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REGULARITY OF LIPSCHITZ FUNCTIONS
ON THE LINE

Abstract

We note a gap in Sciffer’s construction of an everywhere irregular
Lipschitz function on the line and provide a different simple construction
of such a function, which even reaches maximal irregularity at every
point.

The aim of this note is to construct an everywhere irregular real-valued
Lipschitz function on the real line for the notion of regularity stemming from
the study of Lipschitz functions on Banach spaces. We describe this notion in
general Banach spaces, since its definition via standard notions of derivatives
on the real line (which is the only Banach space we will actually use) may
otherwise look somewhat artificial. Let f be a (locally) Lipschitz real-valued
function on a Banach space X. The upper and lower derivatives of f at x in
a direction v are:

D+f(x, v) := lim sup
h→0+

f(x + hv)− f(x)
h

,

D+f(x, v) := lim inf
h→0+

f(x + hv)− f(x)
h

and the Clarke derivative of f at x in the direction v is

f0(x, v) := lim sup
y→x+, h→0+

f(y + hv)− f(y)
h

.

The function f is said to be regular at x in the direction v if

f0(x, v) = D+f(x, v)
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and f is said to be regular at x if it is regular in every direction.
In our case X = R and directional derivatives may be expressed in terms

of upper and lower right and left Dini derivatives:

D+f(x) := lim sup
h→0+

f(x + h)− f(x)
h

=D+f(x, 1),

D+f(x) := lim inf
h→0+

f(x + h)− f(x)
h

=D+f(x, 1),

D−f(x) := lim sup
h→0−

f(x + h)− f(x)
h

=−D+f(x,−1),

D−f(x) := lim inf
h→0−

f(x + h)− f(x)
h

=−D+f(x,−1).

Similarly, Clarke derivatives may be expressed in terms of upper and lower
right and left sharp derivatives:

S+f(x) := lim sup
y→x+

D+f(y)=f0(x, 1),

S+f(x) := lim inf
y→x+

D+f(y) =− (−f)0(x, 1),

S−f(x) := lim sup
y→x−

D+f(y)=(−f)0(x,−1),

S−f(x) := lim inf
y→x−

D+f(y) =− f0(x,−1).

This follows immediately from the fact that f , being Lipschitz, is differentiable
almost everywhere and satisfies

f(x + h)− f(x) =
∫ x+h

x

f ′(y) dy =
∫ x+h

x

D+f(y) dy.

The use of the upper right Dini derivative in the above definitions may seem
artificial until one notes that it may equivalently be replaced by any other
Dini derivative or that one may take the upper or lower limits of f ′(y) over
those y at which f is differentiable, etc. Note also that we always have

S+f(x) ≥ D+f(x) ≥ D+f(x) ≥ S+f(x)

and

S−f(x) ≥ D−f(x) ≥ D−f(x) ≥ S−f(x).
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For Lipschitz functions f : R → R we have therefore four natural notions
of one-sided regularity: f is upper regular at x from the right if S+f(x) =
D+f(x), lower regular at x from the right if S+f(x) = D+f(x), upper regu-
lar at x from the left if S−f(x) = D−f(x), and lower regular at x from the
left if S−f(x) = D−f(x). Then upper right regularity means that f0(x, 1) =
D+f(x, 1), i.e. f is regular in the direction 1, and, similarly, lower left regular-
ity means that f is regular in the direction −1. In other words, f is regular at
x if and only if S+f(x)−D+f(x) = D−f(x)−S−f(x) = 0 or, equivalently, if
max(S+f(x)−D+f(x), D−f(x)− S−f(x)) = 0. Similarly, the remaining two
concepts correspond to the regularity of −f .

S. Sciffer [3] proposed a construction of an everywhere irregular Lipschitz
function on the real line. It was based on a Cantor-type set K (nowhere dense
compact subset of R without isolated points) of positive measure such that
every point x ∈ K with the exception of the right isolated points satisfies

limh→0+
λ([x, x + h] ∩K)

h
= 1. (We will denote by λ the Lebesgue measure.)

However, such a set does not exist. This can be shown directly or one can
use the Baire Category Theorem. Indeed, assume that K is such a set. Let
(an, bn) be the sequence of bounded intervals contiguous to K. Then the set
S =

⋂∞
k=1

⋃∞
n=k K ∩ (an − (bn − an), an) is non-empty, since it is residual in

K. Moreover, S contains neither max(K) nor any of the an, hence it contains
no right isolated points of K. But

lim inf
h→0+

λ([x, x + h] ∩K)
h

≤ 1/2

for every x ∈ S, which contradicts our initial assumption. (See [2] for a more
detailed analysis of Sciffer’s argument.)

Our aim is to construct a Lipschitz function f : R → R which is not only
everywhere irregular but is irregular in the strongest possible sense. Nat-
ural quantities measuring irregularities of f are the non-negative differences
S+f(x)−D+f(x), D+f(x)−S+f(x), S−f(x)−D−f(x) and D−f(x)−S−f(x).
Each of these values is bounded by ω(f) := supx∈R D+f(x)− infx∈R D+f(x)
(which must be positive, since otherwise f would be affine and hence regular);
an ideal example would therefore make them all equal to ω(f) at every point.
But this is impossible: given any ε > 0, there are points x ∈ R at which f is
differentiable and satisfies f ′(x) > supy∈R D+f(y)−ε. At every such point we
have S+f(x) ≥ D+f(x) > S+f(x)− ε and S−f(x) ≥ D−f(x) > S−f(x)− ε.
Similarly, there are points at which S+f(x) ≤ D+f(x) < S+f(x) + ε and
S−f(x) ≤ D−f(x) < S−f(x) + ε. We can therefore try to find a function f
which is, at every point, irregular from the right as well as from the left, from
above as well as from below. However, there must exist points at which both
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upper irregularities are as small as we wish, and similarly for lower irregulari-
ties.

Although we cannot have all four irregularities maximal, we could at least
aim for two of the irregularities to reach ω(f). In particular, recalling that a
natural measure of irregularity is max(S+f(x)−D+f(x), D−f(x)− S−f(x)),
we may wish to have this quantity equal to ω(f) at every point. However, at
certain points we may reach only ω(f)/2. To see this, define g(x) := f(x)−ax,
where a is chosen so that supx∈R D+g(x) = ω(f)/2 and infx∈R D+g(x) =
−ω(f)/2. If g is monotonic in some interval, all four measures of irregularity
of f are bounded by ω(f)/2. In the opposite case there are points at which g
attains a local minimum as well as points at which it attains a local maximum.
At a minimum we have D+g(x) ≥ 0 and D−g(x) ≤ 0, so S+f(x)−D+f(x) =
S+g(x) − D+g(x) ≤ ω(f)/2 and D−f(x) − S−f(x) ≤ ω(f)/2. Similarly, at
a maximum we have D+f(x) − S+f(x) ≤ ω(f)/2 and S−f(x) − D−f(x) ≤
ω(f)/2.

We come now to a construction of a Lipschitz everywhere irregular func-
tion. Our function will have Lipschitz constant 1 and hence ω(f) ≤ 2; then
the measure of irregularity obtained in the second statement of the Theorem
is in fact the largest achievable one.

Theorem . There is a Lipschitz function f : R → R which is at every point
irregular from the right as well as from the left, from below as well as from
above. In addition, we can require that the Lipschitz constant of f is one and
that at every x ∈ R either

min(S+f(x)−D+f(x), S−f(x)−D−f(x)) ≥ 1 (1)

or

min(D+f(x)− S+f(x), D−f(x)− S−f(x)) ≥ 1. (2)

From (1) and (2) we get that max(S+f(x)−D+f(x), D−f(x)−S−f(x)) ≥ 1
for every x ∈ R, which confirms that the irregularity of f is the largest possible.
Similarly, −f has irregularity at least one at every point.

Before embarking on the proof of the Theorem, we recall the following
version of the Lusin-Menchoff Lemma (see, for example, [1, page 156]). It will
be used only in the special case when M is a Lebesgue null set and c = 1.

Lemma 1. Let M ⊂ R be a measurable set, ∅ 6= F ⊂ R \ M a closed set
and let c > 0. Then there is a closed set F̃ such that F ⊂ F̃ ⊂ R \ M and
λ(I \ (F̃ ∪M)) < cλ(I)2 for every interval I such that I ∩ F 6= ∅.
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Proof of Theorem. Let Q = {q1, q2, . . .} denote the set of rational numbers
and let M be a Lebesgue null set dense in R and disjoint from Q. For example,
we may take M = {q + π : q ∈ Q}.

Define F1 = {q1}. Then F1 ⊂ Q ⊂ R \ M is non-empty and closed.
Applying Lemma 1 with F = F1, we obtain a closed set F̃ such that F1 ⊂
F̃ ⊂ R \ M and λ(I \ F̃ ) < λ(I)2 for every interval I such that I ∩ F1 6= ∅.
Now set F2 = F̃ ∪ {q2}. Then F2 ⊂ R \ M is closed, F1 ⊂ F2 ⊂ R \ M and
since I \F2 = I \ (F̃ ∪ {q2}) ⊂ I \ F̃ , we have λ(I \F2) ≤ λ(I \ F̃ ) < λ(I)2 for
every interval I such that I ∩ F1 6= ∅.

Repeating this process with F = F2, and so on, we obtain a sequence of
closed sets F1, F2, . . . with F1 ⊂ F2 ⊂ · · · ⊂ R \M such that qn ∈ Fn and

λ(I \ Fn+1) < λ(I)2 ∀I, I ∩ Fn 6= ∅, (n = 1, 2, . . . ). (3)

Set F0 = ∅ and define

g(x) =

{
(−1)n

(
1− 1

n

)
if x ∈ F2n \ F2n−1 for some n = 1, 2, . . .

0 if x 6∈
⋃∞

i=0 Fi or x ∈
⋃∞

i=0(F2i+1 \ F2i)

and f(x) =
∫

g(x) dx. Since |g| ≤ 1, we have

|f(y)− f(z)| =
∣∣∣ ∫ y

z

g(x) dx
∣∣∣ ≤ |z − y|.

Therefore f is Lipschitz with Lipschitz constant not exceeding one and all its
Dini and sharp derivatives are between −1 and 1. We will now establish more
precise estimates of Dini derivatives.

If x ∈ F2n \ F2n−2 for some even n, we use that F2n−2 is closed to choose
δ > 0 such that [x− δ, x + δ] ∩ F2n−2 = ∅. Then for every 0 < h < δ,

f(x + h)− f(x) =
∫ x+h

x

g(t) dt

=
∫

[x,x+h)∩F2n+1

g(t) dt +
∫

[x,x+h)\F2n+1

g(t) dt.

Since every t ∈ [x, x + h) ∩ F2n+1 at which g(t) 6= 0 belongs to F2n, we have
0 ≤ g(t) ≤ 1− 1

n if t ∈ [x, x + h) ∩ F2n+1. Also, |g(t)| ≤ 1 always; so

f(x + h)− f(x) ≥ −λ([x, x + h) \ F2n+1)
and

f(x + h)− f(x) ≤
(
1− 1

n

)
λ([x, x + h) ∩ F2n+1) + λ([x, x + h) \ F2n+1).
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Certainly λ([x, x + h) ∩ F2n+1) ≤ λ([x, x + h)) = h, and by (3),

λ([x, x + h) \ F2n+1) < h2

since [x, x + h) ∩ F2n ⊃ {x} 6= ∅. Then

−h2 < f(x + h)− f(x) <
(
1− 1

n

)
h + h2,

so

−h <
f(x + h)− f(x)

h
<

(
1− 1

n

)
+ h.

Taking lim sup and lim inf as h → 0+, and using analogous estimates for
−δ < h < 0 we get

0 ≤ D+f(x) ≤ D+f(x) ≤ 1− 1
n

(4)

and
0 ≤ D−f(x) ≤ D−f(x) ≤ 1− 1

n
(5)

whenever x ∈ F2n \ F2n−2 for some even n. Symmetric arguments give

−
(
1− 1

n

)
≤ D+f(x) ≤ D+f(x) ≤ 0 (6)

and
−

(
1− 1

n

)
≤ D−f(x) ≤ D−f(x) ≤ 0 (7)

whenever x ∈ F2n \ F2n−2 for some odd n.
If x 6∈

⋃∞
i=1 Fi and δ > 0, choose N ∈ N so that qN ∈ (x, x+δ)∩FN . Then

for any n ≥ N there is h ∈ (0, δ) such that x + h = min([x, x + δ] ∩ Fn). So

f(x + h)− f(x) =
∫ x+h

x

g(t) dt

=
∫

[x,x+h)∩Fn+1

g(t) dt +
∫

[x,x+h)\Fn+1

g(t) dt.

Now [x, x + h) ∩ Fn = ∅ so [x, x + h) ∩ Fn+1 ⊂ Fn+1 \ Fn. If we pick n ≥ N
so that n + 1 is divisible by four, our definition gives g(t) = 1 − 2

n+1 for
t ∈ Fn+1 \ Fn. Also, g(t) ≥ −1 always, so

f(x + h)− f(x)

≥
(
1− 2

n + 1

)
λ([x, x + h) ∩ Fn+1)− λ([x, x + h) \ Fn+1)

=
(
1− 2

n + 1

)
λ([x, x + h))−

(
2− 2

n + 1

)
λ([x, x + h) \ Fn+1).
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Certainly λ([x, x + h]) = h, and by (3),

λ([x, x + h) \ Fn+1) = λ([x, x + h] \ Fn+1) < h2

since [x, x + h] ∩ Fn = {x + h} 6= ∅. Then

f(x + h)− f(x) >
(
1− 2

n + 1

)
h−

(
2− 2

n + 1

)
h2;

so

f(x + h)− f(x)
h

>
(
1− 2

n + 1

)
−

(
2− 2

n + 1

)
h >

(
1− 2

n + 1

)
− 2h.

In short, for n large enough and such that n + 1 is divisible by four, we have
found 0 < h < δ for which

f(x + h)− f(x)
h

>
(
1− 2

n + 1

)
− 2h.

Hence

sup
0<h<δ

f(x + h)− f(x)
h

≥ 1− 2δ

and so

D+f(x) = lim sup
h→0+

f(x + h)− f(x)
h

≥ 1.

Recalling that the Dini derivatives are between 1 and −1 and using argu-
ments symmetric to the above, we obtain that

D+f(x) = D−f(x) = 1 and D+f(x) = D−f(x) = −1 (8)

whenever x /∈
⋃∞

i=0 Fi. Since M is dense in R, we now see from (8) that for
every interval I, supy∈I D+f(y) ≥ 1. Together with the already established
bound S+f(x) ≤ 1 this gives that S+f(x) = 1 for every x ∈ R. Using
symmetric arguments for the remaining sharp derivatives, we conclude that

S+f(x) = S−f(x) = 1 and S+f(x) = S−f(x) = −1 for all x ∈ R. (9)

The Theorem now follows by recapitulation of the above estimates of the Dini
and sharp derivatives. Let x ∈ R. Then either x /∈

⋃∞
i=0 Fi and D+f(x) =

−1 < 1 = S+f(x) by (8) and (9), or x ∈
⋃∞

i=0 Fi, in which case we use that
x ∈ F2n \ F2n−2 for some n to infer from (4) or (6) that D+f(x) < 1 =
S+f(x). In addition, if x ∈ F2n \ F2n−2 for some odd n, (9), (6) and (7) give
that S+f(x) − D+f(x) ≥ 1 and S−f(x) − D−f(x) ≥ 1, hence (1) holds; if
x ∈ F2n \ F2n−2 for some even n, (9), (4) and (5) give that (2) holds. Finally,
if x /∈

⋃∞
i=0 Fi, (9) and (8) give that both (1) and (2) hold.
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