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ON A CONSTRUCTION OF UNIVERSALLY
SMALL SETS

Abstract

We present a construction of an uncountable subset of the reals which
belongs to every σ-ideal I on R with the property that there is no un-
countable family of disjoint Borel sets outside I.

1 Introduction

A σ-ideal on the reals or, more generally, an uncountable Polish (i.e. separable,
completely metrizable) topological space X is a family I ⊆ P(X) which is
closed under taking subsets and countable unions. We always assume that
I is proper; i.e., X 6∈ I, contains all singletons and has a basis consisting of
Borel sets. The latter means that every set from I is covered by a Borel set
from I. A σ-ideal I is ccc if there is no uncountable family of disjoint Borel
sets outside I.

Most important ccc σ-ideals are:

• a measure σ-ideal consisting of all subsets of X of (outer) measure zero
with respect to a Borel measure µ on X, a countably additive, continuous
(i.e., points have measure zero), finite measure defined on the σ-algebra
B(X) of Borel subsets of X,

• a category σ-ideal consisting of all meager subsets of X in a Polish
topology τ on X such that (X, τ) has no isolated points and B(X) =
B(X, τ), the σ-algebra of Borel subsets of X in the topology τ .
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A subset A of X is universally null (universally meager, resp.) if it belongs
to every measure (category, resp.) σ-ideal (see [13]). Several methods of con-
structing uncountable universally null and universally meager sets are known
(see [8]). Some of them lead to sets with an apparently stronger property.

A subset A of X will be called universally small if it belongs to every ccc
σ-ideal on X. Equivalently, if there is no ccc σ-ideal I in the σ-algebra B(A)
of (relative) Borel subsets of A (by a σ-ideal in a σ-algebra A of subsets of
a set A we mean a proper subfamily of A containing all singletons which is
closed under taking subsets in A and countable unions; it is ccc if there is no
uncountable family of disjoint sets from A \ I).

From this definition it immediately follows that if B(A) = P(A), the power
set of A, and the cardinality of A is less than the first quasi-measurable cardinal
(see [2]), then A is universally small. In particular, every Q-set of cardinality
ω1 is universally small (A is a Q-set iff every subset of A is a relative Gδ).

Known ZFC constructions of uncountable universally small sets use either
coanalytic sets (a selector of the constituents – see [8, Theorem 5.3]) or Ulam
matrices (see e.g. [9]) or special Aronszajn trees of perfect sets (see [5] and
[3]).

In this note we present another construction which seems somewhat simpler
than the ones mentioned above. It uses the following Fubini–type property of
ccc σ-ideals on X – see [12].

Proposition 1.1. Let I be an arbitrary ccc σ-ideal on a Polish space X. Then
every Borel subset B of the plane X ×X with all vertical sections Bx = {y :
〈x, y〉 ∈ B} countable has horizontal sections By = {x : 〈x, y〉 ∈ B} in I, for
every y outside a countable set.

2 An Example of a Universally Small Set

Our construction of a universally small set is based on the following result.

Theorem 2.1. Let X be an uncountable Polish space. Suppose that A is a
subset of X such that there is a set Z ∈ B(A×X) with the following properties:

1. ∀x ∈ A the vertical section Zx is countable,

2. the set {y ∈ X : |A \ Zy| ≤ ω} is uncountable.

Then A is universally small.

Proof. Suppose otherwise and let I be a ccc σ-ideal on X such that A /∈ I.
Find a set B ∈ B(X ×X) with B ∩ (A×X) = Z.
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The set D = {x ∈ X : |Bx| ≤ ω} is co-analytic (see [7, Theorem 29.19]),
so it belongs to the σ-algebra generated by B(X) ∪ I, the σ-ideal I being ccc
(see [7, Theorem 29.13]). In particular, since I has a basis consisting of Borel
sets, there are Borel sets C, E ⊆ X with C ⊆ D ⊆ E and E \ C ∈ I. Let
B′ = B ∩ (E × X). Then we still have B′ ∩ (A × X) = Z but |(B′)x| ≤ ω
for all x ∈ X outside a set from I, namely for every x ∈ C ∪ (X \ E). Hence,
Proposition 1.1 implies that the set {y ∈ X : (B′)y /∈ I} is countable. Note,
however, that since A /∈ I, if |A \ Zy| ≤ ω, then (B′)y /∈ I. Thus, the set
{y ∈ X : |A \ Zy| ≤ ω} is countable, which is a contradiction.

In order to see how to construct sets which satisfy the hypotheses of The-
orem 2.1, consider the following example.

Example 2.2. Let Y be an arbitrary subset of R of cardinality ω1 and suppose
that C is a subset of Y × Y such that ∀x ∈ Y |Cx| ≤ ω and |Y \ Cx| ≤ ω.

Since ∀x ∈ Y |Cx| ≤ ω, there is a countably generated σ-algebra S of
subsets of Y such that C ∈ S ⊗B(R), the σ-algebra generated by the family
{S ×B : S ∈ S, B ∈ B(R)} (see [1]).

Enlarging S, if necessary, we can assume that it separates points. Hence
there is a bijection φ : Y −→A onto a set A ⊆ R such that S ∈ S iff φ[S] ∈ B(A)
for every S ⊆ Y (see [7, Proposition 12.1]).

It is now easy to see that the set A = φ[Y ] satisfies the hypotheses of
Theorem 2.1 with Z = (φ, idX)[C] being a witnessing set.

The universally small set constructed in the example above has cardinality
ω1. Note that with the help of Theorem 2.1 we cannot achieve more. For
assume that an uncountable set A ⊆ X satisfies the hypotheses of Theorem
2.1 with Z a witnessing set and let Y = {y ∈ X : |A \ Zy| ≤ ω}. Then the
set C = Z ∩ (A× Y ) has the following properties:

• C ⊆ A× Y , where the sets A and Y are uncountable,

• ∀x ∈ A |Cx| ≤ ω,

• ∀y ∈ Y |A \ Cy| ≤ ω

But it is well-known and easy to see that this implies |A| = |Y | = ω1.

3 Ulam Matrices Revisited

Recall that an Ulam ω1-matrix in a set A is a collection {An,α : (n, α) ∈ ω×ω1}
of subsets of A satisfying the following conditions:
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1. An,α ∩An,β = ∅ for each n ∈ ω and distinct α, β ∈ ω1,

2. |A \
⋃

n∈ω An,α| ≤ ω for each α ∈ ω1.

The standard construction of an Ulam ω1-matrix in ω1 is to choose for
each ξ ∈ ω1, ξ > 0, a surjection gξ : ω−→ ξ from ω onto ξ and let An,α = {ξ ∈
ω1 : gξ(n) = α} (see e.g. [4, Lemma 27.6]).

The possibility of using Ulam matrices in constructions of universally small
sets relies on the following well-known fact (see e.g. [9, Lemma 2.6] and [4,
Lemma 27.7]).

Proposition 3.1. If A is a σ-algebra of subsets of a set A containing all
singletons and {An,α : (n, α) ∈ ω × ω1} is an Ulam ω1-matrix in A such that
An,α ∈ A for every n ∈ ω, α ∈ ω1, then there is no ccc σ-ideal in A.

Now, given an Ulam ω1-matrix {An,α : (n, α) ∈ ω×ω1} in ω1, it is possible
to find a countably generated σ-algebra A of subsets of ω1 which contains all
singletons and all elements of the matrix. Finally, by means of a suitable bijec-
tion, the Borel space 〈ω1,A〉 may be identified with the Borel space 〈A,B(A)〉
of relative Borel subsets of a certain subset A of the reals of cardinality ω1.
Then, by Proposition 3.1, the set A is universally small, since the σ-algebra
B(A) contains an Ulam ω1-matrix in A (for the details see e.g. [9]).

In order to see, how the method of constructing universally small sets
presented in Section 2 is related to Ulam matrices, we shall now give another
proof of Theorem 2.1 based on Proposition 3.1.

Proof. [Another proof of Theorem 2.1]
Let X be an uncountable Polish space and suppose that an uncountable

set A ⊆ X satisfies the hypotheses of Theorem 2.1 with Z a witnessing set.
Let Y = {y ∈ X : |A \ Zy| ≤ ω}; by the remarks at the end of Section 2,
|A| = |Y | = ω1.

Suppose that I is an arbitrary ccc σ-ideal on X such that A /∈ I. We will
achieve a contradiction by showing that there exists an Ulam ω1-matrix in
A consisting of elements of the σ-algebra A generated by B(A) ∪ (I ∩ P(A))
(clearly, the σ-ideal I = I ∩ P(A) is ccc in A).

As before, find a set B ∈ B(X × X) such that B ∩ (A × X) = Z and
|Bx| ≤ ω for all x ∈ X outside a set from I. Then it easily follows from the
Lusin-Novikov theorem (see [7], 18.10) and the fact that every set from I is
covered by a Borel set from I that B can be written as

⋃
n∈ω(gn ∩B), where

each gn is (the graph of) a function gn : X −→X which is measurable with
respect to the σ-algebra generated by B(X) ∪ I.
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For each n ∈ ω let fn = gn � A be the restriction of gn to A. Clearly,
Z =

⋃
n∈ω fn and every function fn is measurable with respect to the σ-

algebra A. In particular, f−1
n (y) ∈ A for every n ∈ ω, y ∈ Y and it is easy

to check that the collection {f−1
n (y) : n ∈ ω, y ∈ Y } is an Ulam ω1-matrix in

A.

It is perhaps of an independent interest to notice that the last step of the
argument above gives the following insight into the classical construction of
an Ulam ω1-matrix in ω1. Just take a subset C of ω1 × ω1 such that

∀α ∈ ω1 |Cα| ≤ ω and |ω1 \ Cα| ≤ ω (∗)

and write C =
⋃

n∈ω fn for some functions fn : ω1−→ω1. Then the collection
{f−1

n (α) : n ∈ ω, α ∈ ω1} is an Ulam ω1-matrix in ω1.
Conversely, if {An,α : n ∈ ω, α ∈ ω1} is an Ulam ω1-matrix in ω1, then

the set
C = {〈β, α〉 ∈ ω1 × ω1 : ∃n ∈ ω β ∈ An,α}

has property (∗).

4 Remarks on Other Constructions of Universally Null
(Meager) Sets

The construction presented in this note as well as many other known construc-
tions of universally null (meager, resp.) sets has its origin in the fundamental
work of Kunen [6]. 1 The main ingredients such as sigma algebras generated
by rectangles and the use of the Fubini theorem are already present there (in
the context of real-valued measurable cardinals can – see also [2, Theorems
5J, 5K]). Along these lines Rec law [11] proved that if R ⊂ X × X is a co-
analytic relation in a Polish space X, then any set A ⊂ X well ordered by
R is universally null and universally meager (for a Borel relation R this was
earlier proved by Plewik [10]). It would be interesting to find out if such a set
is universally small.

It turns out that a straightforward refinement of Rec law’s proof gives a
generalization of the above to the class of ccc σ-ideals on X satisfying the
following properties:

• (regularity) For every set B ∈ B(X × X) the set {x ∈ X : Bx ∈ I}
belongs to the σ-algebra generated by B(X) ∪ I,

1I am grateful to the referee of an earlier version of this paper for pointing this out to
me.
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• (the Fubini Property) for every Borel set B ∈ B(X×X), if all its vertical
sections Bx are in I, then its horizontal sections By are in I, for every y
outside a set from I.

Theorem 4.1 (essentially Rec law [11]). If R ⊂ X×X is a co-analytic relation
in a Polish space X, then any set A ⊂ X well ordered by R belongs to every
ccc σ-ideal I on X which is regular and has the Fubini Property.

Unfortunately, the only known examples of σ-ideals satisfying the hypothe-
ses of Theorem 4.1 are measure and category σ-ideals.
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