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A CHARACTERIZATION OF
H1-INTEGRABLE FUNCTIONS

Abstract

We characterize the family of all H1-integrable functions and solve
several problems related to the H1-integral.

1 Preliminaries

Let E ⊂ R. The symbols χE and µ(E) denote the characteristic function and
the outer Lebesgue measure of E. If f : E → R and A ⊂ E is nonvoid, then
osc (f,A) = sup f(A)− inf f(A); i.e., osc (f,A) is the oscillation of f on A.

Let 〈a, b〉 be a nondegenerate compact interval. By a partial tagged parti-
tion of 〈a, b〉 we understand any finite collection P of pairs (I, x), where I is
a compact subinterval of 〈a, b〉 and x ∈ I, such that for all (I, x), (J, y) ∈ P, if
(I, x) 6= (J, y), then int I ∩ J = ∅. If P is a partial tagged partition of 〈a, b〉,
then we put σ(P, f) =

∑
(I,x)∈P f(x)µ(I).

If δ is a gauge on 〈a, b〉; i.e., δ : 〈a, b〉 → (0,∞), then we say that a partial
tagged partition P is δ-fine, if I ⊂

(
x − δ(x), x + δ(x)

)
for every (I, x) ∈ P.

For partial tagged partitions P and R of 〈a, b〉, we write P w R, if for every
(I, x) ∈ P there is (J, y) ∈ R with I ⊂ J . If P is a partial tagged partition
of 〈a, b〉 and

⋃
(I,x)∈P I = 〈a, b〉, then P is called a tagged partition of 〈a, b〉.

We say that a function f : 〈a, b〉 → R is H1-integrable on 〈a, b〉 [3] to a num-
ber I ∈ R, if there exists a gauge δ on 〈a, b〉 such that for every ε > 0, one
can find a tagged partition π0 of 〈a, b〉 with the property that |σ(π, f)− I| < ε
for every δ-fine tagged partition π w π0. In this case we say that I is the
H1-integral of f on 〈a, b〉 and write I =

∫ b

a
f . If E ⊂ 〈a, b〉, then we say that

f is H1-integrable on E, if fχE is H1-integrable on 〈a, b〉.
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We say that a function f : E → R is a Baire*1 function [7], if

for every nonvoid set P ⊂ E, closed in E, there is an open
interval J with P ∩ J 6= ∅ such that the restriction f�(P ∩ J)
is continuous.

The character I denotes the σ-ideal of all subsets of R which are contained in
some Fσ set of measure zero.

2 Introduction

The notion of H1-integrability was introduced by I. J. L. Garces, P. Y. Lee, and
D. Zhao in 1998. The authors claimed to prove that this integral is in some
sense close to the Henstock integral [3]. It was shown later by P. Sworowski [8]
that a few of the results contained in [3] are not valid. The main goal of the
present paper is to give a complete characterization of H1-integrable functions
(see Theorem 3.3), and to answer several questions asked in [8].

As a consequence, we obtain that each Henstock integrable Baire*1 func-
tion is H1-integrable. Next, we characterize the sets whose characteristic func-
tion is H1-integrable (see Theorem 3.8), which is the answer to [8, Problem 4.8].
Though condition (1) characterizing H1-integrable functions resembles the def-
inition of a Baire*1 function, there is an H1-integrable Baire one function f
such that int

{
x : f(x) 6= g(x)

}
6= ∅ for each Baire*1 function g (Example 4.1).

Moreover we show that there is a bounded approximately continuous func-
tion f such that µ

({
x : f(x) 6= g(x)

})
> 0 for each H1-integrable function g

(Example 4.2). So, the answer both to the question [8, Problem 6.2], and to the
question [8, Problem 6.3] is negative. Finally, we construct a bounded Baire
two function f such that µ

({
x : f(x) 6= g(x)

})
> 0 for each function g, which

is the limit of some uniformly convergent sequence of H1-integrable functions
(Example 4.7). These examples show that the H1-integral is not only far from
the Henstock integral, but also from the Lebesgue integral.

We will need the following theorems, whose proofs can be found in [8]. (See
also [1].)

Theorem 2.1. [8, Theorem 4.2] Let f : 〈a, b〉 → R. Assume that µ(A) = 0,
where A =

{
x ∈ 〈a, b〉 : f(x) 6= 0

}
. Then f is H1-integrable if and only if

A ∈ I.

Theorem 2.2. [1, Theorem 1], [8, Lemma 5.3] Let f : 〈a, b〉 → R. Assume
that f is H1-integrable on every interval 〈c, b〉, where a < c < b, and that the
limit I = limc→a+

∫ b

c
f exists and is finite. Then f is H1-integrable on 〈a, b〉

and
∫ b

a
f = I.
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Theorem 2.3. [1, Theorem 2], [8, Lemma 5.5] Let P be a nonvoid perfect
subset of 〈a, b〉 and let (In)∞n=1 be a sequence of the closures of all intervals
contiguous to P in 〈a, b〉. If a function f : 〈a, b〉 → R is H1-integrable on
each In and

∑∞
n=1 osc (Fn, In) < ∞, where Fn is any H1-primitive of f�In,

then f is H1-integrable on 〈a, b〉 \ P and
∫ b

a
fχ〈a,b〉\P =

∑∞
n=1

∫
In

f .

Theorem 2.4. [8, Theorem 5.6] Suppose that a function f : 〈a, b〉 → R is
H1-integrable. If P ⊂ 〈a, b〉 is closed and f is Henstock integrable on P , then
f is H1-integrable on P .

3 Main Results

Lemma 3.1. Let E =
⋃∞

n=1 En be a Gδ set and f : E → R. If the se-
quence (En)∞n=1 is ascending and the restriction f�En is continuous for each n,
then there exists an open interval J such that E ∩ J 6= ∅ and the restric-
tion f�(E ∩ J) is continuous.

Proof. By the Baire Category Theorem, there are an n and an open inter-
val J with E∩J 6= ∅ such that En is dense in E∩J . Let x0, x1, x2, · · · ∈ E∩J
satisfy limk→∞ xk = x0. For each k ≥ 0 choose an m(k) ≥ n such that
xk ∈ Em(k). We may assume that m(k) ≥ m(0) for k > 0. For each k, the
restriction f�Em(k) is continuous and Em(0) is dense in Em(k) ∩ J , so there is
a tk ∈ Em(0) such that

|tk − xk| < k−1 and |f(tk)− f(xk)| < k−1.

Then limk→∞ tk = x0. So, since the restriction f�Em(0) is continuous,

lim
k→∞

f(xk) = lim
k→∞

f(tk) = f(x0).

It follows that the restriction f�(E ∩ J) is continuous.

The next lemma is obvious.

Lemma 3.2. Let E ⊂ R, and assume that f : E → R is bounded and contin-
uous. Define

g(x) =

{
f(x) if x ∈ E,

lim inft→x,t∈E f(t) if x ∈ cl E \ E.

Extend g linearly on the closure of each bounded interval contiguous to cl E,
and let g be constant on the closure of each unbounded interval contiguous
to cl E. Then g is bounded and the set of discontinuity points of g is contained
in cl E \ E.
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Now we are ready to prove the main result.

Theorem 3.3. Let f : 〈a, b〉 → R. The following are equivalent :

a) the function f is H1-integrable on 〈a, b〉,

b) the function f is Henstock integrable on 〈a, b〉 and

for every nonvoid closed set P ⊂ 〈a, b〉, there are an open
interval J and an A ∈ I such that P ∩ J \ A 6= ∅ and the
restriction f�(P ∩ J \A) is continuous.

(1)

Proof. a)⇒b). Assume that the function f is H1-integrable on 〈a, b〉 using
a gauge δ. Clearly f is Henstock integrable on 〈a, b〉. Let P ⊂ 〈a, b〉 be
a nonvoid closed set. Without loss of generality we may assume that P ∩ J /∈
I \ {∅} for every open interval J . Fix an n ∈ N. Put

En =
{
x ∈ P : δ(x) ≥ n−1

}
and

Dn =
{
x ∈ En : f�En is not continuous at x

}
,

and suppose that Dn /∈ I. For every x ∈ Dn denote by ω(x) the oscillation
of f�En at x; i.e.

ω(x) = lim
h→0+

osc
(
f, (x− h, x + h) ∩ En

)
,

and notice that ω(x) > 0. Since Dn /∈ I, there is an m ∈ N such that
M = µ(cl C) > 0, where

C =
{
x ∈ Dn : ω(x) > m−1

}
.

By assumption, there is a tagged partition π0 of 〈a, b〉 such that

∣∣σ(f, π)−
∫ b

a

f
∣∣ <

M

4m
for every δ-fine tagged partition π w π0. (2)

Every interval from π0 can be written as the union of a finite family of
nonoverlapping intervals of length less than n−1. Let A be the family of all
these intervals. Put B =

{
I ∈ A : C ∩ int I 6= ∅

}
. For each I ∈ B, we can

pick an xI ∈ C ∩ int I, and, since ω(xI) > m−1, a yI ∈ I ∩ En such that
|f(yI)− f(xI)| > m−1. Let

B1 =
{
I ∈ B : f(xI)− f(yI) > m−1

}
.
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Notice that µ
(⋃

I∈B I
)
≥ µ(cl C) = M . Consequently, µ

(⋃
I∈B1

I
)
≥ M/2 or

µ
(⋃

I∈B\B1
I
)
≥ M/2. Assume that, e.g., the first case holds. Let P1 w π0 be

a δ-fine partial tagged partition of 〈a, b〉 such that
⋃

(I,x)∈P1
I = 〈a, b〉\

⋃
I∈B1

I.
Both P2 =

{
(I, xI) : I ∈ B1

}
and P3 =

{
(I, yI) : I ∈ B1

}
are δ-fine partial

tagged partitions of 〈a, b〉 and P2,P3 w π0. So, π1 = P1∪P2 and π2 = P1∪P3

are δ-fine tagged partitions of 〈a, b〉 such that π1, π2 w π0. Then by (2),

M

2m
> |σ(π1, f)− σ(π2, f)| = σ(P2, f)− σ(P3, f) >

M

2m
,

an impossibility. Consequently, Dn ∈ I.
Let A ∈ I be an Fσ set such that A ⊃

⋃∞
n=1 Dn. Then by assumption,

P \ A is a nonvoid Gδ set dense in P . As P \ A =
⋃∞

n=1(En \ A) and the
restrictions f�(En \ A) are continuous, by Lemma 3.1, there exists an open
interval J such that P∩J\A 6= ∅ and the restriction f�(P∩J\A) is continuous.
We have shown that condition (1) is fulfilled.

b)⇒ a). Assume that f is a Henstock integrable function which fulfills (1).
Suppose that f is not H1-integrable on 〈a, b〉. Denote by P the set of all points
x ∈ 〈a, b〉 such that f is H1-integrable on no open interval containing x. Then
P 6= ∅, and by Theorem 2.2, f is H1-integrable on the closure of every interval
contiguous to P in 〈a, b〉, whence P is perfect.

If F is the Henstock primitive of f , then F is an ACG∗-function. So, there
is a nondegenerate open interval I such that F is an AC∗-function on P ∩ I.
By (1), there are an open interval J ⊂ I and an A ∈ I such that P ′ \ A 6= ∅
and the restriction f�(P ′ \A) is continuous, where P ′ = P ∩J ; clearly we may
assume that f�(P ′ \A) is bounded. Let g be an extension of f�(P ′ \A) defined
in Lemma 3.2. Then the set of discontinuity points of g is contained in A, so
g is a bounded almost everywhere continuous function. By Riemann–Lebesgue
theorem, g is Riemann integrable on J , whence H1-integrable on J . Moreover
g is Henstock integrable on P ′, because it is measurable and bounded. Thus
by Theorem 2.4, g is H1-integrable on P ′, and in consequence of Theorem 2.1,
f is H1-integrable on P ′.

Let (In)∞n=1 be a sequence of the closures of all intervals contiguous to P ′

in J . Since F is a VB∗-function on P ′, the series
∑∞

n=1 osc (F, In) is con-
vergent. Therefore by Theorem 2.3, f is H1-integrable on J \ P ′. Thus f is
H1-integrable on J . But J ∩ P 6= ∅, an impossibility. Therefore f is H1-
integrable on 〈a, b〉.

Lemma 3.4. Let f : 〈a, b〉 → R. Then condition (1) is equivalent to the
following one:

there exists a B ∈ I such that the restriction f�(〈a, b〉 \ B) is
Baire*1 in its domain;

(3)
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i.e., there exists a B ∈ I with the property that for every closed set P ⊂ 〈a, b〉
with P \ B 6= ∅, we can find an open interval J with P ∩ J \ B 6= ∅ such that
the restriction f�(P ∩ J \B) is continuous.

Proof. (⇒). First assume that the function f fulfills condition (1). Denote
by Ω the first uncountable ordinal. We proceed by transfinite induction.

1. Let U0 = ∅.

2. Let α < Ω and assume we have already defined an open set Uα and
a Bα ∈ I. If Uα = R, then we let Uα+1 = R and Bα+1 = ∅. Otherwise
let Jα be the family of all open intervals J with rational endpoints such
that J \ Uα 6= ∅ and the restriction f�

(
(J \ Uα) \ AJ

)
is continuous for

some AJ ∈ I. Define

Uα+1 = Uα ∪
⋃

J∈Jα
J and Bα+1 =

⋃
J∈Jα

AJ .

Then clearly the set Uα+1 is open and Bα+1 ∈ I. Observe that by (1),
Jα 6= ∅, so Uα 6= Uα+1.

3. If α < Ω is a limit ordinal, then let Uα =
⋃

β<α Uβ and Bα = ∅.

In this manner we defined a transfinite ascending sequence {Uα : α < Ω} of
open subsets of R. By the Cantor–Baire stationary principle [5, Theorem 2,
p. 146], there exists an α0 < Ω such that Uα0 = Uα0+1, whence Uα0 = R.

Put B =
⋃

α<α0
Bα. Then B ∈ I, since α0 < Ω. Let P ⊂ 〈a, b〉 be a closed

set with P \B 6= ∅, and let

α1 = min
{
α < Ω: Uα ∩ P \B 6= ∅

}
.

Clearly α1 > 0 and α1 is not a limit ordinal. So, α1 = α2 +1 for some α2 < Ω.
Then P ∩ Uα2 \ B = ∅, so we can choose a J ∈ Jα2 with P ∩ J \ B 6= ∅.
By definition, the restriction f�

(
(J \ Uα2) \ AJ

)
is continuous. Hence the

restriction f�(P ∩ J \B) is continuous, too.
(⇐). Now assume that the function f fulfills condition (3). Let P ⊂ 〈a, b〉

be a nonvoid closed set. If P \B 6= ∅, then by (3), there is an open interval J
with P ∩J 6= ∅ such that the restriction f�(P ∩J \B) is continuous. Otherwise
pick an arbitrary x ∈ P , and define J = (a− 1, b + 1) and A = B \ {x}. Then
evidently J is an open interval with P ∩ J 6= ∅, A ∈ I, and the restriction
f�(P ∩ J \A) = f�{x} is continuous.

From Theorem 3.3 and Lemma 3.4 we immediately get the following corol-
lary.
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Corollary 3.5. Let f : 〈a, b〉 → R. The following are equivalent :

a) the function f is H1-integrable on 〈a, b〉,

b) the function f is Henstock integrable on 〈a, b〉 and it fulfills condition (3).

The following corollary gives an affirmative answer to the question asked
in [8, Problem 6.1].

Corollary 3.6. Let f : 〈a, b〉 → R and E1, E2 ⊂ 〈a, b〉. Assume that the
function f is Henstock integrable on E1 ∪E2, and that it is H1-integrable both
on E1 and on E2. Then f is H1-integrable on E1 ∪ E2.

Proof. By Corollary 3.5, for i ∈ {1, 2}, there is a Bi ∈ I such that the
restriction (fχEi

)�(〈a, b〉\Bi) is Baire*1 in its domain. Let B = B1∪B2. Then
B ∈ I and the function (fχEi

)�(〈a, b〉\B) is Baire*1 in 〈a, b〉\B for i ∈ {1, 2},
whence (fχE1∪E2)�(〈a, b〉\B) is Baire*1 in its domain, too. Actually, suppose
first that f ≥ 0. Thus fχE1∪E2 = max {fχE1 , fχE2}, so (fχE1∪E2)�(〈a, b〉 \
B) is Baire*1 in its domain. In the general case we write f = f+ − f−

where f+, f− ≥ 0. Using Corollary 3.5 again, we conclude that the function
fχE1∪E2 is H1-integrable on 〈a, b〉; i.e., that the function f is H1-integrable
on E1 ∪ E2.

In [6] we proved that the uniform convergence theorem does not hold for
the H1-integral; i.e., that there is a uniformly convergent sequence of H1-
integrable functions, whose limit is not H1-integrable. So, it is natural to
ask for the characterization of the limits of uniformly convergent sequences of
H1-integrable functions. The answer to this question is the following theorem.

Theorem 3.7. Let f : 〈a, b〉 → R. The following are equivalent :

a) the function f is the limit of some uniformly convergent sequence of
H1-integrable functions,

b) the function f is Henstock integrable on 〈a, b〉 and

there exists a B ∈ I such that the restriction f�(〈a, b〉 \ B) is
Baire one in its domain.

(4)

Proof. a)⇒b). Assume that f = lim fn, where (fn)∞n=1 is a uniformly con-
vergent sequence of H1-integrable functions. Then f is Henstock integrable
on 〈a, b〉. For each n, let Bn ∈ I be such that the restriction fn�(〈a, b〉 \ Bn)
is Baire*1 in its domain. (Cf. Corollary 3.5.) Define B =

⋃∞
n=1 Bn. Then

B ∈ I and the restriction f�(〈a, b〉\B) is the limit of the sequence
(
fn�(〈a, b〉\
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Bn)
)∞
n=1

, which is uniformly convergent. Hence f�(〈a, b〉 \ B) is Baire one in
its domain.

b)⇒ a). Assume that f is a Henstock integrable function which fulfills (4).
By [5, p. 294–295], there is a uniformly convergent sequence (fn)∞n=1 of Baire*1
functions defined on 〈a, b〉 \ B, whose limit is f�(〈a, b〉 \ B); we may assume
that |f − fn| < 1 on 〈a, b〉 \ B. For each n, extend the function fn to 〈a, b〉
setting fn = f on B. Then f − fn is a bounded measurable function, so it
is Lebesgue integrable. By Corollary 3.5, each function fn is H1-integrable.
Clearly the sequence (fn)∞n=1 is uniformly convergent to f .

The next theorem is the answer to [8, Problem 4.8]. Recall that a set D is
ambiguous, if it is both an Fσ and a Gδ set.

Theorem 3.8. Let E ⊂ 〈a, b〉. The following are equivalent :

a) the function χ
E is H1-integrable on 〈a, b〉,

b) there is an ambiguous set D such that E M D ∈ I.

Proof. a)⇒b). Assume that the function χE is H1-integrable on 〈a, b〉. By
Corollary 3.5, the function χE fulfills condition (3). So, there is a B ∈ I and
an ascending sequence (Sn)∞n=1 of closed subsets of 〈a, b〉 such that

⋃∞
n=1 Sn ⊃

〈a, b〉 \ B and for each n, the restriction χE�(Sn \ B) is continuous. (See,
e.g., [4, Theorem 5].) Without loss of generality we may assume that B is an
Fσ set. Let B =

⋃∞
n=1 Bn, where (Bn)∞n=1 is an ascending sequence of closed

sets. Set P0 = ∅, and for each n put Pn = Bn ∪ cl (Sn \B). Observe that
(Pn)∞n=1 is an ascending sequence of closed sets and

〈a, b〉 ⊃
∞⋃

n=1

Pn ⊃ B ∪
∞⋃

n=1

(Sn \B) = B ∪
∞⋃

n=1

Sn = 〈a, b〉.

Notice that for each n, both

Dn = cl (Sn ∩ E \B) \ Pn−1, and

Tn =
(
Bn ∪ cl (Sn \ (E ∪B))

)
\ (Dn ∪ Pn−1)

are Fσ sets, and

Dn ∪ Tn =
(
cl (Sn ∩ E \B) ∪Bn ∪ cl ((Sn \ E) \B)

)
\ Pn−1

=
(
Bn ∪ cl (Sn \B)

)
\ Pn−1 = Pn \ Pn−1.
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Let D =
⋃∞

n=1 Dn. Then D is an Fσ set. Since

〈a, b〉 \D =
∞⋃

n=1

(Pn \ Pn−1) \D =
∞⋃

n=1

(
(Pn \ Pn−1) \Dn

)
=

∞⋃
n=1

Tn,

D is a Gδ set, too. Thus D is ambiguous. We will show that E M D ⊂ B.
Suppose this is not the case. First suppose that there is an x ∈ (E \D)\B.

Fix an n with x ∈ Tn. Since the restriction χE�(Sn \B) is continuous at x and
x ∈ E, there is an open interval I 3 x such that I∩Sn \B ⊂ E. Consequently,
x /∈ cl

(
Sn \ (E ∪B)

)
⊃ Tn \B, an impossibility.

Now suppose that there is an x ∈ (D\E)\B. Fix an n with x ∈ Dn. Since
the restriction χE�(Sn \ B) is continuous at x and x /∈ E, there is an open
interval I 3 x such that I∩Sn \B ⊂ R\E. Consequently, x /∈ cl(Sn∩E \B) ⊃
Dn, an impossibility.

b)⇒ a). Assume that E M D ∈ I for some ambiguous set D. By Theorem
2.1 it is enough to prove that χD is H1-integrable. Let D =

⋃∞
n=1 Dn, where

all Dn’s are closed, and consider arbitrary closed subset P ⊂ 〈a, b〉. We have

P = (P \D) ∪
∞⋃

n=1

(P ∩Dn).

Since P \ D is an Fσ set, by the Baire Category Theorem there is an open
interval I, such that the portion P ∩I is contained in P \D or in some P ∩Dn.
In both cases χD�(P ∩ I) is continuous. Thus χD is Baire*1. By Corollary
3.5, the function χD is H1-integrable.

4 Examples

The following example proves that not every H1-integrable function is I-almost
everywhere equal to some Baire*1 function.

Example 4.1. There is a bounded, almost everywhere continuous, approxi-
mately continuous function f such that int

{
x ∈ R : f(x) 6= g(x)

}
6= ∅ for each

Baire*1 function g.

Construction. Let ϕ : R → R be a bounded approximately continuous
function, which is continuous on R \ {0}, such that

lim sup
t→0

ϕ(t)− ϕ(0) = 2. (5)

(See, e.g., [9].) Arrange all rationals in a sequence, (qn)∞n=1. For each n define
ϕn(x) = ϕ(x−qn)/2n. Put f =

∑∞
n=1 ϕn. This series is uniformly convergent,
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so function f is bounded, almost everywhere continuous, and approximately
continuous.

Let g be a Baire*1 function. There is an open interval I0 such that the
restriction g�I0 is continuous. Choose an n with qn ∈ I0. The function f −
ϕn − g is continuous at qn; so there is an open interval I1 ⊂ I0 such that
qn ∈ I1 and ∣∣f − ϕn − g − (f − ϕn − g)(qn)

∣∣ < 2−n on I1.

By (5), there is an open interval I2 ⊂ I1 such that∣∣ϕn + (f − ϕn − g)(qn)
∣∣ > 2−n on I2.

(Recall that ϕn is continuous on R \ {qn}.) Then for each t ∈ I2,∣∣g(t)− f(t)
∣∣ ≥∣∣ϕn(t) + (f − ϕn − g)(qn)

∣∣
−

∣∣(f − ϕn − g)(t)− (f − ϕn − g)(qn)
∣∣ > 0.

Hence I2 ⊂ int
{
x ∈ R : f(x) 6= g(x)

}
. P. Sworowski

asked whether each Henstock integrable Baire one function is H1-integrable [8,
Problem 6.2], and whether each derivative is H1-integrable [8, Problem 6.3].
Since every bounded, approximately continuous function is a derivative, Ex-
ample 4.2 proves that the answer to both these questions is negative.

Example 4.2. There is a bounded approximately continuous function f such
that µ

({
x : f(x) 6= g(x)

})
> 0 for each H1-integrable function g.

Construction. Let E be a dense Gδ set of measure zero. There is an
upper semicontinuous, approximately continuous function f : 〈0, 1〉 → 〈0, 1〉
such that

E =
{
x ∈ 〈0, 1〉 : f(x) = 0

}
.

(See, e.g., [9, Lemma 12].)
Let g be an H1-integrable function. By (1), there are an open interval J ⊂

〈0, 1〉 and an A ∈ I such that the restriction g�(J \ A) is continuous. Then
J ∩E \A is a dense Gδ subset of J . If g = 0 on J ∩E \A, then g = 0 on J \A.
Hence

µ
({

x ∈ 〈0, 1〉 : f(x) 6= g(x)
})
≥ µ

(
J \ (A ∪ E)

)
= µ(J) > 0.

So, suppose that there is an x ∈ J ∩ E \ A with g(x) 6= 0. Then f is
continuous at x. Let I ⊂ J be an open interval such that

|g(t)| > |g(x)|/2 and |f(t)| < |g(x)|/2
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for each t ∈ I \A. Then

µ
({

x ∈ 〈0, 1〉 : f(x) 6= g(x)
})
≥ µ(I) > 0.

Moreover, the above example shows falseness of [3, Theorem 10]. There
are Henstock integrable functions equal almost everywhere to no H1-integrable
function.

Problem 4.3. Characterize H1-primitives.

On the other hand, we have the following simple proposition.

Proposition 4.4. If a function f : 〈a, b〉 → R is the limit of some uni-
formly convergent sequence of H1-integrable functions (so, in particular if it
is a derivative), then f can be written as the sum of an H1-integrable function
and a Lebesgue integrable one.

Proof. By assumption, there is an H1-integrable function g : 〈a, b〉 → R such
that |f − g| < 1 on 〈a, b〉. Then f − g is a bounded measurable function,
whence it is Lebesgue integrable.

The following problems are open.

Problem 4.5. Characterize sums of Lebesgue integrable and H1-integrable
functions. In particular, can every Henstock integrable function be written as
the sum of an H1-integrable function and a Lebesgue integrable one?

Problem 4.6. Characterize limits of pointwise convergent sequences of H1-
integrable functions.

Example 4.7. There is a bounded Baire two function f with the property
that µ

({
x : f(x) 6= g(x)

})
> 0 for each function g, which is the limit of some

uniformly convergent sequence of H1-integrable functions.

Proof. [Construction] Let E be a metrically dense Fσ set, whose complement
is also metrically dense in 〈0, 1〉; i.e., µ(J ∩ E) > 0 and µ(J \ E) > 0 for each
nondegenerate interval J ⊂ 〈0, 1〉. Define f = χE . Then clearly f is a bounded
Baire two function.

Let h : 〈0, 1〉 → R be such that

µ
({

x ∈ 〈0, 1〉 : |f(x)− h(x)| < 1/4
})

= 0. (6)
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We will show that h is not H1-integrable. Let J be an open interval and A ∈ I.
Define

S =
{
x ∈ 〈0, 1〉 : h(x) > 3/4

}
and T =

{
x ∈ 〈0, 1〉 : h(x) < 1/4

}
.

By (6), both S and T are metrically dense. So, both S∩J \A and T ∩J \A are
dense in J , and the restriction h�(J \A) is not continuous. Consequently, the
function h does not fulfill condition (1), whence it is not H1-integrable.
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