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Abstract

The main purpose of the paper is to extend Maximoff’s theorem for
real functions to the multivalued maps case.
Theorem (Maximoff [5]) Let f : R→R be a first Baire class function.
Then f has the Darboux property if and only if f has a perfect road at
each point.

1 Preliminaries.

In this paper, X denotes an Euclidean space and Y a separable metric space.
For a non-empty set A ⊂ Y and a number ε > 0 we set

Bε(A) = {x ∈ X; there exists y ∈ A such that ρ(x, y) < ε}.

By F : X → Y we denote a multivalued map F which to each point x ∈ X
assigns a non-empty subset F (x) ⊂ Y . For sets A ⊂ X and B ⊂ Y we set

F (A) =
⋃
{F (x); x ∈ A},

F+(B) = {x ∈ X; F (x) ⊂ B},
F−(B) = {x ∈ X; F (x) ∩B 6= ∅}.

A multivalued map F is lower (upper) semicontinuous if for any open set
V ⊂ Y the set F−(V ) (resp. F+(V )) is open in X. F is lower (upper) first
class if for any open set V ⊂ Y , F−(V ) (resp. F+(V )) is an Fσ-set.

F has the Darboux property if the image F (E) is connected for any con-
nected set E ⊂ X.
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We say that g ∈ R is a left (right) limit number of a function f : R → R
at a point x if for any open set V ⊂ R such that g ∈ V and for any ε > 0

f−(V ) ∩ (x− ε, x) 6= ∅ (f−(V ) ∩ (x, x + ε) 6= ∅).

If g is left and right limit number, then we say that it is a limit number. The
set of limit numbers at a point x is denoted by L(f, x).

2 Generalization of Maximoff Theorem.

Definition 1. A set P ⊂ X is dense-in-itself (c-dense-in-itself) if for any
x ∈ P and any open, connected set U ⊂ X with x ∈ U , the set P ∩U contains
a point other than x (P ∩ U is uncountable).

Theorem 1. Let F : X → Y be a lower first class multivalued map, with
compact values. Then, the following conditions are equivalent:

(i) for any open set V ⊂ Y the counter image F+(V ) is dense-in-itself,

(ii) for any open set V ⊂ Y the counter image F+(V ) is c-dense-in-itself.

Proof. The implication (ii) → (i) is immediate.
(i) → (ii). Let V ⊂ Y be an open set and let x0 ∈ F+(V ). Let U ⊂ X

be an open, connected set for which x0 ∈ U . Since F+(V ) is dense-in-itself,
there exists x1 ∈ U such that F (x1) ⊂ V . Let V1 be an open set such that
F (x1) ⊂ V1 and V 1 ⊂ V . Let us take an open, connected set W for which
x1 ∈ W and W ⊂ U , and define D = W ∩ F+(V1). Since F+(V1) is dense-
in-itself, the set D is dense-in-itself too, and hence D is a perfect set. Since
F is lower first class, the set Cl(F |D) of lower semicontinuity points of F |D is
residual in D (Garg [3]). Thus it is uncountable and the inclusions Cl(F |D) ⊂
W ∩ F+(V 1) ⊂ U ∩ F+(V ) imply that U ∩ F+(V ) is also uncountable.

Theorem 2. Let F : X → Y be an upper first class multivalued map with
compact values. The following conditions are equivalent:

(i) for any open set V ⊂ Y the counter image F+(V ) is c-dense-in-itself,

(ii) if U ⊂ X is an open, connected set and x0 ∈ U , then there exists a perfect
set P such that x0 ∈ P , P \ {x0} ⊂ U and F |P is upper semicontinuous
at x0.

Proof. The implication (ii) → (i) is immediate.
(i) → (ii). Let U ⊂ X be an open, connected set and let x0 ∈ U . Let

U1 be an open, connected set such that diameter ρ(U1) < 1, U1 \ {x0} ⊂ U
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and x0 ∈ U1. Let B1 = B1(F (x0)). The set U1 ∩ F+(B1) is c-dense-in-itself
and since F is upper first class, it is of Fσ type. Thus it contains a perfect set
P1 (Kuratowski [4]). We can assume that x0 6∈ P1. We proceed by induction.
Suppose we have disjoint sets P1, . . . , Pn such that for i = 1, 2, . . . , n, Pi is
a perfect subset of U , x0 6∈ Pi, ρ(x, x0) < 1

i if x ∈ Pi, and Pi ⊂ F+(Bi),
where Bi = B 1

i
(F (x0)). The set P1 ∪ · · · ∪ Pn is then a perfect subset of U

which has a positive distance d from x0. Let Un+1 be an open, connected
set whose diameter is less then min(d, 1

n+1 ) and such that Un+1 \ {x0} ⊂ U

and x0 ∈ Un+1. The set Un+1 ∩ F+(Bn+1) is c-dense-in-itself and of Fσ

type. As before, it contains a perfect subset Pn+1 such that x0 6∈ Pn+1 and
ρ(x, x0) < 1

n+1 if x ∈ Pn+1. Let P =
⋃∞

n=1 Pn ∪ {x0}. Then P is a perfect set
such that P \ {x0} ⊂ U and F |P is upper semicontinuous at x0.

The following theorem is an immediate consequence of Theorems 1 and 2.

Theorem 3. Let F : X → Y be an upper and lower first class multivalued
map with compact values. The following conditions are equivalent:

(i) for any open set V ⊂ Y the counter image F+(V ) is dense-in-itself,

(ii) if U ⊂ X is an open, connected set and x0 ∈ U , then there exists a perfect
set P such that x0 ∈ P , P \ {x0} ⊂ U and F |P is upper semicontinuous
at x0.

The following example shows that similar results for lower first class map
and the sets F−(V ) do not hold. We need a stronger condition (see Theorem
5).

Example 1. Let f : R → R be a Darboux, Baire one function such that
L(f, 0) = [0, 1]. Then the map F : R → R defined by

F (x) =

{
[0, 1], x = 0
f(x), x 6= 0

is both upper and lower first class multivalued map with compact values and
for any V ⊂ R the set F−(V ) is c-dense-in-itself.

Assume that P is a perfect set such that 0 ∈ P and F |P is lower semi-
continuous at 0. Then there exists an open interval U such that 0 ∈ U and
U ∩ P ⊂ F−(( 1

2 , 1)). Since F (x) = f(x) for x 6= 0, F−((0, 1
2 )) ∩ U ∩ P = {0},

which means that F |P is not lower semicontinuous at 0, a contradiction.
Therefore a perfect set P such that F |P is lower semicontinuous at 0, does

not exist.
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Theorem 4. Let F : X → Y be an upper first class multivalued map. Then,
the following conditions are equivalent:

(i) the set F−(V1) ∩ · · · ∩ F−(Vn) is dense-in-itself, for any natural n and
any open sets V1, . . . , Vn ⊂ Y ,

(ii) the set F−(V1)∩ · · · ∩F−(Vn) is c-dense-in-itself, for any natural n and
any open sets V1, . . . , Vn ⊂ Y .

Proof. The implication (ii) → (i) is immediate.
(i) → (ii). Let V1, . . . , Vn ⊂ Y be open sets and let x0 ∈ F−(V1) ∩ · · · ∩

F−(Vn). Let U ⊂ X be an open, connected set for which x0 ∈ U . Since
F−(V1) ∩ · · · ∩ F−(Vn) is dense-in-itself, there exists x1 ∈ U ∩ F−(V1) ∩ · · · ∩
F−(Vn). Let G1, . . . , Gn be open sets such that G1 ⊂ V1, . . . , Gn ⊂ Vn and
x1 ∈ F−(G1)∩ · · ·∩F−(Gn). Let us take an open, connected set W for which
x1 ∈ W and W ⊂ U , and let D = W ∩ F−(G1) ∩ · · · ∩ F−(Gn). The set D
is dense-in-itself and hence D is a perfect set. Since F is an upper first class,
the set Cu(F |D) of upper semicontinuity points of F |D is residual in D (Garg
[3]). Thus it has continuum cardinality and the inclusions

Cu(F |D) ⊂ W ∩ F−(G1) ∩ · · · ∩ F−(Gn) ⊂ U ∩ F−(V1) ∩ · · · ∩ F−(Vn)

imply that U ∩ F−(V1) ∩ · · · ∩ F−(Vn) is also uncountable.

Theorem 5. Let F : X → Y be a lower first class multivalued map with
compact values. The following conditions are equivalent:

(i) the set F−(V1)∩ · · · ∩F−(Vn) is c-dense-in-itself, for any natural n and
any open sets V1, . . . , Vn ⊂ Y ,

(ii) if U ⊂ X is an open, connected set and x0 ∈ U , then there exists a perfect
set P such that x0 ∈ P , P \ {x0} ⊂ U and F |P is lower semicontinuous
at x0.

Proof. (i) → (ii). Let U ⊂ X be an open, connected set and let x0 ∈ U .
Since F (x0) is a compact set, by induction we can construct a sequence of
points (yk

1 , · · · , yk
nk

)∞k=1, such that for any natural number k

(1) {yk
1 , . . . , yk

nk
} ⊂ F (x0),

(2) F (x0) ⊂
⋃nk

i=1 Bk
i , where Bk

i = B 1
k
(yk

i ),

(3) {yk
1 , · · · , yk

nk
} ⊂ {yk+1

1 , · · · , yk+1
nk+1

}.
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Since F is lower first class and x0 ∈
⋂nk

i=1 F−(Bk
i ), by condition (i) the set

Mk =
⋂nk

i=1 F−(Bk
i ) is c-dense-in-itself and of type Fσ, for any natural k.

Let U1 ⊂ X be an open, connected set such that diameter ρ(U1) < 1,
U1 \ {x0} ⊂ U and x0 ∈ U1. The set U1 ∩ M1 is c-dense-in-itself and of
type Fσ, thus it contains a perfect set P1. We can assume that x0 6∈ P1. We
proceed by induction. Suppose we have disjoint sets P1, . . . , Pn such that for
k = 1, 2, . . . , n, Pk is a perfect subset of U , x0 6∈ Pk, ρ(x, x0) < 1

k if x ∈ Pk,
and Pk ⊂ Mk. The set P1 ∪ · · · ∪Pn is then a perfect subset of U which has a
positive distance d from x0. Let Un+1 ⊂ U be an open, connected set whose
diameter is less then min(d, 1

n+1 ), such that Un+1 \ {x0} ⊂ U and x0 ∈ Un+1.
The set Un+1∩Mk+1 is c-dense-in-itself and of type Fσ. As before, it contains
a perfect subset Pn+1 such that x0 6∈ Pn+1 and ρ(x, x0) < 1

n+1 if x ∈ Pn+1.
Let P =

⋃∞
n=1 Pn ∪ {x0}. Then P is a perfect set such that P \ {x0} ⊂ U and

F |P is lower semicontinuous at x0.
(ii) → (i) Let V1, · · · , Vn ⊂ Y be open sets such that F−(V1) ∩ · · · ∩

F−(Vn) 6= ∅. Let x0 ∈ F−(V1) ∩ · · · ∩ F−(Vn) and let U ⊂ X be an open,
connected set for which x0 ∈ U . Let us take a perfect set P such that x0 ∈ P ,
P \ {x0} ⊂ U and F |P is lower semicontinuous at x0. Then, there exists an
open set U1 ⊂ X such that x0 ∈ U1 and U1∩P ⊂ F−(V1)∩· · ·∩F−(Vn). Since
U1 ∩ P is uncountable, U ∩ F−(V1) ∩ · · · ∩ F−(Vn) is also uncountable.

The following theorem is a consequence of Theorems 4 and 5.

Theorem 6. Let F : X → Y be an upper and lower first class multivalued
map with compact values. The following conditions are equivalent:

(i) the set F−(V1) ∩ · · · ∩ F−(Vn) is dense-in-itself, for any natural n and
any open sets V1, · · · , Vn ⊂ Y

(ii) if U ⊂ X is an open, connected set and x0 ∈ U , then there exists a perfect
set P such that x0 ∈ P , P \ {x0} ⊂ U and F |P is lower semicontinuous
at x0.

We make some remarks for maps defined on the real line F : R → R.

Definition 2. We say that a perfect set P ⊂ R is an upper (lower) perfect
road of a multivalued map F : R → R at a point x ∈ P , if x is a point of
bilateral accumulation of P and F |P is upper (lower) semicontinuous at x.

A perfect set P is a perfect road of a multivalued map F at a point x, if it
is both an upper and lower perfect road at this point.

The following theorems are consequences of Theorems 3 and 6.
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Theorem 7. Let F : R → R be an upper and lower first class multivalued
map with compact values. The following conditions are equivalent:

(i) the set F+(V ) is dense-in-itself for any open set V ⊂ R,

(ii) F has an upper perfect road at each point.

Theorem 8. Let F : R → R be an upper and lower first class multivalued
map with compact values. The following conditions are equivalent:

(i) the set F−(V1) ∩ · · · ∩ F−(Vn) is dense-in-itself, for any natural n and
any open sets V1, · · · , Vn ⊂ R,

(ii) F has a lower perfect road at each point.

An open question is the following. For an upper and lower first class map
F : R → R with compact values, are both conditions (i) from Theorems 7
and 8 enough for existence of a perfect road at each point?

Definition 3 (Czarnowska [2]). A multivalued map F : R → R has the
intermediate value property if for any distinct points x1, x2 ∈ R and every
y1 ∈ F (x1) there exists y2 ∈ F (x2) such that (y1, y2) ⊂ F ((x1, x2)).

If F has connected values and it has the intermediate value property, then
it has the Darboux property, too.

Theorem 9 (Czarnowska [2]). Suppose F : R → R has closed values and it
is both upper and lower first class. If for any open set V ⊂ R the counter
images F+(V ) and F−(V ) are dense-in-itself, then F has the intermediate
value property.

As a consequence of Theorems 7, 8 and 9 we have the following theorem.

Theorem 10. Let F : R → R be both an upper and a lower first class
multivalued map with compact values. If F has a lower and an upper perfect
road at each point, then it has the intermediate value property.

Example 1 shows that an upper and lower first class map with the inter-
mediate value property does not necessarily have a lower perfect road. The
map

F (x) =

{
[0, 1] for x = 0
[0, 2] for x 6= 0

is both upper and lower first class and it has the intermediate value property,
but it does not have an upper perfect road at zero.
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