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COMMON FIXED POINTS FOR
COMMUTING COURNOT MAPS

Abstract

We study some conditions to guarantee the existence of common
fixed points of two commuting Cournot maps F (x, y) = (f2(y), f1(x)),
G(x, y) = (g2(y), g1(x)), defined from I2 = [0, 1]2 into itself. In par-
ticular, we prove that Jungck’s Theorem and Jachymski’s equivalent
conditions can be only partially proved in this setting.

1 Introduction

In the fifties the problem of proving whether two commuting continuous inter-
val maps share fixed points was posed independently by E. Dyer, A. Shields
and L. Dubins. This problem has a positive solution in the case of polynomi-
als, as J. F. Ritt pointed out in the 1920’s (see [22]). Moreover, this problem
has a positive answer in particular cases, under restrictive conditions (for in-
stance, see [12], [13], [26], [9], [8], [23]). Finally, it is known that Boyce ([4])
and Huneke ([16]) found simultaneously counterexamples which show that in
general the answer is negative.

Since then the results in this subject were focused on the following di-
rections. First, instead of two commuting functions, a family of commuting
functions was considered ([5], [20], [6]). Second, the problem was extended
to other compact metric spaces and to particular classes of continuous maps
([18], [19], [17], [14], [15]). Third, the problem has been also posed in terms
of sharing periodic points which are not necessarily fixed points (see [1], [2],
[27]).
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Now we investigate whether the results on common fixed points of com-
muting functions work for a special class of two-dimensional continuous maps,
Cournot maps, whose form is F (x, y) = (g(y), f(x)). This class of maps models
the Cournot duopoly ([10]), an economical process in which two competitive
firms produce an identical commodity, and their profits are given in terms of
the levels of production of the rival firm in the last step. (See [11] and [21] for
a detailed explanation of the model.)

The paper is organized as follows. In Section 2 we present known results on
shared fixed points for commuting interval maps and triangular maps, which
we will try to extend to the Cournot case. In Section 3 we introduce definitions
and notation used throughout the paper. Moreover, we give basic properties
on fixed points for (commuting) Cournot maps, and connect these maps with
the compositions of their coordinate maps. In the next sections we state our
main results on common fixed points for Cournot maps defined on the unit
square.

2 Preliminaries. Results on Common Fixed Points

The space of continuous maps from a compact metric space X into itself is
denoted by C(X, X). Let f ∈ C(X, X). We define the n-th iterate of f by
fn = f ◦fn−1, n ≥ 1, f0 = Identity. The orbit of x ∈ X is the set {fn(x)}∞n=0.
We say that x ∈ X is a periodic point of f whenever fn(x) = x for some
nonnegative integer n. The smallest of these values n is called the order or
period of the periodic point. If f(x) = x, then x is a fixed point. Per(f), P(f)
and Fix(f) denote the sets of periods, periodic points and fixed points of f,
respectively.

If f ∈ C(I, I), with I = [0, 1], we say that f is an interval map. A map
G ∈ C(In, In) is called a triangular map if it has the form

G(x1, x2, ..., xn) = (g1(x1), g2(x1, x2), ..., gn(x1, x2, ..., xn)).

The set of triangular maps will be denoted by C∆(In, In).
In this section we recall well known results on common fixed points for

commuting interval maps and commuting triangular maps. We also present
several properties relating equicontinuity, pointwise convergence and uniform
convergence with the set of periodic points of these maps.

We start with the following property on equicontinuous families of interval
maps. Recall that {fα}α∈A ⊂ C(X, X) is equicontinuous at x ∈ X if for all
ε > 0 there exists δ > 0 such that ρ(fα(x), fα(y)) < ε for all α ∈ A and for
any y ∈ X with ρ(x, y) < δ. (Here ρ denote the metric of X.) The family is
called equicontinuous if it is equicontinuous at x ∈ X, for all x ∈ X.
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We say that Fix(f) is nondegenerate if it is not a singleton.

Theorem 2.1. ([6],Theorem 2) Let f ∈ C(I, I). Suppose that {fn}∞n=1 is
equicontinuous. Then,

1. f ∈ A = {g ∈ C(I, I) : Fix(g) = [ag, bg], ag ≤ bg}.

2. If Fix(f) is nondegenerate, f ∈ B = {g ∈ C(I, I) : Fix(g) = P(g)}.

In [14] a version of a result of Cano (see [6],Theorem 1) for two commuting
triangular maps was proved.

Theorem 2.2. ([14],Theorem 2.3)Assume that F,G ∈ C∆(I2, I2) commute.
If either

1. Per(G) = Fix(G), or

2. π1(Fix(G)) is an interval and Fix(g2(x, ·)) is an interval for every x ∈
π1(Fix(G)),where π1 denote the canonical projection given by π1(x, y) = x,

then Fix(F ) ∩ Fix(G) 6= ∅.

Following the notation of [15], for f, g ∈ C(X, X) we put

Coin(f, g) = {x ∈ X : f(x) = g(x)}.

If Coin(f, g) 6= ∅ and f, g commute on Coin(f, g), then we say that f and g
are nontrivially compatible ( [19]). If X = I, then the following result holds
(Jungck’s Theorem).

Theorem 2.3. ([19],Theorem 3.6) A map g ∈ C(I, I) has a common fixed
point with every map f ∈ C(I, I) which is nontrivially compatible with g if
and only if P(g) = Fix(g).

We consider now the results given by Jachymski in [17] on equivalent con-
ditions to guarantee the existence of common fixed points for interval maps.

Theorem 2.4. ([17],Theorem 1) Let g be a continuous self-map of I. The
following conditions are equivalent:

1. Fix(g) is a closed interval.

2. The family {gn : n ∈ N} is equicontinuous on Fix(g), or Fix(g) is a single-
ton.

3. g has a common fixed point with every continuous map f : I → I that
commutes with g on Fix(g).
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Theorem 2.5. ([17],Theorem 2) Let g : I → I be continuous. Then the
following conditions are equivalent:

1. Fix(g) = P(g).

2. The sequence {gn}∞n=1 is pointwise convergent on I.

3. g has a common fixed point with every continuous map f : I → I that
commutes with g on Fix(f).

Theorem 2.6. ([17],Theorem 3) Let g ∈ C(I, I). Suppose that Fix(g) is not
a singleton. Then, the following conditions are equivalent:

1. The family of iterates {gn : n ∈ N} is equicontinuous on I.

2. The sequence {gn}∞n=1 is uniformly convergent on I.

3. g has a common fixed point with every continuous map f : I → I that
commutes with g either on Fix(f), or on Fix(g).

Finally, we introduce Corollary 2.8 of [15]. Notice that it states that in the
triangular case Jungck’s Theorem is equivalent to condition (3) of Theorem
2.5.

Theorem 2.7. ([15],Corollary 2.8) Let G ∈ C∆(In, In). Then the following
conditions are equivalent:

1. P(G) = Fix(G).

2. C ∩ Fix(G) 6= ∅ for any nonempty closed set C ⊆ In such that G(C) ⊆ C.

3. G has a common fixed point with every F ∈ C∆(In, In) that commutes with
G on Fix(F ).

4. G has a common fixed point with every map F ∈ C(In, In) that commutes
with G on Fix(F ).

5. G has a common fixed point with every triangular map F which is nontriv-
ially compatible with G.

3 Basic Properties of Cournot Maps

Given two compact metric spaces X, Y, we say that F : X × Y → X × Y is a
Cournot map if F (x, y) = (f2(y), f1(x)), where f1 : X → Y and f2 : Y → X
are continuous. It is easy to check that for every n ≥ 0

F 2n(x, y) = ((f2 ◦ f1)n(x), (f1 ◦ f2)n(y)) (1)
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and
F 2n+1(x, y) = ((f2 ◦ f1)n(f2(y)), (f1 ◦ f2)n(f1(x))). (2)

Observe that
P(F ) = P(f2 ◦ f1)× P(f1 ◦ f2) (see [7]). (3)

We use CA(X × Y ) to denote the set of Cournot maps from X × Y into
itself. From now on, we denote Cournot maps with capital letters, and their
coordinates with the corresponding indexed small letter (for example G(x, y) =
(g2(y), g1(x))).We use π1, π2 to denote the canonical projections from X × Y
onto X, and from X × Y onto Y, respectively.

Suppose that F,G ∈ CA(X×Y ) and F ◦G = G◦F. For i, j ∈ {1, 2}, i 6= j,
it follows that

fj ◦ gi = gj ◦ fi. (4)

Moreover,
fi ◦ fj and gi ◦ gj commute, (5)

fi ◦ fj ◦ gi ◦ gj = (fi ◦ gj)2,

and

gj ◦ fi commutes with gj ◦ gi and fj ◦ fi, for i, j ∈ {1, 2}, i 6= j. (6)

Let F,G ∈ CA(X × Y ). Then

(x1, x2) ∈ Fix(F ) ∩ Fix(G) iff xi = fj(xj) = gj(xj), i, j ∈ {1, 2}, i 6= j,

(x1, x2) ∈ Fix(F ) ∩ Fix(G) gives xj ∈ Fix(fj ◦ fi) ∩ Fix(gj ◦ gi), i 6= j. (7)

Concerning the set of fixed points of a Cournot map F , notice that if
xi ∈ Fix(fj ◦ fi), then fi(xi) ∈ Fix(fi ◦ fj), for all i, j ∈ {1, 2}, i 6= j, and
{(x1, f1(x1)), (f2(x2), x2)} ⊂ Fix(F ). Moreover, if x2, y2 are two different fixed
points of f1◦f2, then (f2(y2), x2) is a periodic point of order two for F (similar
conclusions hold for two different fixed points of f2 ◦ f1). With the above
observations, it is easy to obtain the following.

Proposition 3.1. Given F ∈ CA(X × Y ), the following hold:

1. Fix(F ) $ Fix(f2 ◦ f1)× Fix(f1 ◦ f2), if Card(Fix(f1 ◦ f2)) ≥ 2.

2. Fix(F ) = Fix(f2 ◦ f1)× Fix(f1 ◦ f2), if Card(Fix(f1 ◦ f2)) = 1.

3. Fix(F 2) = Fix(f2 ◦ f1)× Fix(f1 ◦ f2).

We can add the following results on the set of fixed points. All of them are
immediate.
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Proposition 3.2. Let F ∈ CA(X × Y ).

1. Let (x0, y0) ∈ Fix(F ). Then,

Card(Fix(F ) ∩ ({x0} × Y )) = Card(Fix(F ) ∩ (X × {y0})) = 1.

2. Fix(F ) = {(x, f1(x)) : x ∈ Fix(f2 ◦ f1)} = {(f2(y), y) : y ∈ Fix(f1 ◦ f2)}.

3. Card(Fix(F )) = Card(Fix(f2 ◦ f1)) = Card(Fix(f1 ◦ f2)).

4. For i, j ∈ {1, 2}, i 6= j, πi(Fix(F )) = Fix(fj ◦ fi), and fi(πi(Fix(F ))) =
πj(Fix(F )).

Proposition 3.3. Let F,G ∈ CA(X × Y ) be such that F ◦ G = G ◦ F. For
i, j ∈ {1, 2}, i 6= j,we put

Ai = Fix(fj ◦ fi) ∩ Fix(gj ◦ gi).

1. The applications gi : Ai→Aj , fi : Ai→Aj are bijective.

2. The applications hji : Ai→Ai are bijective, where hji denotes one of the
following maps: fj ◦ gi, fj ◦ fi, gj ◦ gi.

3. The equality (fj ◦ gi)2|Ai
= (gj ◦ fi)2|Ai

= Identity|Ai
holds.

Notice that there exists commuting Cournot maps on I2 without sharing
fixed points.

Proposition 3.4. There exist G1, G2 ∈ CA(I2) such that G1 ◦G2 = G2 ◦G1

and Fix(G1) ∩ Fix(G2) = ∅.

Proof. We consider interval maps f1, f2 with f1 ◦ f2 = f2 ◦ f1 and Fix(f1)∩
Fix(f2) = ∅. (According to [4] or [16], these exist.) Notice that f2 ◦ f1 ◦ f1 =
f1 ◦ f2 ◦ f1 and f2 ◦ f2 ◦ f1 ◦ f1 = f2 ◦ f1 ◦ f2 ◦ f1. We define G1, G2 ∈ CA(I2) as

G1(x, y) = (f1(y), x), G2(x, y) = ((f2 ◦ f1 ◦ f1)(y), (f2 ◦ f1)(x)).

It is straightforward to see that

(G2 ◦G1)(x, y) = ((f2 ◦ f1 ◦ f1)(x), (f2 ◦ f1 ◦ f1)(y)),

and
(G1 ◦G2)(x, y) = ((f1 ◦ f2 ◦ f1)(x), (f2 ◦ f1 ◦ f1)(y)),
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so G1 and G2 commute. Let (x, y) ∈ Fix(G1)∩Fix(G2). Since (x, y) ∈ Fix(G1),
we have x = f1(y), y = x. Hence x ∈ Fix(f1). On the other hand, G2(x, y) =
(x, y) implies x = (f2 ◦ f1 ◦ f1)(y), x = y = (f2 ◦ f1)(x). From this, we obtain

f2(x) =f2((f2 ◦ f1 ◦ f1)(y)) = (f2 ◦ f1 ◦ f2 ◦ f1)(x)
=(f2 ◦ f1)((f2 ◦ f1)(x)) = (f2 ◦ f1)(x) = x.

So, x ∈ Fix(f2), and x ∈ Fix(f1) ∩ Fix(f2), a contradiction. Therefore,
Fix(G1) ∩ Fix(G2) = ∅.

We need the following results on periodic structure of Cournot maps, whose
proof can be found in [3]. Remember that Sharkovskii’s ordering is given by

3 >s 5 >s 7 >s . . . >s 2 · 3 >s 2 · 5 >s . . . · · · >s 22 · 3 >s 22 · 5 >s . . .

. . . >s 2k · 3 >s 2k · 5 >s · · · >s 23 >s 22 >s 2 >s 1,

and Sharkovskii’s Theorem (see [24]) establishes for any f ∈ C(I, I) that either
Per(f) = S(m) = {k : m >s k} ∪ {m}, with m ∈ N, or Per(f) = S(2∞) ={
2i : i = 0, 1, 2, . . .

}
.

Theorem 3.5. Let F ∈ CA(I2).

1. F has at least two different fixed points if and only if f2 ◦ f1 possesses at
least two different fixed points.

2. 2 ∈ Per(F ) if and only if F has at least two different fixed points.

3. Either Per(F) = S2(m) or Per(F ) = S2(m)∪{2}, where m ∈ N∪{2∞} and

S2(m) = {pt : p ∈ {1, 2}, t ∈ (S(m) \ {1}) , gcd(t,
2
p
) = 1} ∪ {1},

where S(m) is an initial segment of Sharkovskii’s ordering and gcd(s, t)
denote the greatest common divisor of two positive integers s, t.

In the following sections we will try to extend the results of Section 2
on common fixed points from the interval case or the triangular case to the
Cournot case, with X×Y = I2 = [0, 1]2. More precisely, we prove the extension
of results of Cano ([6]). We show that Jungck’s Theorem ([19]), which is also
true in C∆(In, In) ([14], [15]), also works in the Cournot case if we modify
the hypothesis in a suitable way. We obtain that the results on equivalent
conditions involving common fixed points, obtained by Jachymski in [17], only
can be partially translated to our case. And finally we see that Jungck’s
Theorem and Jachymski’s result of Theorem 2.5, which are equivalent in the
triangular case ([15]), are independent for commuting Cournot maps.
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4 Extension of Cano’s Results

In order to translate Theorem 2.1 to CA(I2), we define

A ={F ∈ CA(I2) : Fix(F ) is connected},
B ={F ∈ CA(I2) : Fix(F 2) = P(F )}.

Theorem 4.1. Let F ∈ CA(I2). Suppose that {Fn}∞n=1 is equicontinuous.
Then

1. F ∈ A.

2. If Fix(F ) is nondegenerate, F ∈ B.

Proof. If {Fn}∞n=1 is equicontinuous, so is {F 2m}∞m=1. According to (1) we
deduce that {(f2 ◦ f1)m}∞m=1 and {(f1 ◦ f2)m}∞m=1 are equicontinuous. By
Theorem 2.1, Fix(f2 ◦ f1) = [a1, a2] = J, a1 ≤ a2, and Fix(f1 ◦ f2) = [b1, b2] =
K, b1 ≤ b2. By Proposition 3.2 we have that J is nondegenerate iff K is
nondegenerate. If J = {a}, K = {b}, from Proposition 3.1 we have Fix(F ) =
{(a, b)}; so F ∈ A. If both J and K are nondegenerate, by Proposition 3.2 we
obtain

Fix(F ) = {(x, f1(x)) : x ∈ J} = {(f2(y), y) : y ∈ K}.

Therefore, Fix(F ) is connected, and F ∈ A.
Now, suppose that Fix(F ) is nondegenerate. Then J and K are also non-

degenerate. By Theorem 2.1, Fix(f2◦f1) = P(f2◦f1), Fix(f1◦f2) = P(f1◦f2).
Since (3) and Proposition 3.1 hold, we deduce P(F ) = Fix(F 2).

We remark that in the Cournot case we cannot state that P(F ) = Fix(F )
whenever Fix(F ) is nondegenerate. In this case Fix(F ) $ Fix(F 2) since
Card(Fix(F )) ≥ 2, and P(F ) contains periodic points of order two (see Theo-
rem 3.5). For example, consider F (x, y) = (y, x). Then Fix(F ) = {(x, x) : x ∈
I} is nondegenerate but P(F ) = I2.

Next, we prove that Theorem 2.2 can be extended in some sense to the
Cournot case.

Theorem 4.2. Let F,G ∈ CA(I2), F ◦ G = G ◦ F. If either P(G) = Fix(G)
or πi(Fix(G)) is an interval for i = 1, 2, then Fix(F ) ∩ Fix(G) 6= ∅.

Proof. 1. Assume that P(G) = Fix(G). Then 2 /∈ Per(G), and according to
Proposition 3.5, Card(Fix(gi ◦ gj)) = 1 for i, j ∈ {1, 2}, i 6= j. Let z0 be the
unique fixed point of g2 ◦g1. By Proposition 3.2 we find Fix(G) = {(z, g1(z))}.
Notice that g1(z) is the unique fixed point of g1 ◦ g2. We wish to show that
F (z, g1(z)) = (z, g1(z)), and then Fix(F ) ∩ Fix(G) 6= ∅.
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On the one hand, since F and G commute,

F (z, g1(z)) =F (G(z, g1(z))) = G(F (z, g1(z)))
=((g2 ◦ f1)(z), (g1 ◦ f2)(g1(z))).

(8)

On the other hand, a direct calculation gives

F (z, g1(z)) = ((f2 ◦ g1)(z), f1(z)). (9)

From (8) and (9) we deduce f1(z) = (g1 ◦ f2)(g1(z)), and using (4) we obtain

f1(z) = (g1 ◦ f2)(g1(z)) = (g1 ◦ g2)(f1(z)).

Hence f1(z) is a fixed point of g1 ◦ g2. Therefore, f1(z) = g1(z), z = g2(f1(z)).
Again by (8) and (9) we get F (z, g1(z)) = (z, g1(z)).

2. Notice that by Proposition 3.2, π1(Fix(G)) = Fix(g2 ◦ g1) is an interval
iff π2(Fix(G)) = Fix(g1 ◦ g2) is an interval. Assume π1(Fix(G)) = [a, b] is an
interval. Then Fix(g1 ◦ g2) = g1([a, b]). By (5), g2 ◦ g1 and f2 ◦ f1 commute.
Then Theorem 1 of [6] implies A := Fix(g2 ◦g1)∩Fix(f2 ◦f1) 6= ∅. If A = {x0},
according to Proposition 3.3 we deduce

Fix(g1 ◦ g2) ∩ Fix(f1 ◦ f2) = {g1(x0)} = {f1(x0)}.

Since g1(x0) = f1(x0), we obtain (x0, g1(x0)) ∈ Fix(G)∩Fix(F ). Now suppose
Card(A) ≥ 2. By Proposition 3.3 we know (g2◦f1)2(x0) = x0. If (g2◦f1)(x) = x
for some x ∈ A, then g1(x) = f1(x), and we go on as above. Assume then
that there exist x1, x2 ∈ A, x1 < x2, such that (g2 ◦ f1)(xi) = xj , i, j ∈ {1, 2},
i 6= j. By continuity, there exists p ∈ (x1, x2) ∩ Fix(g2 ◦ f1). Since (x1, x2) ⊂
[a, b] = Fix(g2 ◦ g1), p ∈ Fix(g2 ◦ g1) holds. From this and using (4), (6) and
Proposition 3.3, we have

(f2 ◦ f1)((g2 ◦ g1)(p)) =(f2 ◦ f1)(p) = (g2 ◦ g1)((f2 ◦ f1)(p))

=(g2 ◦ f1)((g2 ◦ f1)(p)) = (g2 ◦ f1)2(p) = p;

so p ∈ Fix(f2 ◦ f1). We conclude that f1(p) = g1(p), so (p, g1(p)) ∈ Fix(G) ∩
Fix(F ).

5 Extension of Jungck’s Theorem

Jungck’s Theorem can be extended to the Cournot case if we replace Fix(g)
by Fix(G2).
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Theorem 5.1. Let G ∈ CA(I2). Then P(G) = Fix(G2) if and only if Fix(G)∩
Fix(F ) 6= ∅ holds for all F ∈ CA(I2) nontrivially compatible with G.

Proof. Suppose that F ◦ G = G ◦ F on Coin(F,G) 6= ∅. Let (x, y) ∈
Coin(F,G). It is not difficult to see that {Gn(x, y)}∞n=0 ⊆ Coin(F,G). In par-
ticular, G2n(x, y) = ((g2 ◦ g1)n(x), (g1 ◦ g2)n(y)) ∈ Coin(F,G). Since P(G) =
Fix(G2), from (3) and Proposition 3.1 we have P(gj ◦ gi) = Fix(gj ◦ gi)
for i, j ∈ {1, 2}, i 6= j. According to [25],Chapter 4, Th.4.2, it follows that
(g2 ◦ g1)n(x) → xg and (g1 ◦ g2)n(y) → yg, when n → ∞, for some xg ∈
Fix(g2 ◦ g1) and yg ∈ Fix(g1 ◦ g2). Since Coin(F,G) is obviously a closed set
and G2n(x, y) → (xg, yg), we deduce that F (xg, yg) = G(xg, yg). (In particu-
lar, f1(xg) = g1(xg).)

Since Per(G) = {1, 2} and (xg, yg) ∈ P(G) ∩ Coin(F,G), we have

(xg, yg) =G2(xg, yg) = G(G(xg, yg)) = G(F (xg, yg)) = F (G(xg, yg))

=F (F (xg, yg)) = F 2(xg, yg);

so (xg, yg) ∈ Fix(G2)∩Fix(F 2). In particular, xg ∈ Fix(f2 ◦ f1). Finally, since
f1(xg) = g1(xg) and (f2 ◦ f1)(xg) = xg, it is easily seen that (xg, g1(xg)) ∈
Fix(G) ∩ Fix(F ).

Now, suppose that Fix(G) ∩ Fix(F ) 6= ∅ holds for all F ∈ CA(I2) nontriv-
ially compatible with G. We wish to prove that P(G) = Fix(G2). Suppose that
P(G) ⊃ Fix(G2). Since (3) and Proposition 3.1 hold, there exists a periodic
point u ∈ I of order 2 for g2 ◦g1. Moreover, let v ∈ I be a fixed point of g1 ◦g2.
Notice that (u, v) is a periodic point of period 4 of G. Let OrbG(u, v) denote
its finite orbit.

We define F ∈ CA(I2) in the following way. We put

f1(u) = g1(u), f1(g2(v)) = v, f1((g2 ◦ g1)(u)) = g1((g2 ◦ g1)(u)),
f2(v) = g2(v), f2(g1(u)) = g2(g1(u)), f2((g1 ◦ g2 ◦ g1)(u)) = u,

and we continuously extend f1, f2 such that f1(x) 6= g1(x), f2(y) 6= g2(y)
for all x ∈ I \ {u, g2(v), g2(g1(u))} and y ∈ I \ {v, g1(u), (g1 ◦ g2 ◦ g1)(u)}.
Notice that Fix(F ) ∩ Fix(G) = ∅. It is clear that Coin(F,G) = OrbG(u, v),
and F ◦ G = G ◦ F on Coin(F,G). By hypothesis, Fix(F ) ∩ Fix(G) 6= ∅, a
contradiction.

In the statement of Jungck’s Theorem we cannot replace Fix(g) by Fix(G),
as the following example shows.
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Example 5.2. Consider G(x, y) = (1− y, 1− x). It is clear that

Fix(G) ={(x, 1− x) : x ∈ I} = {(1− y, y) : y ∈ I},
Fix(G2) =I2 = P(G).

Let F ∈ CA(I2) be nontrivially compatible with G. We are going to show that
F and G share a common fixed point. However, Fix(G) ⊂ P(G). Observe that
(x, y) ∈ Coin(F,G) if and only if

f1(x) = 1− x, f2(y) = 1− y. (10)

Let (x, y) ∈ Coin(F,G). Then (F ◦G)(x, y) = (G ◦ F )(x, y) implies

f1(1− y) = 1− f2(y), f2(1− x) = 1− f1(x). (11)

From (10) and (11), we obtain f1(1 − y) = y, f2(y) = 1 − y. This yields
Z = (1− y, y) ∈ Coin(F,G). Moreover, Z ∈ Fix(G). Then F (Z) = G(Z) = Z,
so Z ∈ Fix(G) ∩ Fix(F ).

6 Extension of Jachymski’s Results

Now, we try to extend to the Cournot case the results given in [17] on equiva-
lent conditions to guarantee the existence of common fixed points for interval
maps.

Theorem 6.1. Let G ∈ CA(I2). The following conditions are equivalent:

1. Fix(G) is a connected set.

2. {Gn : n ∈ N} is equicontinuous on Fix(G), or Fix(G) is a singleton.

3. G has a common fixed point with every F ∈ CA(I2) which commutes with
G on Fix(G).

Proof. (1) ⇒ (2) Assume that Fix(G) is a connected set. If Fix(G) is a
singleton, there is nothing to prove. Suppose then that Card(Fix(G)) ≥ 2.
According to Proposition 3.2 we have that Fix(gi ◦ gj) is a closed interval for
i, j ∈ {1, 2}, i 6= j. From Theorem 2.4 we deduce that {(gi ◦ gj)n : n ∈ N} is
equicontinuous on Fix(gi ◦ gj), i, j ∈ {1, 2}, i 6= j. By (1), {G2n : n ∈ N} is
equicontinuous on Fix(g2◦g1)×Fix(g1◦g2) = Fix(G2), in particular on Fix(G).
The continuity of G implies that {G2n+1 : n ∈ N} is also equicontinuous on
Fix(G). Since limn→∞G2n(Z) = limn→∞G2n+1(Z) = Z for all Z ∈ Fix(G),
we finally obtain that {Gm : m ∈ N} is equicontinuous on Fix(G).
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(2) ⇒ (1) Suppose that {Gn : n ∈ N} is equicontinuous on Fix(G). Then
{G2n : n ∈ N} is also. From (1), {(gi ◦ gj)n : n ∈ N} is equicontinuous on
Fix(gi ◦ gj), for i, j ∈ {1, 2}, i 6= j. By Theorem 2.4, for i, j ∈ {1, 2}, i 6= j, we
obtain that Fix(gi ◦ gj) is a closed interval. From Proposition 3.2 we conclude
that Fix(G) is connected.

(1) ⇒ (3) Suppose that Fix(G) is connected. Let F ∈ CA(I2) commute
with G on Fix(G). We must prove that Fix(G)∩Fix(F ) 6= ∅. Since F ◦G = G◦F
on Fix(G), it follows that F 2 ◦G2 = G2 ◦F 2 on Fix(G). (Notice that F (Z) ∈
Fix(G) for all Z ∈ Fix(G).) In this case, given x ∈ Fix(g2 ◦ g1), it follows
that (g2 ◦ g1 ◦ f2 ◦ f1)(x) = (f2 ◦ f1 ◦ g2 ◦ g1)(x) since (x, g1(x)) ∈ Fix(G). As
Fix(G) is connected, Fix(gi ◦gj) is a closed interval, for i, j ∈ {1, 2}, i 6= j, and
according to Theorem 2.4, we obtain that A := Fix(g2 ◦ g1)∩Fix(f2 ◦ f1) 6= ∅.
Let z ∈ A. By Proposition 3.2 and since g1(z) ∈ Fix(f1 ◦ f2), we obtain
that Z = (z, g1(z)) ∈ Fix(G) ∩ Fix(F 2) 6= ∅. Recall that F (Z) ∈ Fix(G).
Again by Proposition 3.2, if Fix(G) is connected, then it is homeomorphic

to a closed interval of I, Fix(G)
h
≈ Γ. Suppose F (Z) 6= Z = F 2(Z). Then

h(F (Z)) 6= h(Z) = h(F 2(Z)). Let ϕ = h ◦ F ◦ h−1 : Γ → Γ. Then ϕ is
continuous and well defined since F : FixG → Fix G. As

ϕ(h(Z)) = h(F (Z)) 6= h(F 2(Z)) = (h ◦ F )(F (Z)) = ϕ(h(F (Z))),

and ϕ(h(Z)) = h(F (Z)), ϕ(h(F (Z)) = ϕ(h(Z)), we deduce that there exists
w ∈ Γ such that ϕ(w) = w. Then F (h−1(w)) = h−1(w) := W, so W ∈
Fix(G) ∩ Fix(F ), which completes the proof.

(3) ⇒ (1) Now suppose that Fix(G) ∩ Fix(F ) 6= ∅ for every F ∈ CA(I2)
which commutes with G on Fix(G). We are going to prove that Fix(G) is
connected. On the contrary, suppose that Fix(G) is not connected. Let
Fix(G) =

⋃
α∈χ Cα, where Cα is a closed connected component of Fix(G). Let

C :=
⋃

α∈χ Cα. According to Proposition 3.2 we have that πi(Cα)∩πi(Cβ) = ∅
for all α, β ∈ χ, α 6= β, i = 1, 2, and πi(C) =

⋃
α∈χ πi(Cα) for i = 1, 2. Set

Di := πi(C), i = 1, 2. Now we construct two interval maps fi, i = 1, 2,
in the following way. We choose two different connected components Cα0 ,
Cα1 and two points (p1, p2) ∈ Cα0 , (q1, q2) ∈ Cα1 . Define fi(πi(Cα)) =
pi+1(mod2) ∈ πi+1(mod2)(Cα0) for any index α 6= α0, fi(πi(Cα0)) = qi+1(mod2) ∈
πi+1(mod2)(Cα1), and we complete continuously the definition of fi over I \Di,
i = 1, 2. Then we define the Cournot map F (x, y) = (f2(y), f1(x)). In this case,
it is easy to check that F ◦G = G◦F on Fix(G) since F |C : C → C. Moreover,
it is clear that Fix(F ) ∩ Fix(G) = ∅, which contradicts the statement of (3).
Therefore, Fix(G) is connected.

As with Theorem 2.4, in statement (2) of Theorem 6.1 we cannot re-
move the condition “Fix(G) is a singleton”. For instance, consider G(x, y) =
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(y, g(x)), where g is the interval map defined in Example 1 of [17], namely
g(x) = 1 if x ∈ [0, 1

4 ], g(x) = −2x + 3
2 if x ∈ [ 14 , 3

4 ], and g(x) = 0 if x ∈ [ 34 , 1].
In this case, Fix(G) = {( 1

2 , 1
2 )}, but the family {Gn}∞n=1 is not equicontinuous

at the point ( 1
2 , 1

2 ).
We continue with the possible extension of Theorem 2.5 to Cournot maps.

Grinč proved in [14] that for triangular maps, Jachymski’s result remains true
for the equivalence (1) ⇔ (3). However, this is not true for Cournot maps,
since in this situation [(1) ⇔ (2)] ⇒ (3), but in general (3) ⇒ (1) is false.

Theorem 6.2. Let G ∈ CA(I2). Then the following properties are equivalent:

1. Fix(G) = P(G).

2. {Gn}∞n=1 is pointwise convergent on I2.

Proof. (1) ⇒ (2) Suppose P(G) = Fix(G). From Proposition 3.5, 2 /∈ Per(G)
and G has a unique fixed point. Now, by Proposition 3.1

Fix(G) = Fix(g2 ◦ g1)× Fix(g1 ◦ g2).

Since P(G) = P(g2 ◦ g1) × P(g1 ◦ g2), Theorem 2.5 states that the sequences
{(g2 ◦ g1)n}∞n=1 and {(g1 ◦ g2)n}∞n=1 are pointwise convergent on I. By (1)
and (2) this implies that {G2n}∞n=1 and {G2n+1}∞n=1 are also pointwise con-
vergent on I2. We must prove that {Gn}∞n=1 is pointwise convergent; that is,
limn→∞G2n(x, y) = limn→∞G2n+1(x, y) for all (x, y) ∈ I2. Consider

lim
n→∞

G2n(x, y) = ( lim
n→∞

(g2 ◦ g1)n(x), lim
n→∞

(g1 ◦ g2)n(y)) = (u, v).

According to [25], Chapter 4, Th.4.2, u and v are fixed points of g2 ◦ g1

and g1 ◦ g2, respectively. Then, (u, v) is the unique fixed point of G, and by
continuity of G,

lim
n→∞

G2n+1(x, y) = G( lim
n→∞

G2n(x, y)) = G(u, v) = (u, v).

(2) ⇒ (1) Assume that {Gn}∞n=1 is pointwise convergent on I2. Then, from
(1) we have that {(g2 ◦ g1)n}∞n=1 and {(g1 ◦ g2)n}∞n=1 are pointwise convergent
on I; so P(g2 ◦ g1) = Fix(g2 ◦ g1) and P(g1 ◦ g2) = Fix(g1 ◦ g2) since Theorem
2.5 holds. From here we obtain

P(G) = P(g2 ◦ g1)× P(g1 ◦ g2) = Fix(g2 ◦ g1)× Fix(g1 ◦ g2) = Fix(G2).

To finish we have to show that Fix(G2) = Fix(G); that is, G has no peri-
odic points of order two. Let (x, y) ∈ Fix(G2). Then limn→∞G2n+1(x, y) =
limn→∞G2n(x, y) = (x, y). On the other hand, from the continuity of G

lim
n→∞

G2n+1(x, y) = G( lim
n→∞

G2n(x, y)) = G(x, y).
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Hence (x, y) ∈ Fix(G).

Theorem 6.3. Let G ∈ CA(I2). Suppose Fix(G) = P(G). Then G has a
common fixed point with every F ∈ CA(I2) which commutes with G on Fix(F ).

Proof. If Fix(G) = P(G), then G has no periodic points of order two, and
according to Theorem 3.5 this implies

Card(Fix(g2 ◦ g1)) = Card(Fix(g1 ◦ g2)) = 1. (12)

Moreover, by (3) and Proposition 3.1,

P(g2 ◦ g1) =Fix(g2 ◦ g1),
P(g1 ◦ g2) =Fix(g1 ◦ g2).

(13)

So, Fix(G) = Fix(g2 ◦ g1) × Fix(g1 ◦ g2) = {(x0, y0)}. Let F ∈ CA(I2), and
assume that G ◦ F = F ◦ G on Fix(F ). Now, we are going to prove that
Fix(G) ∩ Fix(F ) 6= ∅.

First, we claim that gi ◦ gj and fi ◦ fj commute on Fix(fi ◦ fj), for i, j ∈
{1, 2}, i 6= j. Let z ∈ Fix(f2 ◦ f1). (The case Fix(f1 ◦ f2) is analogous.) Then,
(z, f1(z)) ∈ Fix(F ). By hypothesis, F ◦G = G ◦ F on Fix(F ); so

(f2 ◦ g1)(z) = (g2 ◦ f1)(z) = (f1 ◦ g2)(f1(z)) = (g1 ◦ f2)(f1(z)) = g1(z).

At the same time, since (F ◦G)(z, f1(z)) = G(z, f1(z)), G(z, f1(z)) ∈ Fix(F )
holds, and it is immediate to obtain

Gn(z, f1(z)) ∈ Fix(F ) for all n ≥ 0.

In particular, G2(z, f1(z)) = ((g2 ◦ g1)(z), (g1 ◦ g2)(f1(z))) ∈ Fix(F ). Then,
(g2 ◦ g1)(z) ∈ Fix(f2 ◦ f1), and since z ∈ Fix(f2 ◦ f1), it follows that

(f2 ◦ f1 ◦ g2 ◦ g1)(z) = (g2 ◦ g1)(z) = (g2 ◦ g1 ◦ f2 ◦ f1)(z).

Therefore, f2 ◦ f1 and g2 ◦ g1 commute on Fix(f2 ◦ f1). This proves the claim.
According to (13), and the above claim, Theorem 2.5 states that Fix(fi ◦

fj) ∩ Fix(gi ◦ gj) 6= ∅, for i, j ∈ {1, 2}, i 6= j. Moreover, from (12) and (13)

Fix(g2 ◦ g1) ∩ Fix(f2 ◦ f1) ={x0},
Fix(g1 ◦ g2) ∩ Fix(f1 ◦ f2) ={y0}.

Since {f1(x0), g1(x0)} ⊆ Fix(g1 ◦ g2) ∩ Fix(f1 ◦ f2), we deduce y0 = f1(x0) =
g1(x0), and similarly x0 = f2(y0) = g2(y0). Thus, it is easy to show that
(x0, f1(x0)) ∈ Fix(G) ∩ Fix(F ).
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In order to establish that in general (3) ⇒ (1) of Theorem 2.5 is not true
for the Cournot case, we need the following result. After this, we will show a
counterexample to (3) ⇒ (1).

Lemma 6.4. Let F,G ∈ CA(I2). Suppose F ◦G = G ◦ F on Fix(F ).

1. Gk(x, y) ∈ Fix(F ) for all (x, y) ∈ Fix(F ) and for all k ≥ 0.

2. Fn ◦Gn = Gn ◦ Fn on Fix(F ).

Proof. (1) Let Z = (x, y) ∈ Fix(F ). Then (G ◦ F )(Z) = G(Z). Since F
and G commute on Fix(F ), (G ◦ F )(Z) = G(Z) = (F ◦ G)(Z) = F (G(Z));
so G(Z) ∈ Fix(F ). Reasoning in an inductive way, Gk(x, y) ∈ Fix(F ) for all
k ≥ 0.

(2) It is an immediate consequence of (1).

Example 6.5. Let G(x, y) = (y2, 1 − x2). Then (g1 ◦ g2)(x) = 1 − x4,
(g2◦g1)(x) = (1−x2)2, and it is easy to check that Per(g2◦g1) = Per(g1◦g2) =
{1, 2} and Card(Fix(g2 ◦ g1)) = 1. According to Theorem 3.5, we obtain
Per(G) = {1, 4}, and by Proposition 3.1 Fix(G2) = Fix(G). Moreover,

Fix(g2 ◦ g1) ={xG} = {0.52488859 . . . },
Fix(g1 ◦ g2) ={yG} = {0.72449195 . . . },

and xG and yG are repelling for g2 ◦ g1, g1 ◦ g2, respectively. (Consult Chapter
1 of [25] for the notions of repelling and attracting cycles.) Both of g2 ◦ g1

and g1 ◦ g2 have a unique periodic orbit of order two, {0, 1}, which is an
attracting cycle. By [25], Chapter 4, Th. 4.2, given x 6= xG it follows that
{(g2 ◦ g1)n(x)}∞n=0 → {0, 1}, and given y 6= yG, {(g1 ◦ g2)n(x)}∞n=0 → {0, 1}.
Following with the description of the dynamics of G, we can establish that
Fix(G) = {(xG, yG)}, and G only possesses two periodic orbits of order four;
namely,

O1 ={(0, 0), (0, 1), (1, 1), (1, 0)} =OrbG(0, 0),
O2 ={(0, yG), (xG, 1), (1, yG), (xG, 0)}=OrbG(0, yG).

Given (x, y) ∈ IxG
∪ ĨyG

:= ({xG} × I) ∪ (I × {yG}), (x, y) 6= (xG, yG), it is
simple to prove that

{Gn(x, y)}∞n=0 → OrbG(0, yG). (14)

Given (x, y) ∈ I2 \ (IxG
∪ ĨyG

), now

{Gn(x, y)}∞n=0 → OrbG(0, 0). (15)
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Next, assume that F ∈ CA(I2) which implies F ◦ G = G ◦ F on Fix(F ). We
wish to prove that F and G share a fixed point, in fact (xG, yG) ∈ Fix(F ).
However, P(G) ⊃ Fix(G).

If (xG, yG) ∈ Fix(F ), the proof is complete. If (xG, yG) /∈ Fix(F ), we will
obtain a contradiction. Let (a, b) ∈ Fix(F ). (We know that Fix(F ) 6= ∅.)
Suppose (a, b) 6= (xG, yG). Since F ◦G = G ◦F on Fix(F ), Lemma 6.4 implies
Gn(a, b) ∈ Fix(F ), for all n ≥ 0. Since Fix(F ) is obviously a closed set,
according to (14) and (15), either OrbG(0, yG) ⊂ Fix(F ), or OrbG(0, 0) ⊂
Fix(F ). In both cases, we obtain a contradiction to the result of Proposition
3.2. Therefore, the unique fixed point of F is (xG, yG) and Fix(F )∩Fix(G) 6= ∅.

Now we continue with the extension of Theorem 2.6. The first observation
is concerned with uniform convergence.

Proposition 6.6. Let G ∈ CA(I2). Suppose that Fix(G) is not a singleton.
Then the sequence {Gn : n ∈ N} is not uniformly convergent on I2.

Proof. Suppose that {Gn : n ∈ N} would be uniformly convergent on I2.
In particular, {Gn : n ∈ N} would be pointwise convergent on I2. From
Theorem 6.2, it follows that Fix(G) = P(G) = Fix(G2). Finally, according to
Proposition 3.1 we obtain Card(Fix(G)) = 1, a contradiction.

Hence, in the extension of Theorem 2.6 to the Cournot case, we must omit
condition (2).

Theorem 6.7. Let G ∈ CA(I2). Suppose that Fix(G) is not a singleton. If
{Gn : n ∈ N} is equicontinuous on I2, then Fix(G2) = P(G) % Fix(G).

Proof. Assume {Gn}∞n=1 is equicontinuous on I2. According to Theorem 4.1,
Fix(G) is connected, and Fix(G2) = P(G) since Fix(G) is nondegenerate.

The converse result is false. To prove this consider the following example.

Example 6.8. Let G(x, y) = (y, g(x)), where g(x) = 2x2 if x ∈ [0, 1
2 ], and

g(x) = x if x ∈ [ 12 , 1]. It is easy to see that Fix(G) is not a singleton, and
Fix(G2) = P(G). Moreover, Fix(G) ⊂ P(G). However, {Gn}∞n=1 is not equicon-
tinuous at ( 1

2 , 1
2 ) since {gn}∞n=1 is not equicontinuous at 1

2 . (If {gn}∞n=1 were
equicontinuous at 1

2 , the pointwise convergence to the map g̃ : I → I, given by
g̃(x) = 0 if x ∈ [0, 1

2 ), g̃(x) = x if x ∈ [ 12 , 1], would imply that g̃ is continuous
at 1

2 , impossible.) Observe that Fix(G) is not connected.

In order to obtain a converse result for the above result, we must suppose
that Fix(G) is a connected set.
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Proposition 6.9. Let G ∈ CA(I2). Suppose that Fix(G) is not a singleton.
The following properties are equivalent.

1. {Gn}∞n=1 is equicontinuous on I2.

2. Fix(G2) = P(G) and Fix(G) is connected.

Proof. Theorems 4.1 and 6.7 show (1) ⇒ (2). It remains to prove (2) ⇒ (1).
If Fix(G) is connected, from Proposition 3.2 we obtain that Fix(gi ◦ gj) is
an interval, for i, j ∈ {1, 2}, i 6= j. According to Theorem 2.4, the families
{(gi ◦ gj)n}∞n=1 are equicontinuous on Fix(gi ◦ gj), for i, j ∈ {1, 2}, i 6= j. Since
Fix(G2) = P(G), it follows that Fix(gi◦gj) = P(gi◦gj) (see (3) and Proposition
3.1). By Theorem 2.5, this implies that the sequences {(gi ◦ gj)n}∞n=1 are
pointwise convergent. Moreover, given x ∈ I there is p(x) ∈ Fix(gi ◦ gj) such
that limn→∞(gi ◦ gj)n(x) = p(x) ([25],Chapter 4, Th.4.2).

First, we claim that {(g2 ◦g1)n}∞n=1 is equicontinuous at x ∈ I. (The proof
is completely analogous for {(g1 ◦ g2)n}∞n=1.) Assume Fix(g2 ◦ g1) = [a, b],
a < b. Let x ∈ I, and p = p(x) as above. Suppose p ∈ (a, b). Then there
exists m0 = m0(x) ∈ N such that (g2 ◦ g1)m0(x) = p. (Notice that (a, b) ⊂
Fix(g2 ◦ g1).) On other hand, given ε > 0, there is δ > 0 such that∣∣(g2 ◦ g1)i(x)− (g2 ◦ g1)i(z)

∣∣ < min{ε, |p− a| , |p− b|},

for i = 1, . . . ,m0, whenever |x− z| < δ. In this case,∣∣(g2 ◦ g1)j(x)− (g2 ◦ g1)j(z)
∣∣ = |p(x)− p(z)| < ε,

for all j ≥ m0, and this completes the proof of the equicontinuity for x ∈ I if
p(x) ∈ (a, b).

Now, suppose that p = p(x) ∈ {a, b}. Without loss of generality we can
assume that p = a. If a = 0, we proceed as in the case p ∈ (a, b). Hence,
assume a > 0. Since {(g2 ◦ g1)n}∞n=1 is equicontinuous at a ∈ Fix(g2 ◦ g1) (see
Theorem 2.4), for ε > 0 there is δ > 0, δ < 2ε, such that |w − a| < δ implies
|(g2 ◦ g1)n(w)− a| < ε

2 for all n ≥ 1. For this δ > 0, since a = p(x), there
exists m1 ∈ N with |(g2 ◦ g1)n(x)− a| < δ

2 < δ for n ≥ m1. Now, for δ
2 there

is δ1 such that |x− z| < δ1 implies
∣∣(g2 ◦ g1)i(x)− (g2 ◦ g1)i(z)

∣∣ < δ
2 < ε for

i = 1, . . . ,m1. Notice that for i = m1,

|(g2 ◦ g1)m1(z)− a| < |(g2 ◦ g1)m1(z)− (g2 ◦ g1)m1(x)|

+ |(g2 ◦ g1)m1(x)− a| < δ

2
+

δ

2
= δ.
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This leads to

|(g2 ◦ g1)n((g2 ◦ g1)m1(z))− a| < ε

2
, for all n ≥ 1.

On the other hand, |(g2 ◦ g1)m1(x)− a| < δ
2 < δ implies

|(g2 ◦ g1)n((g2 ◦ g1)m1(x))− a| < ε

2
, for all n ≥ 1.

Finally, if |x− z| < δ1, for k ≥ m1 + 1, we find∣∣(g2 ◦ g1)k(x)− (g2 ◦ g1)k(z)
∣∣ ≤ ∣∣(g2 ◦ g1)k−m1((g2 ◦ g1)m1(x))− a

∣∣
+

∣∣(g2 ◦ g1)k−m1((g2 ◦ g1)m1(z))− a
∣∣ <

ε

2
+

ε

2
= ε.

Therefore, we have proved for any x ∈ I that {(g2 ◦g1)n}∞n=1 is equicontinuous
at x; so is equicontinuous on I. This completes the claim.

Observe that the compactness of I and the continuity of (g2 ◦ g1) im-
ply that the family {(g2 ◦ g1)n}∞n=1 is uniformly equicontinuous on I. Since
{(gi ◦ gj)n}∞n=1 are equicontinuous for i, j ∈ {1, 2}, i 6= j, from (1) we obtain
that {G2n}∞n=1 is also equicontinuous on I2. Moreover, as an immediate con-
sequence of the continuity of G, the family {G2n+1}∞n=1 is also equicontinuous.
Since the finite union of equicontinuous families is equicontinuous, we conclude
that {Gm}∞m=1 is equicontinuous on I2.

Suppose that Fix(G) is connected, with Card(Fix(G)) > 1 and P(G) =
Fix(G2), for G ∈ CA(I2). According to the above result, the sequence {Gn}∞n=1

is equicontinuous, and the iterates {(gi ◦ gj)n}∞n=1 are pointwise convergent
([25], Chapter 4, Theorem 2). However, {Gn}∞n=1 is not pointwise convergent,
since in the contrary case, for any (p, g1(q)) ∈ I2, where p, q ∈ Fix(g2 ◦ g1),
p 6= q, we would obtain (observe that G2(p, g1(q)) = (p, g1(q)))

(p, g1(q)) = lim
n→∞

G2n(p, g1(q)) = lim
n→∞

G2n+1(p, g1(q)) = G(p, g1(q));

so G(p, g1(p)) = (p, g1(q)), but this is not possible since p 6= q. If Card(Fix(G))
= 1 and P(G) = Fix(G2) = Fix(G), then {Gn}∞n=1 is also uniformly conver-
gent.

Proposition 6.10. Let G ∈ CA(I2). Suppose Card(Fix(G)) = 1. The follow-
ing conditions are equivalent.

1. Fix(G) = P(G).

2. {Gn}∞n=1 is pointwise convergent on I2.
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3. {Gn}∞n=1 is uniformly convergent on I2.

Proof. (1) ⇔ (2) See Theorem 6.2.
(3) ⇒ (2) It is immediate.
(1) ⇒ (3) Suppose that Fix(G) = P(G); so {Gn}∞n=1 is pointwise convergent
on I2 to the constant map G̃(x, y) = (a, b), where a and b are the unique fixed
points of g2 ◦ g1 and g1 ◦ g2, respectively. (We use Proposition 3.1, (3), and
[25], Chapter 4, Th.4.2.) Given ε > 0, since a is an attracting fixed point
of g2 ◦ g1, there exists an open neighborhood U ⊆ (a − ε, a + ε) such that
(g2 ◦ g1)n(x) ∈ U for all x ∈ U, and for all n ∈ N. Now for m ∈ N, we put

Um = {x ∈ I : (g2 ◦ g1)m(x) ∈ U}.

Obviously, by continuity of (g2 ◦ g1)m, each Um is an open set of I, and⋃
m Um ⊇ I. Moreover, Um ⊆ Um+1 for all m ∈ N. Since I is compact, there

is a finite recovering of I. This means that there exists mk ∈ N such that
I ⊆ Umk

. Hence |(g2 ◦ g1)mk(x)− a| < ε for all x ∈ I. This yields

|(g2 ◦ g1)n(x)− a| < ε for all n ≥ mk and for all x ∈ I.

Therefore, {(g2◦g1)m}∞m=1 is uniformly convergent to the constant map g(x) =
a. Similarly, it can be proved that {(g1 ◦ g2)m}∞m=1 is uniformly convergent
to the constant map f(x) = b. By (1) we deduce that {G2n}∞n=1 is uniformly
convergent to G̃(x, y) = (a, b), and by the continuity of G, also {G2n+1}∞n=1 is
uniformly convergent to the same map since {(a, b)} = Fix(G).

Notice that in the last result, all of three equivalent conditions imply that
{Gn}∞n=1 is an equicontinuous family on I2. In general the converse result is
not true. For instance, consider the Cournot map G(x, y) = (y, 1 − x). It is
clear that Card(Fix(G)) = 1, and that {Gn}∞n=1 is an equicontinuous family
on I2 since {Gn}∞n=1 = {G1, G2, G3, G4}, where G1 = G and

G2(x, y) = (1− x, 1− y), G3(x, y) = (1− y, x), G4(x, y) = (x, y).

However, Fix(G) 6= P(G) since the point (0, 0) has period four, and the family
{Gn}∞n=1 is neither uniformly convergent nor pointwise convergent.

Proposition 6.11. Let G ∈ CA(I2). Suppose Card(Fix(G)) = 1. If Fix(G) =
P(G), then G has a common fixed point with every F ∈ CA(I2) that commutes
with G either on Fix(F ), or on Fix(G).

Proof. It is a consequence of Theorems 6.3 and 6.1.
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The converse result is false. To see this, consider the Cournot map of
Example 6.5, G(x, y) = (y2, 1 − x2). Then P(G) % Fix(G2) = Fix(G) =
{(xG, yG)} = {XG}, with Per(G) = {1, 4}. It was proved that G has a common
fixed point with every F ∈ CA(I2) that commutes with G on Fix(F ). The same
situation holds if F commutes with G on Fix(G) = {XG}. If (F ◦ G)(XG) =
(G◦F )(XG), then F (XG) = G(F (XG)), and since XG is the unique fixed point
of G, this implies that F (XG) = XG; so XG ∈ Fix(G) ∩ Fix(F ). However,
Fix(G) 6= P(G).

We now return to the extension of Theorem 2.6, concerning the case in
which Fix(G) is not a singleton.

Theorem 6.12. Let G ∈ CA(I2). Suppose that Fix(G) is not a singleton, and
Fix(G2) = P(G). Then {Gn : n ∈ N} is equicontinuous on I2 if and only if
Fix(G) ∩ Fix(F ) 6= ∅ for every F ∈ CA(I2) that commutes with G on Fix(G).

Proof. Suppose that {Gn : n ∈ N} is equicontinuous on I2. In particular, the
family is equicontinuous on Fix(G), and by Theorem 6.1 we obtain the second
part of the statement. Suppose that Fix(G)∩Fix(F ) 6= ∅ for every F ∈ CA(I2)
that commutes with G on Fix(G). From Theorem 6.1 and Proposition 6.9 we
obtain that {Gn : n ∈ N} is equicontinuous on I2.

7 Extension of Theorem 2.7. Connection between
Jungck’s Theorem and a Jachymski’s Result

We can translate only partially the equivalent conditions of Theorem 2.7 to
the Cournot case.

Theorem 7.1. Let G ∈ CA(I2).

(a) The following conditions are equivalent:

1. P(G) = Fix(G).

2. C ∩Fix(G) 6= ∅ for any non-empty closed set C ⊆ I2 such that G(C) ⊆
C.

3. G has a common fixed point with every continuous map F : I2 → I2

that commutes with G on Fix(F ).

(b) The equivalent conditions of (a) imply that G has a common fixed point
with every F ∈ CA(I2) that commutes with G on Fix(F ).

(c) The equivalent conditions of (a) imply that G has a common fixed point
with every F ∈ CA(I2) which is nontrivially compatible with G.
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Proof. (a) (2) ⇔ (3) The equivalence holds according to Proposition 1 of
[17].

(1) ⇒ (2) Suppose P(G) = Fix(G). Let C 6= ∅ a closed set of I2 such
that G(C) ⊆ C. We wish to prove that C ∩ Fix(G) 6= ∅. Since G2(C) ⊆
G(C) ⊆ C, and G2 is a triangular map, from Corollary 3.1 of [14] we obtain
C ∩ Fix(G2) 6= ∅. Finally, from Fix(G) = P(G) it follows that Fix(G2) =
Fix(G), so C ∩ Fix(G) 6= ∅.

(2) ⇒ (1) Suppose that (2) holds. First, we will prove that G has only
fixed points. Let P a periodic orbit of order k > 1 of G. Then G(P ) ⊆ P, P
is closed and non-empty. By hypothesis, P ∩ Fix(G) 6= ∅, but this contradicts
that P is a periodic orbit of order k > 1. Hence, G has only fixed points.
Moreover, Card(Fix(F )) = 1, since if G has at least two different fixed points
according to Theorem 3.5 we find periodic points of order two. Therefore,
Fix(G) = P(G).

To prove (b) and (c) see Theorems 6.3 and 5.1, respectively.

Notice that the converse results of (b) and (c) are not true (consult Example
6.5 and Example 5.2).

To finish the extension of Theorem 2.7, we must determine if there is some
relation in the Cournot case between Jachymski’s Theorem 2.5 (the relation
(1) ⇔ (3)) and Jungck’s Theorem. The answer is negative, as the following
examples show.

Example 7.2. Let G(x, y) = (1−y, 1−x). According to Example 5.2, this map
satisfies Jungck’s Theorem; that is, Fix(F ) ∩ Fix(G) 6= ∅ for any F ∈ CA(I2)
nontrivially compatible with G. However, we are going to prove that G does
not satisfy Jachymski’s result; namely, there exists F ∈ CA(I2) such that
F ◦G = G ◦ F on Fix(F ) but Fix(F ) ∩ Fix(G) = ∅.
For this purpose, consider F (x, y) = (f2(y), f1(x)), where

f1(x) =


1
4 if x ∈ [0, 1

2 ]
−4x2 + 6x− 7

4 if x ∈ [ 12 , 3
4 ]

1
2 if x ∈ [ 34 , 1]

and

f2(x) =


1
2 if x ∈ [0, 1

4 ]
x + 1

4 if x ∈ [ 14 , 1
2 ]

3
4 if x ∈ [ 12 , 1].
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It is straightforward to see that

(f2 ◦ f1)(x) =


1
2 if x ∈ [0, 1

2 ]
−4x2 + 6x− 3

2 if x ∈ [ 12 , 3
4 ]

3
4 if x ∈ [ 34 , 1]

and Fix(f2 ◦f1) = { 1
2 , 3

4}. By Proposition 3.2, Fix(F ) = {( 1
2 , 1

4 ), ( 3
4 , 1

2 )}. Since
Fix(G) = {(x, 1 − x) : x ∈ I}, it is clear that Fix(F ) ∩ Fix(G) = ∅. However,
F and G commute on Fix(F ) :

F (G(
1
2
,
1
4
)) =F (

3
4
,
1
2
) = (

3
4
,
1
2
) = G(

1
2
,
1
4
) = G(F (

1
2
,
1
4
)),

F (G(
3
4
,
1
2
)) =F (

1
2
,
1
4
) = (

1
2
,
1
4
) = G(

3
4
,
1
2
) = G(F (

3
4
,
1
2
)).

Example 7.3. Consider now G(x, y) = (y2, 1 − x2). By Example 6.5, we
know that Fix(G) ∩ Fix(F ) 6= ∅ for any F ∈ CA(I2) which commutes with
G on Fix(F). (G satisfies Jachymski’s Theorem 2.5.) However, we will show
that it does not verify Jungck’s Theorem; that is, we will prove that there is
F ∈ CA(I2) nontrivially compatible with G such that Fix(F ) ∩ Fix(G) = ∅.
Define F (x, y) = (f2(y), f1(x)) = (y, 1

x+1 −
x
2 ). A direct computation gives

Coin(F,G) = {(0, 0), (0, 1), (1, 0), (1, 1)}. The maps F and G are nontrivially
compatible,

G(F (0, 0)) =G(0, 1) = (1, 1) = F (0, 1) = F (G(0, 0)),
G(F (0, 1)) =G(1, 1) = (1, 0) = F (1, 1) = F (G(0, 1)),
G(F (1, 0)) =G(0, 0) = (0, 1) = F (0, 0) = F (G(1, 0)),
G(F (1, 1)) =G(1, 0) = (0, 0) = F (1, 0) = F (G(1, 1)).

However, Fix(F ) ∩ Fix(G) = ∅.
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