=f(x) \text { for } x \in B
\end{aligned}
$$

and

$$
f_{1}(x)=f(x) \text { and } f_{2}(x)=0 \text { for } x \in X \backslash(A \cup B)
$$

Since the level sets $\left(f_{1}\right)^{-1}(0) \supset A$ and $\left(f_{2}\right)^{-1}(0) \supset B$ are dense in X, functions f_{1} and f_{2} are graph continuous. Evidently, $f=f_{1}+f_{2}$, and the proof is completed.

Theorem 4. Let $\left(X, \rho_{X}\right)$ be a metric space dense in itself, and let Y_{1}, Y_{2}, Z be normed spaces. Moreover, let $\Phi:\left(Y_{1} \times Y_{2}\right) \rightarrow Z$ be a bilinear continuous function for which there are elements $a \in Y_{1}$ and $b \in Y_{2}$ such that for all elements $z \in Z$, there are elements $a^{\prime}(z) \in Y_{2}$ with $\Phi\left(a, a^{\prime}(z)\right)=z$ and $b^{\prime}(z) \in$ Y_{1} with $\Phi\left(b^{\prime}(z), b\right)=z$. Then for each function $f: X \rightarrow Z$, there are two graph continuous functions $f_{1}: X \rightarrow Y_{1}$ and $f_{2}: X \rightarrow Y_{2}$ such that $f=\Phi\left(f_{1}, f_{2}\right)$.

Proof. There are two disjoint sets $A, B \subset X$ dense in X. Let

$$
f_{1}(x)=a \text { and } f_{2}(x)=a^{\prime}(f(x)) \text { for } x \in X \backslash B
$$

and

$$
f_{2}(x)=b \text { and } f_{1}(x)=b^{\prime}(f(x)) \text { for } x \in B
$$

Since the level sets $\left(f_{1}\right)^{-1}(a) \supset A$ and $\left(f_{2}\right)^{-1}(b) \supset B$ are dense in X, functions f_{1} and f_{2} are graph continuous. Evidently, $f=\Phi\left(f_{1}, f_{2}\right)$, and the proof is completed.

Theorem 5. Let (X, ρ) be a metric space, and let Y be a normed space. If $f: X \rightarrow Y$ is a continuous function and if $g: X \rightarrow Y$ has the property (a), then $f+g$ has the property (a).

Proof. For a function $\phi: X \rightarrow Y$ and a set $K \subset(X \times Y)$, we denote by $\phi * K$ the set $\{(x, y+\phi(x)):(x, y) \in K\}$. Fix a real $\eta>0$. Observe that

$$
\begin{aligned}
& A_{\eta}(f+g)=\bigcup_{x \in X}(K(x, \eta) \times K(f(x)+g(x), \eta))= \\
& =f * \bigcup_{x \in X}(K(x, \eta) \times K(g(x), \eta))=f * A_{\eta}(g)
\end{aligned}
$$

Of course, if a point $(u, v) \in A_{\eta}(f+g)$, then there is a point $x \in X$ with $(u, v) \in K(x, \eta) \times K(f(x)+g(x), \eta)$. So, $u \in K(x, \eta)$ and $v \in K(f(x)+g(x), \eta)$, and $\|v-(f(x)+g(x))\|=\|(v-f(x))-g(x)\|<\eta$. Thus, $v-f(x) \in K(g(x), \eta)$ and $v \in f(x)+K(g(x), \eta) \subset f * A_{\eta}(g)$. Similarly, we can prove the inverse inclusion $f * A_{\eta}(g) \subset A_{\eta}(f+g)$.

Since g has the property (a), there is a continuous function $h: X \rightarrow Y$ such that $G r(h) \subset A_{\eta}(g)$. The function $f+h$ is also continuous and $G r(f+h) \subset$ $f * A_{\eta}(g)=A_{\eta}(f+g)$. So, $f+g$ has the property (a), and the proof is completed.

Theorem 6. Let (X, ρ) be a metric space, and let Y be a normed space. Assume that for a function $f_{1}: X \rightarrow Y$, there is a continuous function f : $X \rightarrow Y$ such that the set $\left\{x \in X: f(x)=f_{1}(x)\right\}$ is dense in X. If a function $g: X \rightarrow Y$ has the property (a), then $f_{1}+g$ also has the property (a).

Proof. Fix a real $\eta>0$. By the proof of last theorem, we have the equality

$$
\begin{gathered}
A_{\eta}\left(f_{1}+g\right)=\bigcup_{x \in X}\left(K(x, \eta) \times K\left(f_{1}(x)+g(x), \eta\right)\right)= \\
=f_{1} * \bigcup_{x \in X}(K(x, \eta) \times K(g(x), \eta))=f_{1} * A_{\eta}(g)
\end{gathered}
$$

Since g has the property (a), there is a continuous function $h: X \rightarrow Y$ such that $G r(h) \subset A(g, \eta)$. The function $f+h$ is also continuous and $G r(f+h) \subset$ $f_{1} * A_{\eta}(g)=A_{\eta}\left(f_{1}+g\right)$. So, $f_{1}+g$ has the property (a), and the proof is completed.

However, the product of a continuous function and a function having the property (a) need not have the property (a).
Example. Let $X=[-1,1], Y=\mathbb{R}$, and let $f(x)=x$ and

$$
g(x)=\frac{1}{|x|} \text { for } x \in X \backslash\{0\} \text { and } g(0)=0
$$

Then f is continuous, g has the property (a), and the product
$f(x) g(x)=1$ for $x \in(0,1], f(0) g(0)=0$, and $f(x) g(x)=-1$ for $x \in[-1,0)$ does not have the property (a).

Remark 6. Let (X, ρ) be a metric space, and let Y_{1}, Y_{2}, Z be normed spaces. If $\Phi:\left(Y_{1} \times Y_{2}\right) \rightarrow Z$ is a bilinear continuous function, and if a function $f_{1}: X \rightarrow Y_{1}$ is such that the set $\left(f_{1}\right)^{-1}(0)$ is dense in X, then for each function $f_{2}: X \rightarrow Y_{2}$, the superposition $g(x)=\Phi\left(f_{1}(x), f_{2}(x)\right)$ for $x \in X$ has the property (a).

In the article [1], the authors introduced the notion of the discrete convergence of sequences of functions and investigated the discrete limits in different families, for example, in the family \mathcal{C} of all continuous functions.

Let $\left(X, \rho_{X}\right)$ and $\left(Y, \rho_{Y}\right)$ be metric spaces. We say that a sequence of functions $f_{n}: X \rightarrow Y, n=1,2, \ldots$, discretely converges to the limit $f(f=$ $\left.\mathrm{d}_{n \rightarrow \infty} \lim _{n}\right)$ if

$$
\underset{x}{\forall} \underset{n(x)}{\exists} \underset{n>n(x)}{\forall} f_{n}(x)=f(x) .
$$

Theorem 7. Let $\left(X, \rho_{X}\right)$ be a separable metric space dense in itself, and let $\left(Y, \rho_{Y}\right)$ be a metric space. Then for each function $f: X \rightarrow Y$, there is a sequence of functions $f_{n}: X \rightarrow Y$ having the property (a) which discretely converges to f.

Proof. Since $\left(X, \rho_{X}\right)$ is dense in itself and separable, there is an infinite countable set $A=\left\{a_{i}: i \geq 1\right\}$ dense in X. Fix an element $b \in Y$. For $n=1,2, \ldots$, put

$$
f_{n}\left(a_{i}\right)=b \text { for } i \geq n \text { and } f_{n}(x)=f(x) \text { otherwise on } X
$$

Evidently, the sequence $\left(f_{n}\right)$ discretely converges to f. Since the level sets $\left(f_{n}\right)^{-1}(b) \supset\left\{a_{i}: i \geq n\right\}$ are dense in X for $n \geq 1$, the functions f_{n} have the property (a), and the proof is completed.

References

[1] A. Császár, M. Laczkovich, Discrete and equal convergence, Studia Sci. Math. Hungar., 10 (1975), 463-472.
[2] Z. Grande, Sur les fonctions A-continues, Demonstratio Math., 11 (1978), 519-526.
[3] C. Kuratowski, Topologie I, PWN, Warszawa, 1958.
[4] T. Natkaniec, Almost continuity, Real Anal. Exchange, 17(2) (1991/92), 462-520.
[5] K. Sakálová, On graph continuity of functions, Demonstratio Math., 27 (1994), 123-128.
[6] K. Sakálová, Graph continuity and cliquishness, Zbornik vedeckej konferencie EF Technickej Univerzity w Kosicach, (1992), 114-118.
[7] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math., 47 (1959), 249-263.

[^0]: Key Words: Almost continuity of Stallings, graph continuity, discrete convergence, uniform convergence, sum, product

 Mathematical Reviews subject classification: 26A15
 Received by the editors April 1, 2005
 Communicated by: B. S. Thomson

