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A SIMPLE PROOF OF THE DERIVATIVE
OF THE INDEFINITE

RIEMANN-COMPLETE INTEGRAL

Abstract

The purpose of this paper is to give a simple and completely ele-
mentary proof that the derivative of the indefinite Riemann-complete
integral equals the integrand almost everywhere. Elementary in this
case means using the least amount of measure theory possible.

The purpose of this paper is to give a simple and completely elementary
proof that the derivative of the indefinite Riemann-complete integral (RC inte-
gral) equals the integrand almost everywhere. (Elementary in this case means
using the least amount of measure theory possible). Since the RC integral can
be defined without the use of any measure theory, this seems to be desirable.
This result is not only important in its own right but is also useful in proving
that the special Denjoy integral is equivalent to the RC integral, see [7]. Some
of the proofs I have seen of this result use either the Vitali Covering Theorem
or measure theory beyond sets of measure zero, see [5], [6] and [7]. On the
other hand the referee has called my attention to the proof given in [8] that
does not make much use of measure theory. Finally, Bartle [1] gives an ele-
mentary proof by using the Vitali Covering Theorem with very little measure
theory involved. Because of the covering lemma used in the present paper,
however, the proof found here is different than the others and perhaps more
elementary as well. Let us begin by reviewing the definition of the RC integral
which is presented by Ralph Henstock in [3].

Let f be a real-valued function defined on [a, b] and let P = {x0, x1, . . . , xn}
be a partition of [a, b]. For each k = 1, 2, . . . , n, let ξk be an arbitrary point
of [xk−1, xk]. If ξ = {ξ1, ξ2, . . . , ξn}, then we call (P, ξ) a tagged partition of
[a, b] and

S(f, P, ξ) =
n∑

k=1

f(ξk)(xk − xk−1)
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the Riemann sum of f with respect to P and ξ. If δ is a positive function
defined on [a, b], then we will say that (P, ξ) is compatible with δ if xk−xk−1 <
δ(ξk) for each k.

Definition. The function f is said to be RC integrable on [a, b], with integral
I, if to each ε > 0 there corresponds δ, a positive function defined on [a, b],
with

∣∣S(f, P, ξ)− I
∣∣ < ε for each (P, ξ) a tagged partition of [a, b] compatible

with δ. We shall use
∫ b

a
f to denote the RC integral of f on [a, b].

Please see Henstock’s paper or any of the works in the references, especially
[4], for the various properties of the RC integral. We will, however, need the
following well known result whose proof is given in [2, p. 161].

Henstock’s Lemma. Let f be RC integrable on [a, b] and, given ε > 0, let δ

be a positive function defined on [a, b] such that
∣∣S(f, P, ξ)−

∫ b

a
f
∣∣ < ε for each

(P, ξ) a tagged partition of [a, b] compatible with δ. If p is a (partial) sum of
terms {∣∣∣f(ξk)(xk − xk−1)−

∫ xk

xk−1

f
∣∣∣} ,

for any number of distinct intervals [xk−1, xk] of a tagged partition of [a, b]
compatible with δ, then p ≤ 2ε.

So that our proof will depend on no measure theory beyond sets of measure
zero, we need the following elementary covering lemma. Its proof uses nothing
more than the Heine-Borel Theorem and the fact that an open set can be
expressed as the countable disjoint union of open intervals.

Remark. A set of real numbers E is not of measure zero if there exists ε0 > 0
such that

∑∞
n=1 |Jn| ≥ ε0 for {Jn} any sequence of open intervals that covers

E where |Jn| denotes the length of Jn.

Lemma. Let E ⊆ (a, b) be a set which is not of measure zero and let ε0 be as
in the above Remark. If C is any collection of open subintervals of [a, b] which
covers E, then there exists {I1, I2, . . . , IN}, a finite disjoint subcollection of C,
such that

∑N
k=1 |Ik| > ε0

3 .

proof. Since ∪I∈CI is an open set there exists {(an, bn)}, a disjoint sequence
of open intervals, such that ∪I∈CI = ∪∞n=1(an, bn). Since E ⊆ ∪∞n=1(an, bn),∑∞

n=1(bn−an) ≥ ε0. Now for each (an, bn) choose [a′n, b′n], a closed subinterval
of (an, bn), such that b′n − a′n = 3

4 (bn − an) . Thus

∞∑
n=1

(b′n − a′n) ≥ 3ε0
4

.
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Now let n be a fixed positive integer. For each x ∈ [a′n, b′n] there exists Jx ∈ C
such that x ∈ Jx ⊆ (an, bn). Thus

{
Jx : x ∈ [a′n, b′n]

}
is an open cover of

[a′n, b′n]. By the Heine-Borel Theorem there exists {J1, J2, . . . , Jp}, a finite
number of sets from this open cover, such that [a′n, b′n] ⊆ ∪p

k=1Jk . (A familiar
argument shows that

∑p
k=1 |Jk| ≥ b′n − a′n.) Furthermore we may assume,

by discarding some of the intervals if necessary, that no interval in {Jk}p
k=1

is a subset of the union of the remaining intervals in {Jk}p
k=1. Thus each Ji

contains a point xi 6∈ ∪k 6=iJk and we may assume by renumbering the Jk’s if
necessary, that x1 < x2 < . . . < xp. Because of this a little thought shows
that both {J1, J3, J5, . . .} and {J2, J4, J6, . . .} are finite disjoint subcollections
of C. Clearly either∑

k

|J2k−1| ≥
1
2

p∑
k=1

|Jk| or
∑

k

|J2k| ≥
1
2

p∑
k=1

|Jk| .

Thus depending on which of the two previous inequalities holds, we have found
Cn, a finite disjoint subcollection of C, such that∑

I∈Cn

|I| ≥ 1
2

p∑
k=1

|Jk| ≥
1
2
(b′n − a′n) .

Thus for each positive integer n there exists Cn, a finite disjoint subcollection
of C, each of whose open intervals is a subset of (an, bn) and such that∑

I∈Cn

|I| ≥ 1
2
(b′n − a′n) .

Summing both sides of the previous inequality, we have
∞∑

n=1

∑
I∈Cn

|I| ≥ 1
2

∞∑
n=1

(b′n − a′n) ≥ 3ε0
8

.

Therefore ∪∞n=1Cn = {I1, I2, I3, . . .} is a countable disjoint subcollection of C
for which

∑∞
n=1 |In| ≥ 3ε0

8 . Finally choose N so large that
∑N

k=1 |Ik| > ε0
3 and

the proof is complete.

We are now ready to give our proof of the main result of this paper. In
what follows, F (I) denotes F (d)− F (c) and |I| denotes the length of I where
I = (c, d).

Theorem. Let f be RC integrable on [a, b] and let F (x) =
∫ x

a
f . Then F ′ = f

almost everywhere on [a, b].
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proof. We let E = {x : x ∈ (a, b) and either F ′(x) does not exist or
F ′(x) 6= f(x)} and show that E has measure zero. It is easy to prove that F
is continuous on [a, b], see [2, p. 163]. For each x ∈ E there exists ε(x) > 0
such that, for any positive number δ, there exists v in (a, b) such that

0 < |v − x| < δ and
∣∣∣F (v)− F (x)

v − x
− f(x)

∣∣∣ > ε(x) .

Suppose for definiteness that v > x. Because of the above inequality and since

F (v)− F (t)
v − t

is continuous at x, there exists u in (a, b) such that u < x, v − u < δ, and∣∣∣F (v)− F (u)
v − u

− f(x)
∣∣∣ > ε(x)

so that ∣∣F (v)− F (u)− f(x)(v − u)
)
| > ε(x)(v − u) .

Let En =
{
x : x ∈ E and ε(x) > 1

n

}
so that E = ∪∞n=1En. Therefore it is

sufficient to show that each En has measure zero. Suppose En is not of measure
zero for some n and let ε0 be a positive number such that

∑∞
n=1 |Jn| ≥ ε0 for

{Jn} any sequence of open intervals that covers En. For ε0
6n > 0 there exists

δ, a positive function defined on [a, b], such that∣∣∣S(f, P, ξ)−
∫ b

a

f
∣∣∣ <

ε0
6n

whenever (P, ξ) is a tagged partition of [a, b] compatible with δ. Let x ∈ En

which implies the existence of ux and vx in (a, b) such that ux < x < vx,
vx − ux < δ(x), and∣∣∣F (vx)− F (ux)− f(x)(vx − ux)

∣∣∣ > ε(x)(vx − ux) >
1
n

(vx − ux) . (1)

Note that
{
(ux, vx) : x ∈ En

}
is a collection of open subintervals of [a, b]

that covers En. By the Lemma, there exists I1, I2, . . . , IN , a finite disjoint
subcollection of these open intervals, such that

∑N
k=1 |Ik| > ε0

3 . Now since
each Ik contains xk for which |Ik| < δ(xk), by Henstock’s Lemma we have

N∑
k=1

∣∣F (Ik)− f(xk)|Ik|
∣∣ ≤ 2 · ε0

6n
=

ε0
3n

. (2)
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(Please note the meaning of F (Ik) that was given right before the statement
of this theorem.)

But, using (1), we have

N∑
k=1

∣∣F (Ik)− f(xk)|Ik|
∣∣ >

1
n
·

N∑
k=1

|Ik| >
ε0
3n

which contradicts (2) and completes the proof.
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