A. Linero, Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain. e-mail: lineroba@um.es

COMMON FIXED POINTS FOR COMMUTING COURNOT MAPS

Abstract

We study some conditions to guarantee the existence of common fixed points of two commuting Cournot maps $F(x, y)=\left(f_{2}(y), f_{1}(x)\right)$, $G(x, y)=\left(g_{2}(y), g_{1}(x)\right)$, defined from $I^{2}=[0,1]^{2}$ into itself. In particular, we prove that Jungck's Theorem and Jachymski's equivalent conditions can be only partially proved in this setting.

1 Introduction

In the fifties the problem of proving whether two commuting continuous interval maps share fixed points was posed independently by E. Dyer, A. Shields and L. Dubins. This problem has a positive solution in the case of polynomials, as J. F. Ritt pointed out in the 1920's (see [22]). Moreover, this problem has a positive answer in particular cases, under restrictive conditions (for instance, see [12], [13], [26], [9], [8], [23]). Finally, it is known that Boyce ([4]) and Huneke ([16]) found simultaneously counterexamples which show that in general the answer is negative.

Since then the results in this subject were focused on the following directions. First, instead of two commuting functions, a family of commuting functions was considered ([5], [20], [6]). Second, the problem was extended to other compact metric spaces and to particular classes of continuous maps ([18], [19], [17], [14], [15]). Third, the problem has been also posed in terms of sharing periodic points which are not necessarily fixed points (see [1], [2], [27]).

[^0]Now we investigate whether the results on common fixed points of commuting functions work for a special class of two-dimensional continuous maps, Cournot maps, whose form is $F(x, y)=(g(y), f(x))$. This class of maps models the Cournot duopoly ([10]), an economical process in which two competitive firms produce an identical commodity, and their profits are given in terms of the levels of production of the rival firm in the last step. (See [11] and [21] for a detailed explanation of the model.)

The paper is organized as follows. In Section 2 we present known results on shared fixed points for commuting interval maps and triangular maps, which we will try to extend to the Cournot case. In Section 3 we introduce definitions and notation used throughout the paper. Moreover, we give basic properties on fixed points for (commuting) Cournot maps, and connect these maps with the compositions of their coordinate maps. In the next sections we state our main results on common fixed points for Cournot maps defined on the unit square.

2 Preliminaries. Results on Common Fixed Points

The space of continuous maps from a compact metric space X into itself is denoted by $C(X, X)$. Let $f \in C(X, X)$. We define the n-th iterate of f by $f^{n}=f \circ f^{n-1}, n \geq 1, f^{0}=$ Identity. The orbit of $x \in X$ is the set $\left\{f^{n}(x)\right\}_{n=0}^{\infty}$. We say that $x \in X$ is a periodic point of f whenever $f^{n}(x)=x$ for some nonnegative integer n. The smallest of these values n is called the order or period of the periodic point. If $f(x)=x$, then x is a fixed point. $\operatorname{Per}(f), \mathrm{P}(f)$ and $\operatorname{Fix}(f)$ denote the sets of periods, periodic points and fixed points of f, respectively.

If $f \in C(I, I)$, with $I=[0,1]$, we say that f is an interval map. A map $G \in C\left(I^{n}, I^{n}\right)$ is called a triangular map if it has the form

$$
G\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{1}, x_{2}\right), \ldots, g_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

The set of triangular maps will be denoted by $C_{\Delta}\left(I^{n}, I^{n}\right)$.
In this section we recall well known results on common fixed points for commuting interval maps and commuting triangular maps. We also present several properties relating equicontinuity, pointwise convergence and uniform convergence with the set of periodic points of these maps.

We start with the following property on equicontinuous families of interval maps. Recall that $\left\{f_{\alpha}\right\}_{\alpha \in A} \subset C(X, X)$ is equicontinuous at $x \in X$ if for all $\varepsilon>0$ there exists $\delta>0$ such that $\rho\left(f_{\alpha}(x), f_{\alpha}(y)\right)<\varepsilon$ for all $\alpha \in A$ and for any $y \in X$ with $\rho(x, y)<\delta$. (Here ρ denote the metric of X.) The family is called equicontinuous if it is equicontinuous at $x \in X$, for all $x \in X$.

We say that $\operatorname{Fix}(f)$ is nondegenerate if it is not a singleton.
Theorem 2.1. ([6], Theorem 2) Let $f \in C(I, I)$. Suppose that $\left\{f^{n}\right\}_{n=1}^{\infty}$ is equicontinuous. Then,

1. $f \in \mathcal{A}=\left\{g \in C(I, I): \operatorname{Fix}(g)=\left[a_{g}, b_{g}\right], a_{g} \leq b_{g}\right\}$.
2. If $\operatorname{Fix}(f)$ is nondegenerate, $f \in \mathcal{B}=\{g \in C(I, I): \operatorname{Fix}(g)=\mathrm{P}(g)\}$.

In [14] a version of a result of Cano (see [6],Theorem 1) for two commuting triangular maps was proved.
Theorem 2.2. ([14], Theorem 2.3)Assume that $F, G \in C_{\Delta}\left(I^{2}, I^{2}\right)$ commute. If either

1. $\operatorname{Per}(G)=\operatorname{Fix}(G)$, or
2. $\pi_{1}(\operatorname{Fix}(G))$ is an interval and $\operatorname{Fix}\left(g_{2}(x, \cdot)\right)$ is an interval for every $x \in$ $\pi_{1}(\operatorname{Fix}(G))$, where π_{1} denote the canonical projection given by $\pi_{1}(x, y)=x$,
then $\operatorname{Fix}(F) \cap \operatorname{Fix}(G) \neq \emptyset$.
Following the notation of [15], for $f, g \in C(X, X)$ we put

$$
\operatorname{Coin}(f, g)=\{x \in X: f(x)=g(x)\} .
$$

If $\operatorname{Coin}(f, g) \neq \emptyset$ and f, g commute on $\operatorname{Coin}(f, g)$, then we say that f and g are nontrivially compatible ([19]). If $X=I$, then the following result holds (Jungck's Theorem).
Theorem 2.3. ([19], Theorem 3.6) A map $g \in C(I, I)$ has a common fixed point with every map $f \in C(I, I)$ which is nontrivially compatible with g if and only if $\mathrm{P}(g)=\operatorname{Fix}(g)$.

We consider now the results given by Jachymski in [17] on equivalent conditions to guarantee the existence of common fixed points for interval maps.

Theorem 2.4. ([17], Theorem 1) Let g be a continuous self-map of I. The following conditions are equivalent:

1. $\operatorname{Fix}(g)$ is a closed interval.
2. The family $\left\{g^{n}: n \in \mathbb{N}\right\}$ is equicontinuous on $\operatorname{Fix}(g)$, or $\operatorname{Fix}(g)$ is a singleton.
3. g has a common fixed point with every continuous map $f: I \rightarrow I$ that commutes with g on $\operatorname{Fix}(g)$.

Theorem 2.5. ([17], Theorem 2) Let $g: I \rightarrow I$ be continuous. Then the following conditions are equivalent:

1. $\operatorname{Fix}(g)=\mathrm{P}(g)$.
2. The sequence $\left\{g^{n}\right\}_{n=1}^{\infty}$ is pointwise convergent on I.
3. g has a common fixed point with every continuous map $f: I \rightarrow I$ that commutes with g on $\operatorname{Fix}(f)$.

Theorem 2.6. ([17], Theorem 3) Let $g \in C(I, I)$. Suppose that $\operatorname{Fix}(g)$ is not a singleton. Then, the following conditions are equivalent:

1. The family of iterates $\left\{g^{n}: n \in \mathbb{N}\right\}$ is equicontinuous on I.
2. The sequence $\left\{g^{n}\right\}_{n=1}^{\infty}$ is uniformly convergent on I.
3. g has a common fixed point with every continuous map $f: I \rightarrow I$ that commutes with g either on $\operatorname{Fix}(f)$, or on $\operatorname{Fix}(g)$.

Finally, we introduce Corollary 2.8 of [15]. Notice that it states that in the triangular case Jungck's Theorem is equivalent to condition (3) of Theorem 2.5.

Theorem 2.7. ([15], Corollary 2.8) Let $G \in C_{\Delta}\left(I^{n}, I^{n}\right)$. Then the following conditions are equivalent:

1. $\mathrm{P}(G)=\operatorname{Fix}(G)$.
2. $C \cap \operatorname{Fix}(G) \neq \emptyset$ for any nonempty closed set $C \subseteq I^{n}$ such that $G(C) \subseteq C$.
3. G has a common fixed point with every $F \in C_{\Delta}\left(I^{n}, I^{n}\right)$ that commutes with G on $\operatorname{Fix}(F)$.
4. G has a common fixed point with every map $F \in C\left(I^{n}, I^{n}\right)$ that commutes with G on $\operatorname{Fix}(F)$.
5. G has a common fixed point with every triangular map F which is nontrivially compatible with G.

3 Basic Properties of Cournot Maps

Given two compact metric spaces X, Y, we say that $F: X \times Y \rightarrow X \times Y$ is a Cournot map if $F(x, y)=\left(f_{2}(y), f_{1}(x)\right)$, where $f_{1}: X \rightarrow Y$ and $f_{2}: Y \rightarrow X$ are continuous. It is easy to check that for every $n \geq 0$

$$
\begin{equation*}
F^{2 n}(x, y)=\left(\left(f_{2} \circ f_{1}\right)^{n}(x),\left(f_{1} \circ f_{2}\right)^{n}(y)\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F^{2 n+1}(x, y)=\left(\left(f_{2} \circ f_{1}\right)^{n}\left(f_{2}(y)\right),\left(f_{1} \circ f_{2}\right)^{n}\left(f_{1}(x)\right)\right) \tag{2}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\mathrm{P}(F)=\mathrm{P}\left(f_{2} \circ f_{1}\right) \times \mathrm{P}\left(f_{1} \circ f_{2}\right)(\text { see }[7]) \tag{3}
\end{equation*}
$$

We use $C_{A}(X \times Y)$ to denote the set of Cournot maps from $X \times Y$ into itself. From now on, we denote Cournot maps with capital letters, and their coordinates with the corresponding indexed small letter (for example $G(x, y)=$ $\left.\left(g_{2}(y), g_{1}(x)\right)\right)$. We use π_{1}, π_{2} to denote the canonical projections from $X \times Y$ onto X, and from $X \times Y$ onto Y, respectively.

Suppose that $F, G \in C_{A}(X \times Y)$ and $F \circ G=G \circ F$. For $i, j \in\{1,2\}, i \neq j$, it follows that

$$
\begin{equation*}
f_{j} \circ g_{i}=g_{j} \circ f_{i} \tag{4}
\end{equation*}
$$

Moreover,

$$
\begin{gather*}
f_{i} \circ f_{j} \text { and } g_{i} \circ g_{j} \text { commute, } \tag{5}\\
f_{i} \circ f_{j} \circ g_{i} \circ g_{j}=\left(f_{i} \circ g_{j}\right)^{2}
\end{gather*}
$$

and

$$
\begin{equation*}
g_{j} \circ f_{i} \text { commutes with } g_{j} \circ g_{i} \text { and } f_{j} \circ f_{i}, \text { for } i, j \in\{1,2\}, i \neq j \tag{6}
\end{equation*}
$$

Let $F, G \in C_{A}(X \times Y)$. Then

$$
\begin{gather*}
\left(x_{1}, x_{2}\right) \in \operatorname{Fix}(F) \cap \operatorname{Fix}(G) \text { iff } x_{i}=f_{j}\left(x_{j}\right)=g_{j}\left(x_{j}\right), i, j \in\{1,2\}, i \neq j, \\
\left(x_{1}, x_{2}\right) \in \operatorname{Fix}(F) \cap \operatorname{Fix}(G) \text { gives } x_{j} \in \operatorname{Fix}\left(f_{j} \circ f_{i}\right) \cap \operatorname{Fix}\left(g_{j} \circ g_{i}\right), i \neq j \tag{7}
\end{gather*}
$$

Concerning the set of fixed points of a Cournot map F, notice that if $x_{i} \in \operatorname{Fix}\left(f_{j} \circ f_{i}\right)$, then $f_{i}\left(x_{i}\right) \in \operatorname{Fix}\left(f_{i} \circ f_{j}\right)$, for all $i, j \in\{1,2\}, i \neq j$, and $\left\{\left(x_{1}, f_{1}\left(x_{1}\right)\right),\left(f_{2}\left(x_{2}\right), x_{2}\right)\right\} \subset \operatorname{Fix}(F)$. Moreover, if x_{2}, y_{2} are two different fixed points of $f_{1} \circ f_{2}$, then $\left(f_{2}\left(y_{2}\right), x_{2}\right)$ is a periodic point of order two for F (similar conclusions hold for two different fixed points of $f_{2} \circ f_{1}$). With the above observations, it is easy to obtain the following.

Proposition 3.1. Given $F \in C_{A}(X \times Y)$, the following hold:

1. $\operatorname{Fix}(F) \varsubsetneqq \operatorname{Fix}\left(f_{2} \circ f_{1}\right) \times \operatorname{Fix}\left(f_{1} \circ f_{2}\right)$, if $\operatorname{Card}\left(\operatorname{Fix}\left(f_{1} \circ f_{2}\right)\right) \geq 2$.
2. $\operatorname{Fix}(F)=\operatorname{Fix}\left(f_{2} \circ f_{1}\right) \times \operatorname{Fix}\left(f_{1} \circ f_{2}\right)$, if $\operatorname{Card}\left(\operatorname{Fix}\left(f_{1} \circ f_{2}\right)\right)=1$.
3. $\operatorname{Fix}\left(F^{2}\right)=\operatorname{Fix}\left(f_{2} \circ f_{1}\right) \times \operatorname{Fix}\left(f_{1} \circ f_{2}\right)$.

We can add the following results on the set of fixed points. All of them are immediate.

Proposition 3.2. Let $F \in C_{A}(X \times Y)$.

1. Let $\left(x_{0}, y_{0}\right) \in \operatorname{Fix}(F)$. Then,

$$
\operatorname{Card}\left(\operatorname{Fix}(F) \cap\left(\left\{x_{0}\right\} \times Y\right)\right)=\operatorname{Card}\left(\operatorname{Fix}(F) \cap\left(X \times\left\{y_{0}\right\}\right)\right)=1
$$

2. $\operatorname{Fix}(F)=\left\{\left(x, f_{1}(x)\right): x \in \operatorname{Fix}\left(f_{2} \circ f_{1}\right)\right\}=\left\{\left(f_{2}(y), y\right): y \in \operatorname{Fix}\left(f_{1} \circ f_{2}\right)\right\}$.
3. $\operatorname{Card}(\operatorname{Fix}(F))=\operatorname{Card}\left(\operatorname{Fix}\left(f_{2} \circ f_{1}\right)\right)=\operatorname{Card}\left(\operatorname{Fix}\left(f_{1} \circ f_{2}\right)\right)$.
4. For $i, j \in\{1,2\}, i \neq j, \pi_{i}(\operatorname{Fix}(F))=\operatorname{Fix}\left(f_{j} \circ f_{i}\right)$, and $f_{i}\left(\pi_{i}(\operatorname{Fix}(F))\right)=$ $\pi_{j}(\operatorname{Fix}(F))$.

Proposition 3.3. Let $F, G \in C_{A}(X \times Y)$ be such that $F \circ G=G \circ F$. For $i, j \in\{1,2\}, i \neq j$, we put

$$
A_{i}=\operatorname{Fix}\left(f_{j} \circ f_{i}\right) \cap \operatorname{Fix}\left(g_{j} \circ g_{i}\right)
$$

1. The applications $g_{i}: A_{i} \rightarrow A_{j}, f_{i}: A_{i} \rightarrow A_{j}$ are bijective.
2. The applications $h_{j i}: A_{i} \rightarrow A_{i}$ are bijective, where $h_{j i}$ denotes one of the following maps: $f_{j} \circ g_{i}, f_{j} \circ f_{i}, g_{j} \circ g_{i}$.
3. The equality $\left.\left(f_{j} \circ g_{i}\right)^{2}\right|_{A_{i}}=\left.\left(g_{j} \circ f_{i}\right)^{2}\right|_{A_{i}}=$ Identity $\left.\right|_{A_{i}}$ holds.

Notice that there exists commuting Cournot maps on I^{2} without sharing fixed points.

Proposition 3.4. There exist $G_{1}, G_{2} \in C_{A}\left(I^{2}\right)$ such that $G_{1} \circ G_{2}=G_{2} \circ G_{1}$ and $\operatorname{Fix}\left(G_{1}\right) \cap \operatorname{Fix}\left(G_{2}\right)=\emptyset$.

Proof. We consider interval maps f_{1}, f_{2} with $f_{1} \circ f_{2}=f_{2} \circ f_{1}$ and $\operatorname{Fix}\left(f_{1}\right) \cap$ $\operatorname{Fix}\left(f_{2}\right)=\emptyset$. (According to [4] or [16], these exist.) Notice that $f_{2} \circ f_{1} \circ f_{1}=$ $f_{1} \circ f_{2} \circ f_{1}$ and $f_{2} \circ f_{2} \circ f_{1} \circ f_{1}=f_{2} \circ f_{1} \circ f_{2} \circ f_{1}$. We define $G_{1}, G_{2} \in C_{A}\left(I^{2}\right)$ as

$$
G_{1}(x, y)=\left(f_{1}(y), x\right), G_{2}(x, y)=\left(\left(f_{2} \circ f_{1} \circ f_{1}\right)(y),\left(f_{2} \circ f_{1}\right)(x)\right)
$$

It is straightforward to see that

$$
\left(G_{2} \circ G_{1}\right)(x, y)=\left(\left(f_{2} \circ f_{1} \circ f_{1}\right)(x),\left(f_{2} \circ f_{1} \circ f_{1}\right)(y)\right)
$$

and

$$
\left(G_{1} \circ G_{2}\right)(x, y)=\left(\left(f_{1} \circ f_{2} \circ f_{1}\right)(x),\left(f_{2} \circ f_{1} \circ f_{1}\right)(y)\right)
$$

so G_{1} and G_{2} commute. Let $(x, y) \in \operatorname{Fix}\left(G_{1}\right) \cap \operatorname{Fix}\left(G_{2}\right)$. Since $(x, y) \in \operatorname{Fix}\left(G_{1}\right)$, we have $x=f_{1}(y), y=x$. Hence $x \in \operatorname{Fix}\left(f_{1}\right)$. On the other hand, $G_{2}(x, y)=$ (x, y) implies $x=\left(f_{2} \circ f_{1} \circ f_{1}\right)(y), x=y=\left(f_{2} \circ f_{1}\right)(x)$. From this, we obtain

$$
\begin{aligned}
f_{2}(x) & =f_{2}\left(\left(f_{2} \circ f_{1} \circ f_{1}\right)(y)\right)=\left(f_{2} \circ f_{1} \circ f_{2} \circ f_{1}\right)(x) \\
& =\left(f_{2} \circ f_{1}\right)\left(\left(f_{2} \circ f_{1}\right)(x)\right)=\left(f_{2} \circ f_{1}\right)(x)=x
\end{aligned}
$$

So, $x \in \operatorname{Fix}\left(f_{2}\right)$, and $x \in \operatorname{Fix}\left(f_{1}\right) \cap \operatorname{Fix}\left(f_{2}\right)$, a contradiction. Therefore, $\operatorname{Fix}\left(G_{1}\right) \cap \operatorname{Fix}\left(G_{2}\right)=\emptyset$.

We need the following results on periodic structure of Cournot maps, whose proof can be found in [3]. Remember that Sharkovskii's ordering is given by

$$
\begin{array}{r}
3>_{s} 5>_{s} 7>_{s} \ldots>_{s} 2 \cdot 3>_{s} 2 \cdot 5>_{s} \ldots \cdots>_{s} 2^{2} \cdot 3>_{s} 2^{2} \cdot 5>_{s} \ldots \\
\ldots>_{s} 2^{k} \cdot 3>_{s} 2^{k} \cdot 5>_{s} \cdots>_{s} 2^{3}>_{s} 2^{2}>_{s} 2>_{s} 1,
\end{array}
$$

and Sharkovskii's Theorem (see [24]) establishes for any $f \in C(I, I)$ that either $\operatorname{Per}(f)=S(m)=\left\{k: m>_{s} k\right\} \cup\{m\}$, with $m \in \mathbb{N}$, or $\operatorname{Per}(f)=S\left(2^{\infty}\right)=$ $\left\{2^{i}: i=0,1,2, \ldots\right\}$.
Theorem 3.5. Let $F \in C_{A}\left(I^{2}\right)$.

1. F has at least two different fixed points if and only if $f_{2} \circ f_{1}$ possesses at least two different fixed points.
2. $2 \in \operatorname{Per}(F)$ if and only if F has at least two different fixed points.
3. Either $\operatorname{Per}(\mathrm{F})=\mathrm{S}_{2}(\mathrm{~m})$ or $\operatorname{Per}(F)=S_{2}(m) \cup\{2\}$, where $m \in \mathbb{N} \cup\left\{2^{\infty}\right\}$ and

$$
S_{2}(m)=\left\{p t: p \in\{1,2\}, t \in(S(m) \backslash\{1\}), \operatorname{gcd}\left(t, \frac{2}{p}\right)=1\right\} \cup\{1\}
$$

where $S(m)$ is an initial segment of Sharkovskii's ordering and $\operatorname{gcd}(s, t)$ denote the greatest common divisor of two positive integers s, t.

In the following sections we will try to extend the results of Section 2 on common fixed points from the interval case or the triangular case to the Cournot case, with $X \times Y=I^{2}=[0,1]^{2}$. More precisely, we prove the extension of results of Cano ([6]). We show that Jungck's Theorem ([19]), which is also true in $C_{\Delta}\left(I^{n}, I^{n}\right)([14],[15])$, also works in the Cournot case if we modify the hypothesis in a suitable way. We obtain that the results on equivalent conditions involving common fixed points, obtained by Jachymski in [17], only can be partially translated to our case. And finally we see that Jungck's Theorem and Jachymski's result of Theorem 2.5, which are equivalent in the triangular case ([15]), are independent for commuting Cournot maps.

4 Extension of Cano's Results

In order to translate Theorem 2.1 to $C_{A}\left(I^{2}\right)$, we define

$$
\begin{aligned}
\mathfrak{A} & =\left\{F \in C_{A}\left(I^{2}\right): \operatorname{Fix}(F) \text { is connected }\right\}, \\
\mathfrak{B} & =\left\{F \in C_{A}\left(I^{2}\right): \operatorname{Fix}\left(F^{2}\right)=\mathrm{P}(F)\right\} .
\end{aligned}
$$

Theorem 4.1. Let $F \in C_{A}\left(I^{2}\right)$. Suppose that $\left\{F^{n}\right\}_{n=1}^{\infty}$ is equicontinuous. Then

1. $F \in \mathfrak{A}$.
2. If $\operatorname{Fix}(F)$ is nondegenerate, $F \in \mathfrak{B}$.

Proof. If $\left\{F^{n}\right\}_{n=1}^{\infty}$ is equicontinuous, so is $\left\{F^{2 m}\right\}_{m=1}^{\infty}$. According to (1) we deduce that $\left\{\left(f_{2} \circ f_{1}\right)^{m}\right\}_{m=1}^{\infty}$ and $\left\{\left(f_{1} \circ f_{2}\right)^{m}\right\}_{m=1}^{\infty}$ are equicontinuous. By Theorem 2.1, $\operatorname{Fix}\left(f_{2} \circ f_{1}\right)=\left[a_{1}, a_{2}\right]=J, a_{1} \leq a_{2}$, and $\operatorname{Fix}\left(f_{1} \circ f_{2}\right)=\left[b_{1}, b_{2}\right]=$ $K, b_{1} \leq b_{2}$. By Proposition 3.2 we have that J is nondegenerate iff K is nondegenerate. If $J=\{a\}, K=\{b\}$, from Proposition 3.1 we have $\operatorname{Fix}(F)=$ $\{(a, b)\} ;$ so $F \in A$. If both J and K are nondegenerate, by Proposition 3.2 we obtain

$$
\operatorname{Fix}(F)=\left\{\left(x, f_{1}(x)\right): x \in J\right\}=\left\{\left(f_{2}(y), y\right): y \in K\right\}
$$

Therefore, $\operatorname{Fix}(F)$ is connected, and $F \in \mathfrak{A}$.
Now, suppose that $\operatorname{Fix}(F)$ is nondegenerate. Then J and K are also nondegenerate. By Theorem 2.1, $\operatorname{Fix}\left(f_{2} \circ f_{1}\right)=\mathrm{P}\left(f_{2} \circ f_{1}\right)$, $\operatorname{Fix}\left(f_{1} \circ f_{2}\right)=\mathrm{P}\left(f_{1} \circ f_{2}\right)$. Since (3) and Proposition 3.1 hold, we deduce $\mathrm{P}(F)=\operatorname{Fix}\left(F^{2}\right)$.

We remark that in the Cournot case we cannot state that $\mathrm{P}(F)=\operatorname{Fix}(F)$ whenever $\operatorname{Fix}(F)$ is nondegenerate. In this case $\operatorname{Fix}(F) \varsubsetneqq \operatorname{Fix}\left(F^{2}\right)$ since $\operatorname{Card}(\operatorname{Fix}(F)) \geq 2$, and $\mathrm{P}(F)$ contains periodic points of order two (see Theorem 3.5). For example, consider $F(x, y)=(y, x)$. Then $\operatorname{Fix}(F)=\{(x, x): x \in$ $I\}$ is nondegenerate but $\mathrm{P}(F)=I^{2}$.

Next, we prove that Theorem 2.2 can be extended in some sense to the Cournot case.

Theorem 4.2. Let $F, G \in C_{A}\left(I^{2}\right), F \circ G=G \circ F$. If either $\mathrm{P}(G)=\operatorname{Fix}(G)$ or $\pi_{i}(\operatorname{Fix}(G))$ is an interval for $i=1,2$, then $\operatorname{Fix}(F) \cap \operatorname{Fix}(G) \neq \emptyset$.

Proof. 1. Assume that $\mathrm{P}(G)=\operatorname{Fix}(G)$. Then $2 \notin \operatorname{Per}(G)$, and according to Proposition 3.5, $\operatorname{Card}\left(\operatorname{Fix}\left(g_{i} \circ g_{j}\right)\right)=1$ for $i, j \in\{1,2\}, i \neq j$. Let z_{0} be the unique fixed point of $g_{2} \circ g_{1}$. By Proposition 3.2 we find $\operatorname{Fix}(G)=\left\{\left(z, g_{1}(z)\right)\right\}$. Notice that $g_{1}(z)$ is the unique fixed point of $g_{1} \circ g_{2}$. We wish to show that $F\left(z, g_{1}(z)\right)=\left(z, g_{1}(z)\right)$, and then $\operatorname{Fix}(F) \cap \operatorname{Fix}(G) \neq \emptyset$.

On the one hand, since F and G commute,

$$
\begin{align*}
F\left(z, g_{1}(z)\right) & =F\left(G\left(z, g_{1}(z)\right)\right)=G\left(F\left(z, g_{1}(z)\right)\right) \tag{8}\\
& =\left(\left(g_{2} \circ f_{1}\right)(z),\left(g_{1} \circ f_{2}\right)\left(g_{1}(z)\right)\right) .
\end{align*}
$$

On the other hand, a direct calculation gives

$$
\begin{equation*}
F\left(z, g_{1}(z)\right)=\left(\left(f_{2} \circ g_{1}\right)(z), f_{1}(z)\right) \tag{9}
\end{equation*}
$$

From (8) and (9) we deduce $f_{1}(z)=\left(g_{1} \circ f_{2}\right)\left(g_{1}(z)\right)$, and using (4) we obtain

$$
f_{1}(z)=\left(g_{1} \circ f_{2}\right)\left(g_{1}(z)\right)=\left(g_{1} \circ g_{2}\right)\left(f_{1}(z)\right)
$$

Hence $f_{1}(z)$ is a fixed point of $g_{1} \circ g_{2}$. Therefore, $f_{1}(z)=g_{1}(z), z=g_{2}\left(f_{1}(z)\right)$. Again by (8) and (9) we get $F\left(z, g_{1}(z)\right)=\left(z, g_{1}(z)\right)$.
2. Notice that by Proposition 3.2, $\pi_{1}(\operatorname{Fix}(G))=\operatorname{Fix}\left(g_{2} \circ g_{1}\right)$ is an interval iff $\pi_{2}(\operatorname{Fix}(G))=\operatorname{Fix}\left(g_{1} \circ g_{2}\right)$ is an interval. Assume $\pi_{1}(\operatorname{Fix}(G))=[a, b]$ is an interval. Then $\operatorname{Fix}\left(g_{1} \circ g_{2}\right)=g_{1}([a, b])$. By (5), $g_{2} \circ g_{1}$ and $f_{2} \circ f_{1}$ commute. Then Theorem 1 of [6] implies $A:=\operatorname{Fix}\left(g_{2} \circ g_{1}\right) \cap \operatorname{Fix}\left(f_{2} \circ f_{1}\right) \neq \emptyset$. If $A=\left\{x_{0}\right\}$, according to Proposition 3.3 we deduce

$$
\operatorname{Fix}\left(g_{1} \circ g_{2}\right) \cap \operatorname{Fix}\left(f_{1} \circ f_{2}\right)=\left\{g_{1}\left(x_{0}\right)\right\}=\left\{f_{1}\left(x_{0}\right)\right\}
$$

Since $g_{1}\left(x_{0}\right)=f_{1}\left(x_{0}\right)$, we obtain $\left(x_{0}, g_{1}\left(x_{0}\right)\right) \in \operatorname{Fix}(G) \cap \operatorname{Fix}(F)$. Now suppose $\operatorname{Card}(A) \geq 2$. By Proposition 3.3 we know $\left(g_{2} \circ f_{1}\right)^{2}\left(x_{0}\right)=x_{0}$. If $\left(g_{2} \circ f_{1}\right)(x)=x$ for some $x \in A$, then $g_{1}(x)=f_{1}(x)$, and we go on as above. Assume then that there exist $x_{1}, x_{2} \in A, x_{1}<x_{2}$, such that $\left(g_{2} \circ f_{1}\right)\left(x_{i}\right)=x_{j}, i, j \in\{1,2\}$, $i \neq j$. By continuity, there exists $p \in\left(x_{1}, x_{2}\right) \cap \operatorname{Fix}\left(g_{2} \circ f_{1}\right)$. Since $\left(x_{1}, x_{2}\right) \subset$ $[a, b]=\operatorname{Fix}\left(g_{2} \circ g_{1}\right), p \in \operatorname{Fix}\left(g_{2} \circ g_{1}\right)$ holds. From this and using (4), (6) and Proposition 3.3, we have

$$
\begin{aligned}
\left(f_{2} \circ f_{1}\right)\left(\left(g_{2} \circ g_{1}\right)(p)\right) & =\left(f_{2} \circ f_{1}\right)(p)=\left(g_{2} \circ g_{1}\right)\left(\left(f_{2} \circ f_{1}\right)(p)\right) \\
& =\left(g_{2} \circ f_{1}\right)\left(\left(g_{2} \circ f_{1}\right)(p)\right)=\left(g_{2} \circ f_{1}\right)^{2}(p)=p
\end{aligned}
$$

so $p \in \operatorname{Fix}\left(f_{2} \circ f_{1}\right)$. We conclude that $f_{1}(p)=g_{1}(p)$, so $\left(p, g_{1}(p)\right) \in \operatorname{Fix}(G) \cap$ $\operatorname{Fix}(F)$.

5 Extension of Jungck's Theorem

Jungck's Theorem can be extended to the Cournot case if we replace Fix (g) by $\operatorname{Fix}\left(G^{2}\right)$.

Theorem 5.1. Let $G \in C_{A}\left(I^{2}\right)$. Then $\mathrm{P}(G)=\operatorname{Fix}\left(G^{2}\right)$ if and only if $\operatorname{Fix}(G) \cap$ $\operatorname{Fix}(F) \neq \emptyset$ holds for all $F \in C_{A}\left(I^{2}\right)$ nontrivially compatible with G.

Proof. Suppose that $F \circ G=G \circ F$ on $\operatorname{Coin}(F, G) \neq \emptyset$. Let $(x, y) \in$ $\operatorname{Coin}(F, G)$. It is not difficult to see that $\left\{G^{n}(x, y)\right\}_{n=0}^{\infty} \subseteq \operatorname{Coin}(F, G)$. In particular, $G^{2 n}(x, y)=\left(\left(g_{2} \circ g_{1}\right)^{n}(x),\left(g_{1} \circ g_{2}\right)^{n}(y)\right) \in \operatorname{Coin}(F, G)$. Since $\mathrm{P}(G)=$ $\operatorname{Fix}\left(G^{2}\right)$, from (3) and Proposition 3.1 we have $\mathrm{P}\left(g_{j} \circ g_{i}\right)=\operatorname{Fix}\left(g_{j} \circ g_{i}\right)$ for $i, j \in\{1,2\}, i \neq j$. According to [25], Chapter 4, Th.4.2, it follows that $\left(g_{2} \circ g_{1}\right)^{n}(x) \rightarrow x_{g}$ and $\left(g_{1} \circ g_{2}\right)^{n}(y) \rightarrow y_{g}$, when $n \rightarrow \infty$, for some $x_{g} \in$ $\operatorname{Fix}\left(g_{2} \circ g_{1}\right)$ and $y_{g} \in \operatorname{Fix}\left(g_{1} \circ g_{2}\right)$. Since $\operatorname{Coin}(F, G)$ is obviously a closed set and $G^{2 n}(x, y) \rightarrow\left(x_{g}, y_{g}\right)$, we deduce that $F\left(x_{g}, y_{g}\right)=G\left(x_{g}, y_{g}\right)$. (In particular, $f_{1}\left(x_{g}\right)=g_{1}\left(x_{g}\right)$.)

Since $\operatorname{Per}(G)=\{1,2\}$ and $\left(x_{g}, y_{g}\right) \in \mathrm{P}(G) \cap \operatorname{Coin}(F, G)$, we have

$$
\begin{aligned}
\left(x_{g}, y_{g}\right) & =G^{2}\left(x_{g}, y_{g}\right)=G\left(G\left(x_{g}, y_{g}\right)\right)=G\left(F\left(x_{g}, y_{g}\right)\right)=F\left(G\left(x_{g}, y_{g}\right)\right) \\
& =F\left(F\left(x_{g}, y_{g}\right)\right)=F^{2}\left(x_{g}, y_{g}\right)
\end{aligned}
$$

so $\left(x_{g}, y_{g}\right) \in \operatorname{Fix}\left(G^{2}\right) \cap \operatorname{Fix}\left(F^{2}\right)$. In particular, $x_{g} \in \operatorname{Fix}\left(f_{2} \circ f_{1}\right)$. Finally, since $f_{1}\left(x_{g}\right)=g_{1}\left(x_{g}\right)$ and $\left(f_{2} \circ f_{1}\right)\left(x_{g}\right)=x_{g}$, it is easily seen that $\left(x_{g}, g_{1}\left(x_{g}\right)\right) \in$ $\operatorname{Fix}(G) \cap \operatorname{Fix}(F)$.

Now, suppose that $\operatorname{Fix}(G) \cap \operatorname{Fix}(F) \neq \emptyset$ holds for all $F \in C_{A}\left(I^{2}\right)$ nontrivially compatible with G. We wish to prove that $\mathrm{P}(G)=\operatorname{Fix}\left(G^{2}\right)$. Suppose that $\mathrm{P}(G) \supset \operatorname{Fix}\left(G^{2}\right)$. Since (3) and Proposition 3.1 hold, there exists a periodic point $u \in I$ of order 2 for $g_{2} \circ g_{1}$. Moreover, let $v \in I$ be a fixed point of $g_{1} \circ g_{2}$. Notice that (u, v) is a periodic point of period 4 of G. Let $\operatorname{Orb}_{G}(u, v)$ denote its finite orbit.

We define $F \in C_{A}\left(I^{2}\right)$ in the following way. We put

$$
\begin{aligned}
& f_{1}(u)=g_{1}(u), f_{1}\left(g_{2}(v)\right)=v, f_{1}\left(\left(g_{2} \circ g_{1}\right)(u)\right)=g_{1}\left(\left(g_{2} \circ g_{1}\right)(u)\right), \\
& f_{2}(v)=g_{2}(v), f_{2}\left(g_{1}(u)\right)=g_{2}\left(g_{1}(u)\right), f_{2}\left(\left(g_{1} \circ g_{2} \circ g_{1}\right)(u)\right)=u,
\end{aligned}
$$

and we continuously extend f_{1}, f_{2} such that $f_{1}(x) \neq g_{1}(x), f_{2}(y) \neq g_{2}(y)$ for all $x \in I \backslash\left\{u, g_{2}(v), g_{2}\left(g_{1}(u)\right)\right\}$ and $y \in I \backslash\left\{v, g_{1}(u),\left(g_{1} \circ g_{2} \circ g_{1}\right)(u)\right\}$. Notice that $\operatorname{Fix}(F) \cap \operatorname{Fix}(G)=\emptyset$. It is clear that $\operatorname{Coin}(F, G)=\operatorname{Orb}_{G}(u, v)$, and $F \circ G=G \circ F$ on $\operatorname{Coin}(F, G)$. By hypothesis, $\operatorname{Fix}(F) \cap \operatorname{Fix}(G) \neq \emptyset$, a contradiction.

In the statement of Jungck's Theorem we cannot replace $\operatorname{Fix}(g)$ by $\operatorname{Fix}(G)$, as the following example shows.

Example 5.2. Consider $G(x, y)=(1-y, 1-x)$. It is clear that

$$
\begin{aligned}
\operatorname{Fix}(G) & =\{(x, 1-x): x \in I\}=\{(1-y, y): y \in I\} \\
\operatorname{Fix}\left(G^{2}\right) & =I^{2}=\mathrm{P}(G)
\end{aligned}
$$

Let $F \in C_{A}\left(I^{2}\right)$ be nontrivially compatible with G. We are going to show that F and G share a common fixed point. However, $\operatorname{Fix}(G) \subset \mathrm{P}(G)$. Observe that $(x, y) \in \operatorname{Coin}(F, G)$ if and only if

$$
\begin{equation*}
f_{1}(x)=1-x, f_{2}(y)=1-y \tag{10}
\end{equation*}
$$

Let $(x, y) \in \operatorname{Coin}(F, G)$. Then $(F \circ G)(x, y)=(G \circ F)(x, y)$ implies

$$
\begin{equation*}
f_{1}(1-y)=1-f_{2}(y), f_{2}(1-x)=1-f_{1}(x) \tag{11}
\end{equation*}
$$

From (10) and (11), we obtain $f_{1}(1-y)=y, f_{2}(y)=1-y$. This yields $Z=(1-y, y) \in \operatorname{Coin}(F, G)$. Moreover, $Z \in \operatorname{Fix}(G)$. Then $F(Z)=G(Z)=Z$, so $Z \in \operatorname{Fix}(G) \cap \operatorname{Fix}(F)$.

6 Extension of Jachymski's Results

Now, we try to extend to the Cournot case the results given in [17] on equivalent conditions to guarantee the existence of common fixed points for interval maps.

Theorem 6.1. Let $G \in C_{A}\left(I^{2}\right)$. The following conditions are equivalent:

1. $\operatorname{Fix}(G)$ is a connected set.
2. $\left\{G^{n}: n \in \mathbb{N}\right\}$ is equicontinuous on $\operatorname{Fix}(G)$, or $\operatorname{Fix}(G)$ is a singleton.
3. G has a common fixed point with every $F \in C_{A}\left(I^{2}\right)$ which commutes with G on $\operatorname{Fix}(G)$.

Proof. (1) $\Rightarrow(2)$ Assume that $\operatorname{Fix}(G)$ is a connected set. If $\operatorname{Fix}(G)$ is a singleton, there is nothing to prove. Suppose then that $\operatorname{Card}(\operatorname{Fix}(G)) \geq 2$. According to Proposition 3.2 we have that $\operatorname{Fix}\left(g_{i} \circ g_{j}\right)$ is a closed interval for $i, j \in\{1,2\}, i \neq j$. From Theorem 2.4 we deduce that $\left\{\left(g_{i} \circ g_{j}\right)^{n}: n \in \mathbb{N}\right\}$ is equicontinuous on $\operatorname{Fix}\left(g_{i} \circ g_{j}\right), i, j \in\{1,2\}, i \neq j$. By (1), $\left\{G^{2 n}: n \in \mathbb{N}\right\}$ is equicontinuous on $\operatorname{Fix}\left(g_{2} \circ g_{1}\right) \times \operatorname{Fix}\left(g_{1} \circ g_{2}\right)=\operatorname{Fix}\left(G^{2}\right)$, in particular on $\operatorname{Fix}(G)$. The continuity of G implies that $\left\{G^{2 n+1}: n \in \mathbb{N}\right\}$ is also equicontinuous on $\operatorname{Fix}(G)$. Since $\lim _{n \rightarrow \infty} G^{2 n}(Z)=\lim _{n \rightarrow \infty} G^{2 n+1}(Z)=Z$ for all $Z \in \operatorname{Fix}(G)$, we finally obtain that $\left\{G^{m}: m \in \mathbb{N}\right\}$ is equicontinuous on $\operatorname{Fix}(G)$.
$(2) \Rightarrow(1)$ Suppose that $\left\{G^{n}: n \in \mathbb{N}\right\}$ is equicontinuous on $\operatorname{Fix}(G)$. Then $\left\{G^{2 n}: n \in \mathbb{N}\right\}$ is also. From (1), $\left\{\left(g_{i} \circ g_{j}\right)^{n}: n \in \mathbb{N}\right\}$ is equicontinuous on $\operatorname{Fix}\left(g_{i} \circ g_{j}\right)$, for $i, j \in\{1,2\}, i \neq j$. By Theorem 2.4 , for $i, j \in\{1,2\}, i \neq j$, we obtain that $\operatorname{Fix}\left(g_{i} \circ g_{j}\right)$ is a closed interval. From Proposition 3.2 we conclude that $\operatorname{Fix}(G)$ is connected.
$(1) \Rightarrow(3)$ Suppose that $\operatorname{Fix}(G)$ is connected. Let $F \in C_{A}\left(I^{2}\right)$ commute with G on $\operatorname{Fix}(G)$. We must prove that $\operatorname{Fix}(G) \cap \operatorname{Fix}(F) \neq \emptyset$. Since $F \circ G=G \circ F$ on $\operatorname{Fix}(G)$, it follows that $F^{2} \circ G^{2}=G^{2} \circ F^{2}$ on $\operatorname{Fix}(G)$. (Notice that $F(Z) \in$ $\operatorname{Fix}(G)$ for all $Z \in \operatorname{Fix}(G)$.) In this case, given $x \in \operatorname{Fix}\left(g_{2} \circ g_{1}\right)$, it follows that $\left(g_{2} \circ g_{1} \circ f_{2} \circ f_{1}\right)(x)=\left(f_{2} \circ f_{1} \circ g_{2} \circ g_{1}\right)(x)$ since $\left(x, g_{1}(x)\right) \in \operatorname{Fix}(G)$. As $\operatorname{Fix}(G)$ is connected, $\operatorname{Fix}\left(g_{i} \circ g_{j}\right)$ is a closed interval, for $i, j \in\{1,2\}, i \neq j$, and according to Theorem 2.4, we obtain that $A:=\operatorname{Fix}\left(g_{2} \circ g_{1}\right) \cap \operatorname{Fix}\left(f_{2} \circ f_{1}\right) \neq \emptyset$. Let $z \in A$. By Proposition 3.2 and since $g_{1}(z) \in \operatorname{Fix}\left(f_{1} \circ f_{2}\right)$, we obtain that $Z=\left(z, g_{1}(z)\right) \in \operatorname{Fix}(G) \cap \operatorname{Fix}\left(F^{2}\right) \neq \emptyset$. Recall that $F(Z) \in \operatorname{Fix}(G)$. Again by Proposition 3.2, if $\operatorname{Fix}(G)$ is connected, then it is homeomorphic to a closed interval of $I, \operatorname{Fix}(G) \stackrel{h}{\approx} \Gamma$. Suppose $F(Z) \neq Z=F^{2}(Z)$. Then $h(F(Z)) \neq h(Z)=h\left(F^{2}(Z)\right)$. Let $\varphi=h \circ F \circ h^{-1}: \Gamma \rightarrow \Gamma$. Then φ is continuous and well defined since $F: \operatorname{Fix} G \rightarrow \operatorname{Fix} G$. As

$$
\varphi(h(Z))=h(F(Z)) \neq h\left(F^{2}(Z)\right)=(h \circ F)(F(Z))=\varphi(h(F(Z))),
$$

and $\varphi(h(Z))=h(F(Z)), \varphi(h(F(Z))=\varphi(h(Z))$, we deduce that there exists $w \in \Gamma$ such that $\varphi(w)=w$. Then $F\left(h^{-1}(w)\right)=h^{-1}(w):=W$, so $W \in$ $\operatorname{Fix}(G) \cap \operatorname{Fix}(F)$, which completes the proof.
$(3) \Rightarrow(1)$ Now suppose that $\operatorname{Fix}(G) \cap \operatorname{Fix}(F) \neq \emptyset$ for every $F \in C_{A}\left(I^{2}\right)$ which commutes with G on $\operatorname{Fix}(G)$. We are going to prove that $\operatorname{Fix}(G)$ is connected. On the contrary, suppose that $\operatorname{Fix}(G)$ is not connected. Let $\operatorname{Fix}(G)=\bigcup_{\alpha \in \chi} C_{\alpha}$, where C_{α} is a closed connected component of $\operatorname{Fix}(G)$. Let $C:=\bigcup_{\alpha \in \chi} C_{\alpha}$. According to Proposition 3.2 we have that $\pi_{i}\left(C_{\alpha}\right) \cap \pi_{i}\left(C_{\beta}\right)=\emptyset$ for all $\alpha, \beta \in \chi, \alpha \neq \beta, i=1,2$, and $\pi_{i}(C)=\bigcup_{\alpha \in \chi} \pi_{i}\left(C_{\alpha}\right)$ for $i=1,2$. Set $D_{i}:=\pi_{i}(C), i=1,2$. Now we construct two interval maps $f_{i}, i=1,2$, in the following way. We choose two different connected components $C_{\alpha_{0}}$, $C_{\alpha_{1}}$ and two points $\left(p_{1}, p_{2}\right) \in C_{\alpha_{0}},\left(q_{1}, q_{2}\right) \in C_{\alpha_{1}}$. Define $f_{i}\left(\pi_{i}\left(C_{\alpha}\right)\right)=$ $p_{i+1(\bmod 2)} \in \pi_{i+1(\bmod 2)}\left(C_{\alpha_{0}}\right)$ for any index $\alpha \neq \alpha_{0}, f_{i}\left(\pi_{i}\left(C_{\alpha_{0}}\right)\right)=q_{i+1(\bmod 2)} \in$ $\pi_{i+1(\bmod 2)}\left(C_{\alpha_{1}}\right)$, and we complete continuously the definition of f_{i} over $I \backslash D_{i}$, $i=1,2$. Then we define the Cournot map $F(x, y)=\left(f_{2}(y), f_{1}(x)\right)$. In this case, it is easy to check that $F \circ G=G \circ F$ on $\operatorname{Fix}(G)$ since $\left.F\right|_{C}: C \rightarrow C$. Moreover, it is clear that $\operatorname{Fix}(F) \cap \operatorname{Fix}(G)=\emptyset$, which contradicts the statement of (3). Therefore, $\operatorname{Fix}(G)$ is connected.

As with Theorem 2.4, in statement (2) of Theorem 6.1 we cannot remove the condition " $\operatorname{Fix}(G)$ is a singleton". For instance, consider $G(x, y)=$
$(y, g(x))$, where g is the interval map defined in Example 1 of [17], namely $g(x)=1$ if $x \in\left[0, \frac{1}{4}\right], g(x)=-2 x+\frac{3}{2}$ if $x \in\left[\frac{1}{4}, \frac{3}{4}\right]$, and $g(x)=0$ if $x \in\left[\frac{3}{4}, 1\right]$. In this case, $\operatorname{Fix}(G)=\left\{\left(\frac{1}{2}, \frac{1}{2}\right)\right\}$, but the family $\left\{G^{n}\right\}_{n=1}^{\infty}$ is not equicontinuous at the point $\left(\frac{1}{2}, \frac{1}{2}\right)$.

We continue with the possible extension of Theorem 2.5 to Cournot maps. Grinč proved in [14] that for triangular maps, Jachymski's result remains true for the equivalence $(1) \Leftrightarrow(3)$. However, this is not true for Cournot maps, since in this situation $[(1) \Leftrightarrow(2)] \Rightarrow(3)$, but in general $(3) \Rightarrow(1)$ is false.
Theorem 6.2. Let $G \in C_{A}\left(I^{2}\right)$. Then the following properties are equivalent:

1. $\operatorname{Fix}(G)=\mathrm{P}(G)$.
2. $\left\{G^{n}\right\}_{n=1}^{\infty}$ is pointwise convergent on I^{2}.

Proof. $(1) \Rightarrow(2)$ Suppose $\mathrm{P}(G)=\operatorname{Fix}(G)$. From Proposition 3.5, $2 \notin \operatorname{Per}(G)$ and G has a unique fixed point. Now, by Proposition 3.1

$$
\operatorname{Fix}(G)=\operatorname{Fix}\left(g_{2} \circ g_{1}\right) \times \operatorname{Fix}\left(g_{1} \circ g_{2}\right)
$$

Since $\mathrm{P}(G)=\mathrm{P}\left(g_{2} \circ g_{1}\right) \times \mathrm{P}\left(g_{1} \circ g_{2}\right)$, Theorem 2.5 states that the sequences $\left\{\left(g_{2} \circ g_{1}\right)^{n}\right\}_{n=1}^{\infty}$ and $\left\{\left(g_{1} \circ g_{2}\right)^{n}\right\}_{n=1}^{\infty}$ are pointwise convergent on I. By (1) and (2) this implies that $\left\{G^{2 n}\right\}_{n=1}^{\infty}$ and $\left\{G^{2 n+1}\right\}_{n=1}^{\infty}$ are also pointwise convergent on I^{2}. We must prove that $\left\{G^{n}\right\}_{n=1}^{\infty}$ is pointwise convergent; that is, $\lim _{n \rightarrow \infty} G^{2 n}(x, y)=\lim _{n \rightarrow \infty} G^{2 n+1}(x, y)$ for all $(x, y) \in I^{2}$. Consider

$$
\lim _{n \rightarrow \infty} G^{2 n}(x, y)=\left(\lim _{n \rightarrow \infty}\left(g_{2} \circ g_{1}\right)^{n}(x), \lim _{n \rightarrow \infty}\left(g_{1} \circ g_{2}\right)^{n}(y)\right)=(u, v)
$$

According to [25], Chapter 4, Th.4.2, u and v are fixed points of $g_{2} \circ g_{1}$ and $g_{1} \circ g_{2}$, respectively. Then, (u, v) is the unique fixed point of G, and by continuity of G,

$$
\lim _{n \rightarrow \infty} G^{2 n+1}(x, y)=G\left(\lim _{n \rightarrow \infty} G^{2 n}(x, y)\right)=G(u, v)=(u, v)
$$

$(2) \Rightarrow(1)$ Assume that $\left\{G^{n}\right\}_{n=1}^{\infty}$ is pointwise convergent on I^{2}. Then, from (1) we have that $\left\{\left(g_{2} \circ g_{1}\right)^{n}\right\}_{n=1}^{\infty}$ and $\left\{\left(g_{1} \circ g_{2}\right)^{n}\right\}_{n=1}^{\infty}$ are pointwise convergent on I; so $\mathrm{P}\left(g_{2} \circ g_{1}\right)=\operatorname{Fix}\left(g_{2} \circ g_{1}\right)$ and $\mathrm{P}\left(g_{1} \circ g_{2}\right)=\operatorname{Fix}\left(g_{1} \circ g_{2}\right)$ since Theorem 2.5 holds. From here we obtain

$$
\mathrm{P}(G)=\mathrm{P}\left(g_{2} \circ g_{1}\right) \times \mathrm{P}\left(g_{1} \circ g_{2}\right)=\operatorname{Fix}\left(g_{2} \circ g_{1}\right) \times \operatorname{Fix}\left(g_{1} \circ g_{2}\right)=\operatorname{Fix}\left(G^{2}\right)
$$

To finish we have to show that $\operatorname{Fix}\left(G^{2}\right)=\operatorname{Fix}(G)$; that is, G has no periodic points of order two. Let $(x, y) \in \operatorname{Fix}\left(G^{2}\right)$. Then $\lim _{n \rightarrow \infty} G^{2 n+1}(x, y)=$ $\lim _{n \rightarrow \infty} G^{2 n}(x, y)=(x, y)$. On the other hand, from the continuity of G

$$
\lim _{n \rightarrow \infty} G^{2 n+1}(x, y)=G\left(\lim _{n \rightarrow \infty} G^{2 n}(x, y)\right)=G(x, y)
$$

Hence $(x, y) \in \operatorname{Fix}(G)$.
Theorem 6.3. Let $G \in C_{A}\left(I^{2}\right)$. Suppose $\operatorname{Fix}(G)=\mathrm{P}(G)$. Then G has a common fixed point with every $F \in C_{A}\left(I^{2}\right)$ which commutes with G on $\operatorname{Fix}(F)$.

Proof. If $\operatorname{Fix}(G)=\mathrm{P}(G)$, then G has no periodic points of order two, and according to Theorem 3.5 this implies

$$
\begin{equation*}
\operatorname{Card}\left(\operatorname{Fix}\left(g_{2} \circ g_{1}\right)\right)=\operatorname{Card}\left(\operatorname{Fix}\left(g_{1} \circ g_{2}\right)\right)=1 \tag{12}
\end{equation*}
$$

Moreover, by (3) and Proposition 3.1,

$$
\begin{align*}
& \mathrm{P}\left(g_{2} \circ g_{1}\right)=\operatorname{Fix}\left(g_{2} \circ g_{1}\right) \\
& \mathrm{P}\left(g_{1} \circ g_{2}\right)=\operatorname{Fix}\left(g_{1} \circ g_{2}\right) \tag{13}
\end{align*}
$$

So, $\operatorname{Fix}(G)=\operatorname{Fix}\left(g_{2} \circ g_{1}\right) \times \operatorname{Fix}\left(g_{1} \circ g_{2}\right)=\left\{\left(x_{0}, y_{0}\right)\right\}$. Let $F \in C_{A}\left(I^{2}\right)$, and assume that $G \circ F=F \circ G$ on $\operatorname{Fix}(F)$. Now, we are going to prove that $\operatorname{Fix}(G) \cap \operatorname{Fix}(F) \neq \emptyset$.

First, we claim that $g_{i} \circ g_{j}$ and $f_{i} \circ f_{j}$ commute on $\operatorname{Fix}\left(f_{i} \circ f_{j}\right)$, for $i, j \in$ $\{1,2\}, i \neq j$. Let $z \in \operatorname{Fix}\left(f_{2} \circ f_{1}\right)$. (The case $\operatorname{Fix}\left(f_{1} \circ f_{2}\right)$ is analogous.) Then, $\left(z, f_{1}(z)\right) \in \operatorname{Fix}(F)$. By hypothesis, $F \circ G=G \circ F$ on $\operatorname{Fix}(F)$; so

$$
\left(f_{2} \circ g_{1}\right)(z)=\left(g_{2} \circ f_{1}\right)(z)=\left(f_{1} \circ g_{2}\right)\left(f_{1}(z)\right)=\left(g_{1} \circ f_{2}\right)\left(f_{1}(z)\right)=g_{1}(z)
$$

At the same time, since $(F \circ G)\left(z, f_{1}(z)\right)=G\left(z, f_{1}(z)\right), G\left(z, f_{1}(z)\right) \in \operatorname{Fix}(F)$ holds, and it is immediate to obtain

$$
G^{n}\left(z, f_{1}(z)\right) \in \operatorname{Fix}(F) \text { for all } n \geq 0
$$

In particular, $G^{2}\left(z, f_{1}(z)\right)=\left(\left(g_{2} \circ g_{1}\right)(z),\left(g_{1} \circ g_{2}\right)\left(f_{1}(z)\right)\right) \in \operatorname{Fix}(F)$. Then, $\left(g_{2} \circ g_{1}\right)(z) \in \operatorname{Fix}\left(f_{2} \circ f_{1}\right)$, and since $z \in \operatorname{Fix}\left(f_{2} \circ f_{1}\right)$, it follows that

$$
\left(f_{2} \circ f_{1} \circ g_{2} \circ g_{1}\right)(z)=\left(g_{2} \circ g_{1}\right)(z)=\left(g_{2} \circ g_{1} \circ f_{2} \circ f_{1}\right)(z)
$$

Therefore, $f_{2} \circ f_{1}$ and $g_{2} \circ g_{1}$ commute on $\operatorname{Fix}\left(f_{2} \circ f_{1}\right)$. This proves the claim.
According to (13), and the above claim, Theorem 2.5 states that $\operatorname{Fix}\left(f_{i} \circ\right.$ $\left.f_{j}\right) \cap \operatorname{Fix}\left(g_{i} \circ g_{j}\right) \neq \emptyset$, for $i, j \in\{1,2\}, i \neq j$. Moreover, from (12) and (13)

$$
\begin{aligned}
& \operatorname{Fix}\left(g_{2} \circ g_{1}\right) \cap \operatorname{Fix}\left(f_{2} \circ f_{1}\right)=\left\{x_{0}\right\}, \\
& \operatorname{Fix}\left(g_{1} \circ g_{2}\right) \cap \operatorname{Fix}\left(f_{1} \circ f_{2}\right)=\left\{y_{0}\right\}
\end{aligned}
$$

Since $\left\{f_{1}\left(x_{0}\right), g_{1}\left(x_{0}\right)\right\} \subseteq \operatorname{Fix}\left(g_{1} \circ g_{2}\right) \cap \operatorname{Fix}\left(f_{1} \circ f_{2}\right)$, we deduce $y_{0}=f_{1}\left(x_{0}\right)=$ $g_{1}\left(x_{0}\right)$, and similarly $x_{0}=f_{2}\left(y_{0}\right)=g_{2}\left(y_{0}\right)$. Thus, it is easy to show that $\left(x_{0}, f_{1}\left(x_{0}\right)\right) \in \operatorname{Fix}(G) \cap \operatorname{Fix}(F)$.

In order to establish that in general $(3) \Rightarrow(1)$ of Theorem 2.5 is not true for the Cournot case, we need the following result. After this, we will show a counterexample to $(3) \Rightarrow(1)$.

Lemma 6.4. Let $F, G \in C_{A}\left(I^{2}\right)$. Suppose $F \circ G=G \circ F$ on $\operatorname{Fix}(F)$.

1. $G^{k}(x, y) \in \operatorname{Fix}(F)$ for all $(x, y) \in \operatorname{Fix}(F)$ and for all $k \geq 0$.
2. $F^{n} \circ G^{n}=G^{n} \circ F^{n}$ on $\operatorname{Fix}(F)$.

Proof. (1) Let $Z=(x, y) \in \operatorname{Fix}(F)$. Then $(G \circ F)(Z)=G(Z)$. Since F and G commute on $\operatorname{Fix}(F),(G \circ F)(Z)=G(Z)=(F \circ G)(Z)=F(G(Z))$; so $G(Z) \in \operatorname{Fix}(F)$. Reasoning in an inductive way, $G^{k}(x, y) \in \operatorname{Fix}(F)$ for all $k \geq 0$.
(2) It is an immediate consequence of (1).

Example 6.5. Let $G(x, y)=\left(y^{2}, 1-x^{2}\right)$. Then $\left(g_{1} \circ g_{2}\right)(x)=1-x^{4}$, $\left(g_{2} \circ g_{1}\right)(x)=\left(1-x^{2}\right)^{2}$, and it is easy to check that $\operatorname{Per}\left(g_{2} \circ g_{1}\right)=\operatorname{Per}\left(g_{1} \circ g_{2}\right)=$ $\{1,2\}$ and $\operatorname{Card}\left(\operatorname{Fix}\left(g_{2} \circ g_{1}\right)\right)=1$. According to Theorem 3.5, we obtain $\operatorname{Per}(G)=\{1,4\}$, and by Proposition 3.1 $\operatorname{Fix}\left(G^{2}\right)=\operatorname{Fix}(G)$. Moreover,

$$
\begin{aligned}
& \operatorname{Fix}\left(g_{2} \circ g_{1}\right)=\left\{x_{G}\right\}=\{0.52488859 \ldots\} \\
& \operatorname{Fix}\left(g_{1} \circ g_{2}\right)=\left\{y_{G}\right\}=\{0.72449195 \ldots\}
\end{aligned}
$$

and x_{G} and y_{G} are repelling for $g_{2} \circ g_{1}, g_{1} \circ g_{2}$, respectively. (Consult Chapter 1 of [25] for the notions of repelling and attracting cycles.) Both of $g_{2} \circ g_{1}$ and $g_{1} \circ g_{2}$ have a unique periodic orbit of order two, $\{0,1\}$, which is an attracting cycle. By [25], Chapter 4, Th. 4.2, given $x \neq x_{G}$ it follows that $\left\{\left(g_{2} \circ g_{1}\right)^{n}(x)\right\}_{n=0}^{\infty} \rightarrow\{0,1\}$, and given $y \neq y_{G},\left\{\left(g_{1} \circ g_{2}\right)^{n}(x)\right\}_{n=0}^{\infty} \rightarrow\{0,1\}$. Following with the description of the dynamics of G, we can establish that $\operatorname{Fix}(G)=\left\{\left(x_{G}, y_{G}\right)\right\}$, and G only possesses two periodic orbits of order four; namely,

$$
\begin{aligned}
& O_{1}=\{(0,0),(0,1),(1,1),(1,0)\}=\operatorname{Orb}_{G}(0,0) \\
& O_{2}=\left\{\left(0, y_{G}\right),\left(x_{G}, 1\right),\left(1, y_{G}\right),\left(x_{G}, 0\right)\right\}=\operatorname{Orb}_{G}\left(0, y_{G}\right)
\end{aligned}
$$

Given $(x, y) \in I_{x_{G}} \cup \widetilde{I}_{y_{G}}:=\left(\left\{x_{G}\right\} \times I\right) \cup\left(I \times\left\{y_{G}\right\}\right),(x, y) \neq\left(x_{G}, y_{G}\right)$, it is simple to prove that

$$
\begin{equation*}
\left\{G^{n}(x, y)\right\}_{n=0}^{\infty} \rightarrow \operatorname{Orb}_{G}\left(0, y_{G}\right) \tag{14}
\end{equation*}
$$

Given $(x, y) \in I^{2} \backslash\left(I_{x_{G}} \cup \widetilde{I}_{y_{G}}\right)$, now

$$
\begin{equation*}
\left\{G^{n}(x, y)\right\}_{n=0}^{\infty} \rightarrow \operatorname{Orb}_{G}(0,0) \tag{15}
\end{equation*}
$$

Next, assume that $F \in C_{A}\left(I^{2}\right)$ which implies $F \circ G=G \circ F$ on $\operatorname{Fix}(F)$. We wish to prove that F and G share a fixed point, in fact $\left(x_{G}, y_{G}\right) \in \operatorname{Fix}(F)$. However, $\mathrm{P}(G) \supset \operatorname{Fix}(G)$.

If $\left(x_{G}, y_{G}\right) \in \operatorname{Fix}(F)$, the proof is complete. If $\left(x_{G}, y_{G}\right) \notin \operatorname{Fix}(F)$, we will obtain a contradiction. Let $(a, b) \in \operatorname{Fix}(F)$. (We know that $\operatorname{Fix}(F) \neq \emptyset$.) Suppose $(a, b) \neq\left(x_{G}, y_{G}\right)$. Since $F \circ G=G \circ F$ on $\operatorname{Fix}(F)$, Lemma 6.4 implies $G^{n}(a, b) \in \operatorname{Fix}(F)$, for all $n \geq 0$. Since $\operatorname{Fix}(F)$ is obviously a closed set, according to (14) and (15), either $\operatorname{Orb}_{G}\left(0, y_{G}\right) \subset \operatorname{Fix}(F)$, or $\operatorname{Orb}_{G}(0,0) \subset$ $\operatorname{Fix}(F)$. In both cases, we obtain a contradiction to the result of Proposition 3.2. Therefore, the unique fixed point of F is $\left(x_{G}, y_{G}\right)$ and $\operatorname{Fix}(F) \cap \operatorname{Fix}(G) \neq \emptyset$.

Now we continue with the extension of Theorem 2.6. The first observation is concerned with uniform convergence.

Proposition 6.6. Let $G \in C_{A}\left(I^{2}\right)$. Suppose that $\operatorname{Fix}(G)$ is not a singleton. Then the sequence $\left\{G^{n}: n \in \mathbb{N}\right\}$ is not uniformly convergent on I^{2}.

Proof. Suppose that $\left\{G^{n}: n \in \mathbb{N}\right\}$ would be uniformly convergent on I^{2}. In particular, $\left\{G^{n}: n \in \mathbb{N}\right\}$ would be pointwise convergent on I^{2}. From Theorem 6.2, it follows that $\operatorname{Fix}(G)=\mathrm{P}(G)=\operatorname{Fix}\left(G^{2}\right)$. Finally, according to Proposition 3.1 we obtain $\operatorname{Card}(\operatorname{Fix}(G))=1$, a contradiction.

Hence, in the extension of Theorem 2.6 to the Cournot case, we must omit condition (2).

Theorem 6.7. Let $G \in C_{A}\left(I^{2}\right)$. Suppose that $\operatorname{Fix}(G)$ is not a singleton. If $\left\{G^{n}: n \in \mathbb{N}\right\}$ is equicontinuous on I^{2}, then $\operatorname{Fix}\left(G^{2}\right)=\mathrm{P}(G) \supsetneqq \operatorname{Fix}(G)$.

Proof. Assume $\left\{G^{n}\right\}_{n=1}^{\infty}$ is equicontinuous on I^{2}. According to Theorem 4.1, $\operatorname{Fix}(G)$ is connected, and $\operatorname{Fix}\left(G^{2}\right)=\mathrm{P}(G)$ since $\operatorname{Fix}(G)$ is nondegenerate.

The converse result is false. To prove this consider the following example.
Example 6.8. Let $G(x, y)=(y, g(x))$, where $g(x)=2 x^{2}$ if $x \in\left[0, \frac{1}{2}\right]$, and $g(x)=x$ if $x \in\left[\frac{1}{2}, 1\right]$. It is easy to see that $\operatorname{Fix}(G)$ is not a singleton, and $\operatorname{Fix}\left(G^{2}\right)=\mathrm{P}(G)$. Moreover, $\operatorname{Fix}(G) \subset \mathrm{P}(G)$. However, $\left\{G^{n}\right\}_{n=1}^{\infty}$ is not equicontinuous at $\left(\frac{1}{2}, \frac{1}{2}\right)$ since $\left\{g^{n}\right\}_{n=1}^{\infty}$ is not equicontinuous at $\frac{1}{2}$. (If $\left\{g^{n}\right\}_{n=1}^{\infty}$ were equicontinuous at $\frac{1}{2}$, the pointwise convergence to the map $\widetilde{g}: I \rightarrow I$, given by $\widetilde{g}(x)=0$ if $x \in\left[0, \frac{1}{2}\right), \widetilde{g}(x)=x$ if $x \in\left[\frac{1}{2}, 1\right]$, would imply that \widetilde{g} is continuous at $\frac{1}{2}$, impossible.) Observe that $\operatorname{Fix}(G)$ is not connected.

In order to obtain a converse result for the above result, we must suppose that $\operatorname{Fix}(G)$ is a connected set.

Proposition 6.9. Let $G \in C_{A}\left(I^{2}\right)$. Suppose that $\operatorname{Fix}(G)$ is not a singleton. The following properties are equivalent.

1. $\left\{G^{n}\right\}_{n=1}^{\infty}$ is equicontinuous on I^{2}.
2. $\operatorname{Fix}\left(G^{2}\right)=\mathrm{P}(G)$ and $\operatorname{Fix}(G)$ is connected.

Proof. Theorems 4.1 and 6.7 show $(1) \Rightarrow(2)$. It remains to prove $(2) \Rightarrow(1)$. If $\operatorname{Fix}(G)$ is connected, from Proposition 3.2 we obtain that $\operatorname{Fix}\left(g_{i} \circ g_{j}\right)$ is an interval, for $i, j \in\{1,2\}, i \neq j$. According to Theorem 2.4, the families $\left\{\left(g_{i} \circ g_{j}\right)^{n}\right\}_{n=1}^{\infty}$ are equicontinuous on $\operatorname{Fix}\left(g_{i} \circ g_{j}\right)$, for $i, j \in\{1,2\}, i \neq j$. Since $\operatorname{Fix}\left(G^{2}\right)=\mathrm{P}(G)$, it follows that $\operatorname{Fix}\left(g_{i} \circ g_{j}\right)=\mathrm{P}\left(g_{i} \circ g_{j}\right)$ (see (3) and Proposition 3.1). By Theorem 2.5, this implies that the sequences $\left\{\left(g_{i} \circ g_{j}\right)^{n}\right\}_{n=1}^{\infty}$ are pointwise convergent. Moreover, given $x \in I$ there is $p(x) \in \operatorname{Fix}\left(g_{i} \circ g_{j}\right)$ such that $\lim _{n \rightarrow \infty}\left(g_{i} \circ g_{j}\right)^{n}(x)=p(x)([25]$, Chapter 4, Th.4.2).

First, we claim that $\left\{\left(g_{2} \circ g_{1}\right)^{n}\right\}_{n=1}^{\infty}$ is equicontinuous at $x \in I$. (The proof is completely analogous for $\left\{\left(g_{1} \circ g_{2}\right)^{n}\right\}_{n=1}^{\infty}$.) Assume $\operatorname{Fix}\left(g_{2} \circ g_{1}\right)=[a, b]$, $a<b$. Let $x \in I$, and $p=p(x)$ as above. Suppose $p \in(a, b)$. Then there exists $m_{0}=m_{0}(x) \in \mathbb{N}$ such that $\left(g_{2} \circ g_{1}\right)^{m_{0}}(x)=p$. (Notice that $(a, b) \subset$ $\operatorname{Fix}\left(g_{2} \circ g_{1}\right)$.) On other hand, given $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|\left(g_{2} \circ g_{1}\right)^{i}(x)-\left(g_{2} \circ g_{1}\right)^{i}(z)\right|<\min \{\varepsilon,|p-a|,|p-b|\}
$$

for $i=1, \ldots, m_{0}$, whenever $|x-z|<\delta$. In this case,

$$
\left|\left(g_{2} \circ g_{1}\right)^{j}(x)-\left(g_{2} \circ g_{1}\right)^{j}(z)\right|=|p(x)-p(z)|<\varepsilon
$$

for all $j \geq m_{0}$, and this completes the proof of the equicontinuity for $x \in I$ if $p(x) \in(a, b)$.

Now, suppose that $p=p(x) \in\{a, b\}$. Without loss of generality we can assume that $p=a$. If $a=0$, we proceed as in the case $p \in(a, b)$. Hence, assume $a>0$. Since $\left\{\left(g_{2} \circ g_{1}\right)^{n}\right\}_{n=1}^{\infty}$ is equicontinuous at $a \in \operatorname{Fix}\left(g_{2} \circ g_{1}\right)$ (see Theorem 2.4), for $\varepsilon>0$ there is $\delta>0, \delta<2 \varepsilon$, such that $|w-a|<\delta$ implies $\left|\left(g_{2} \circ g_{1}\right)^{n}(w)-a\right|<\frac{\varepsilon}{2}$ for all $n \geq 1$. For this $\delta>0$, since $a=p(x)$, there exists $m_{1} \in \mathbb{N}$ with $\left|\left(g_{2} \circ g_{1}\right)^{n}(x)-a\right|<\frac{\delta}{2}<\delta$ for $n \geq m_{1}$. Now, for $\frac{\delta}{2}$ there is δ_{1} such that $|x-z|<\delta_{1}$ implies $\left|\left(g_{2} \circ g_{1}\right)^{i}(x)-\left(g_{2} \circ g_{1}\right)^{i}(z)\right|<\frac{\delta}{2}<\varepsilon$ for $i=1, \ldots, m_{1}$. Notice that for $i=m_{1}$,

$$
\begin{aligned}
\left|\left(g_{2} \circ g_{1}\right)^{m_{1}}(z)-a\right|< & \left|\left(g_{2} \circ g_{1}\right)^{m_{1}}(z)-\left(g_{2} \circ g_{1}\right)^{m_{1}}(x)\right| \\
& +\left|\left(g_{2} \circ g_{1}\right)^{m_{1}}(x)-a\right|<\frac{\delta}{2}+\frac{\delta}{2}=\delta
\end{aligned}
$$

This leads to

$$
\left|\left(g_{2} \circ g_{1}\right)^{n}\left(\left(g_{2} \circ g_{1}\right)^{m_{1}}(z)\right)-a\right|<\frac{\varepsilon}{2}, \text { for all } n \geq 1
$$

On the other hand, $\left|\left(g_{2} \circ g_{1}\right)^{m_{1}}(x)-a\right|<\frac{\delta}{2}<\delta$ implies

$$
\left|\left(g_{2} \circ g_{1}\right)^{n}\left(\left(g_{2} \circ g_{1}\right)^{m_{1}}(x)\right)-a\right|<\frac{\varepsilon}{2}, \text { for all } n \geq 1
$$

Finally, if $|x-z|<\delta_{1}$, for $k \geq m_{1}+1$, we find

$$
\begin{aligned}
\mid\left(g_{2} \circ g_{1}\right)^{k}(x)- & \left(g_{2} \circ g_{1}\right)^{k}(z)\left|\leq\left|\left(g_{2} \circ g_{1}\right)^{k-m_{1}}\left(\left(g_{2} \circ g_{1}\right)^{m_{1}}(x)\right)-a\right|\right. \\
& +\left|\left(g_{2} \circ g_{1}\right)^{k-m_{1}}\left(\left(g_{2} \circ g_{1}\right)^{m_{1}}(z)\right)-a\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Therefore, we have proved for any $x \in I$ that $\left\{\left(g_{2} \circ g_{1}\right)^{n}\right\}_{n=1}^{\infty}$ is equicontinuous at x; so is equicontinuous on I. This completes the claim.

Observe that the compactness of I and the continuity of $\left(g_{2} \circ g_{1}\right)$ imply that the family $\left\{\left(g_{2} \circ g_{1}\right)^{n}\right\}_{n=1}^{\infty}$ is uniformly equicontinuous on I. Since $\left\{\left(g_{i} \circ g_{j}\right)^{n}\right\}_{n=1}^{\infty}$ are equicontinuous for $i, j \in\{1,2\}, i \neq j$, from (1) we obtain that $\left\{G^{2 n}\right\}_{n=1}^{\infty}$ is also equicontinuous on I^{2}. Moreover, as an immediate consequence of the continuity of G, the family $\left\{G^{2 n+1}\right\}_{n=1}^{\infty}$ is also equicontinuous. Since the finite union of equicontinuous families is equicontinuous, we conclude that $\left\{G^{m}\right\}_{m=1}^{\infty}$ is equicontinuous on I^{2}.

Suppose that $\operatorname{Fix}(G)$ is connected, with $\operatorname{Card}(\operatorname{Fix}(G))>1$ and $\mathrm{P}(G)=$ $\operatorname{Fix}\left(G^{2}\right)$, for $G \in C_{A}\left(I^{2}\right)$. According to the above result, the sequence $\left\{G^{n}\right\}_{n=1}^{\infty}$ is equicontinuous, and the iterates $\left\{\left(g_{i} \circ g_{j}\right)^{n}\right\}_{n=1}^{\infty}$ are pointwise convergent ([25], Chapter 4, Theorem 2). However, $\left\{G^{n}\right\}_{n=1}^{\infty}$ is not pointwise convergent, since in the contrary case, for any $\left(p, g_{1}(q)\right) \in I^{2}$, where $p, q \in \operatorname{Fix}\left(g_{2} \circ g_{1}\right)$, $p \neq q$, we would obtain (observe that $\left.G^{2}\left(p, g_{1}(q)\right)=\left(p, g_{1}(q)\right)\right)$

$$
\left(p, g_{1}(q)\right)=\lim _{n \rightarrow \infty} G^{2 n}\left(p, g_{1}(q)\right)=\lim _{n \rightarrow \infty} G^{2 n+1}\left(p, g_{1}(q)\right)=G\left(p, g_{1}(q)\right)
$$

so $G\left(p, g_{1}(p)\right)=\left(p, g_{1}(q)\right)$, but this is not possible since $p \neq q$. If $\operatorname{Card}(\operatorname{Fix}(G))$ $=1$ and $\mathrm{P}(G)=\operatorname{Fix}\left(G^{2}\right)=\operatorname{Fix}(G)$, then $\left\{G^{n}\right\}_{n=1}^{\infty}$ is also uniformly convergent.

Proposition 6.10. Let $G \in C_{A}\left(I^{2}\right)$. Suppose $\operatorname{Card}(\operatorname{Fix}(G))=1$. The following conditions are equivalent.

1. $\operatorname{Fix}(G)=\mathrm{P}(G)$.
2. $\left\{G^{n}\right\}_{n=1}^{\infty}$ is pointwise convergent on I^{2}.
3. $\left\{G^{n}\right\}_{n=1}^{\infty}$ is uniformly convergent on I^{2}.

Proof. (1) $\Leftrightarrow(2)$ See Theorem 6.2.
$(3) \Rightarrow(2)$ It is immediate.
$(1) \Rightarrow(3)$ Suppose that $\operatorname{Fix}(G)=\mathrm{P}(G)$; so $\left\{G^{n}\right\}_{n=1}^{\infty}$ is pointwise convergent on I^{2} to the constant map $\widetilde{G}(x, y)=(a, b)$, where a and b are the unique fixed points of $g_{2} \circ g_{1}$ and $g_{1} \circ g_{2}$, respectively. (We use Proposition 3.1, (3), and [25], Chapter 4, Th.4.2.) Given $\varepsilon>0$, since a is an attracting fixed point of $g_{2} \circ g_{1}$, there exists an open neighborhood $U \subseteq(a-\varepsilon, a+\varepsilon)$ such that $\left(g_{2} \circ g_{1}\right)^{n}(x) \in U$ for all $x \in U$, and for all $n \in \mathbb{N}$. Now for $m \in \mathbb{N}$, we put

$$
U_{m}=\left\{x \in I:\left(g_{2} \circ g_{1}\right)^{m}(x) \in U\right\}
$$

Obviously, by continuity of $\left(g_{2} \circ g_{1}\right)^{m}$, each U_{m} is an open set of I, and $\bigcup_{m} U_{m} \supseteq I$. Moreover, $U_{m} \subseteq U_{m+1}$ for all $m \in \mathbb{N}$. Since I is compact, there is a finite recovering of I. This means that there exists $m_{k} \in \mathbb{N}$ such that $I \subseteq U_{m_{k}}$. Hence $\left|\left(g_{2} \circ g_{1}\right)^{m_{k}}(x)-a\right|<\varepsilon$ for all $x \in I$. This yields

$$
\left|\left(g_{2} \circ g_{1}\right)^{n}(x)-a\right|<\varepsilon \text { for all } n \geq m_{k} \text { and for all } x \in I
$$

Therefore, $\left\{\left(g_{2} \circ g_{1}\right)^{m}\right\}_{m=1}^{\infty}$ is uniformly convergent to the constant map $g(x)=$ a. Similarly, it can be proved that $\left\{\left(g_{1} \circ g_{2}\right)^{m}\right\}_{m=1}^{\infty}$ is uniformly convergent to the constant map $f(x)=b$. By (1) we deduce that $\left\{G^{2 n}\right\}_{n=1}^{\infty}$ is uniformly convergent to $\widetilde{G}(x, y)=(a, b)$, and by the continuity of G, also $\left\{G^{2 n+1}\right\}_{n=1}^{\infty}$ is uniformly convergent to the same map since $\{(a, b)\}=\operatorname{Fix}(G)$.

Notice that in the last result, all of three equivalent conditions imply that $\left\{G^{n}\right\}_{n=1}^{\infty}$ is an equicontinuous family on I^{2}. In general the converse result is not true. For instance, consider the Cournot map $G(x, y)=(y, 1-x)$. It is clear that $\operatorname{Card}(\operatorname{Fix}(G))=1$, and that $\left\{G^{n}\right\}_{n=1}^{\infty}$ is an equicontinuous family on I^{2} since $\left\{G^{n}\right\}_{n=1}^{\infty}=\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$, where $G_{1}=G$ and

$$
G_{2}(x, y)=(1-x, 1-y), G_{3}(x, y)=(1-y, x), G_{4}(x, y)=(x, y)
$$

However, $\operatorname{Fix}(G) \neq \mathrm{P}(G)$ since the point $(0,0)$ has period four, and the family $\left\{G^{n}\right\}_{n=1}^{\infty}$ is neither uniformly convergent nor pointwise convergent.

Proposition 6.11. Let $G \in C_{A}\left(I^{2}\right)$. Suppose $\operatorname{Card}(\operatorname{Fix}(G))=1$. If $\operatorname{Fix}(G)=$ $\mathrm{P}(G)$, then G has a common fixed point with every $F \in C_{A}\left(I^{2}\right)$ that commutes with G either on $\operatorname{Fix}(F)$, or on $\operatorname{Fix}(G)$.

Proof. It is a consequence of Theorems 6.3 and 6.1.

The converse result is false. To see this, consider the Cournot map of Example 6.5, $G(x, y)=\left(y^{2}, 1-x^{2}\right)$. Then $\mathrm{P}(G) \supsetneqq \operatorname{Fix}\left(G^{2}\right)=\operatorname{Fix}(G)=$ $\left\{\left(x_{G}, y_{G}\right)\right\}=\left\{X_{G}\right\}$, with $\operatorname{Per}(G)=\{1,4\}$. It was proved that G has a common fixed point with every $F \in C_{A}\left(I^{2}\right)$ that commutes with G on $\operatorname{Fix}(F)$. The same situation holds if F commutes with G on $\operatorname{Fix}(G)=\left\{X_{G}\right\}$. If $(F \circ G)\left(X_{G}\right)=$ $(G \circ F)\left(X_{G}\right)$, then $F\left(X_{G}\right)=G\left(F\left(X_{G}\right)\right)$, and since X_{G} is the unique fixed point of G, this implies that $F\left(X_{G}\right)=X_{G}$; so $X_{G} \in \operatorname{Fix}(G) \cap \operatorname{Fix}(F)$. However, $\operatorname{Fix}(G) \neq \mathrm{P}(G)$.

We now return to the extension of Theorem 2.6, concerning the case in which $\operatorname{Fix}(G)$ is not a singleton.

Theorem 6.12. Let $G \in C_{A}\left(I^{2}\right)$. Suppose that $\operatorname{Fix}(G)$ is not a singleton, and $\operatorname{Fix}\left(G^{2}\right)=\mathrm{P}(G)$. Then $\left\{G^{n}: n \in \mathbb{N}\right\}$ is equicontinuous on I^{2} if and only if $\operatorname{Fix}(G) \cap \operatorname{Fix}(F) \neq \emptyset$ for every $F \in C_{A}\left(I^{2}\right)$ that commutes with G on $\operatorname{Fix}(G)$.

Proof. Suppose that $\left\{G^{n}: n \in \mathbb{N}\right\}$ is equicontinuous on I^{2}. In particular, the family is equicontinuous on $\operatorname{Fix}(G)$, and by Theorem 6.1 we obtain the second part of the statement. Suppose that $\operatorname{Fix}(G) \cap \operatorname{Fix}(F) \neq \emptyset$ for every $F \in C_{A}\left(I^{2}\right)$ that commutes with G on $\operatorname{Fix}(G)$. From Theorem 6.1 and Proposition 6.9 we obtain that $\left\{G^{n}: n \in \mathbb{N}\right\}$ is equicontinuous on I^{2}.

7 Extension of Theorem 2.7. Connection between Jungck's Theorem and a Jachymski's Result

We can translate only partially the equivalent conditions of Theorem 2.7 to the Cournot case.

Theorem 7.1. Let $G \in C_{A}\left(I^{2}\right)$.
(a) The following conditions are equivalent:

1. $\mathrm{P}(G)=\operatorname{Fix}(G)$.
2. $C \cap \operatorname{Fix}(G) \neq \emptyset$ for any non-empty closed set $C \subseteq I^{2}$ such that $G(C) \subseteq$ C.
3. G has a common fixed point with every continuous map $F: I^{2} \rightarrow I^{2}$ that commutes with G on $\operatorname{Fix}(F)$.
(b) The equivalent conditions of (a) imply that G has a common fixed point with every $F \in C_{A}\left(I^{2}\right)$ that commutes with G on $\operatorname{Fix}(F)$.
(c) The equivalent conditions of (a) imply that G has a common fixed point with every $F \in C_{A}\left(I^{2}\right)$ which is nontrivially compatible with G.

Proof. (a) (2) $\Leftrightarrow(3)$ The equivalence holds according to Proposition 1 of [17].
$(1) \Rightarrow(2)$ Suppose $\mathrm{P}(G)=\operatorname{Fix}(G)$. Let $C \neq \emptyset$ a closed set of I^{2} such that $G(C) \subseteq C$. We wish to prove that $C \cap \operatorname{Fix}(G) \neq \emptyset$. Since $G^{2}(C) \subseteq$ $G(C) \subseteq C$, and G^{2} is a triangular map, from Corollary 3.1 of [14] we obtain $C \cap \operatorname{Fix}\left(G^{2}\right) \neq \emptyset$. Finally, from $\operatorname{Fix}(G)=\mathrm{P}(G)$ it follows that $\operatorname{Fix}\left(G^{2}\right)=$ $\operatorname{Fix}(G)$, so $C \cap \operatorname{Fix}(G) \neq \emptyset$.
$(2) \Rightarrow(1)$ Suppose that (2) holds. First, we will prove that G has only fixed points. Let P a periodic orbit of order $k>1$ of G. Then $G(P) \subseteq P, P$ is closed and non-empty. By hypothesis, $P \cap \operatorname{Fix}(G) \neq \emptyset$, but this contradicts that P is a periodic orbit of order $k>1$. Hence, G has only fixed points. Moreover, $\operatorname{Card}(\operatorname{Fix}(F))=1$, since if G has at least two different fixed points according to Theorem 3.5 we find periodic points of order two. Therefore, $\operatorname{Fix}(G)=\mathrm{P}(G)$.

To prove (b) and (c) see Theorems 6.3 and 5.1, respectively.

Notice that the converse results of (b) and (c) are not true (consult Example 6.5 and Example 5.2).

To finish the extension of Theorem 2.7, we must determine if there is some relation in the Cournot case between Jachymski's Theorem 2.5 (the relation $(1) \Leftrightarrow(3))$ and Jungck's Theorem. The answer is negative, as the following examples show.

Example 7.2. Let $G(x, y)=(1-y, 1-x)$. According to Example 5.2, this map satisfies Jungck's Theorem; that is, $\operatorname{Fix}(F) \cap \operatorname{Fix}(G) \neq \emptyset$ for any $F \in C_{A}\left(I^{2}\right)$ nontrivially compatible with G. However, we are going to prove that G does not satisfy Jachymski's result; namely, there exists $F \in C_{A}\left(I^{2}\right)$ such that $F \circ G=G \circ F$ on $\operatorname{Fix}(F)$ but $\operatorname{Fix}(F) \cap \operatorname{Fix}(G)=\emptyset$.
For this purpose, consider $F(x, y)=\left(f_{2}(y), f_{1}(x)\right)$, where

$$
f_{1}(x)= \begin{cases}\frac{1}{4} & \text { if } x \in\left[0, \frac{1}{2}\right] \\ -4 x^{2}+6 x-\frac{7}{4} & \text { if } x \in\left[\frac{1}{2}, \frac{3}{4}\right] \\ \frac{1}{2} & \text { if } x \in\left[\frac{3}{4}, 1\right]\end{cases}
$$

and

$$
f_{2}(x)= \begin{cases}\frac{1}{2} & \text { if } x \in\left[0, \frac{1}{4}\right] \\ x+\frac{1}{4} & \text { if } x \in\left[\frac{1}{4}, \frac{1}{2}\right] \\ \frac{3}{4} & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

It is straightforward to see that

$$
\left(f_{2} \circ f_{1}\right)(x)= \begin{cases}\frac{1}{2} & \text { if } x \in\left[0, \frac{1}{2}\right] \\ -4 x^{2}+6 x-\frac{3}{2} & \text { if } x \in\left[\frac{1}{2}, \frac{3}{4}\right] \\ \frac{3}{4} & \text { if } x \in\left[\frac{3}{4}, 1\right]\end{cases}
$$

and $\operatorname{Fix}\left(f_{2} \circ f_{1}\right)=\left\{\frac{1}{2}, \frac{3}{4}\right\}$. By Proposition 3.2, $\operatorname{Fix}(F)=\left\{\left(\frac{1}{2}, \frac{1}{4}\right),\left(\frac{3}{4}, \frac{1}{2}\right)\right\}$. Since $\operatorname{Fix}(G)=\{(x, 1-x): x \in I\}$, it is clear that $\operatorname{Fix}(F) \cap \operatorname{Fix}(G)=\emptyset$. However, F and G commute on $\operatorname{Fix}(F)$:

$$
\begin{aligned}
& F\left(G\left(\frac{1}{2}, \frac{1}{4}\right)\right)=F\left(\frac{3}{4}, \frac{1}{2}\right)=\left(\frac{3}{4}, \frac{1}{2}\right)=G\left(\frac{1}{2}, \frac{1}{4}\right)=G\left(F\left(\frac{1}{2}, \frac{1}{4}\right)\right), \\
& F\left(G\left(\frac{3}{4}, \frac{1}{2}\right)\right)=F\left(\frac{1}{2}, \frac{1}{4}\right)=\left(\frac{1}{2}, \frac{1}{4}\right)=G\left(\frac{3}{4}, \frac{1}{2}\right)=G\left(F\left(\frac{3}{4}, \frac{1}{2}\right)\right) .
\end{aligned}
$$

Example 7.3. Consider now $G(x, y)=\left(y^{2}, 1-x^{2}\right)$. By Example 6.5, we know that $\operatorname{Fix}(G) \cap \operatorname{Fix}(F) \neq \emptyset$ for any $F \in C_{A}\left(I^{2}\right)$ which commutes with G on $\operatorname{Fix}(\mathrm{F})$. (G satisfies Jachymski's Theorem 2.5.) However, we will show that it does not verify Jungck's Theorem; that is, we will prove that there is $F \in C_{A}\left(I^{2}\right)$ nontrivially compatible with G such that $\operatorname{Fix}(F) \cap \operatorname{Fix}(G)=\emptyset$. Define $F(x, y)=\left(f_{2}(y), f_{1}(x)\right)=\left(y, \frac{1}{x+1}-\frac{x}{2}\right)$. A direct computation gives $\operatorname{Coin}(F, G)=\{(0,0),(0,1),(1,0),(1,1)\}$. The maps F and G are nontrivially compatible,

$$
\begin{aligned}
& G(F(0,0))=G(0,1)=(1,1)=F(0,1)=F(G(0,0)), \\
& G(F(0,1))=G(1,1)=(1,0)=F(1,1)=F(G(0,1)), \\
& G(F(1,0))=G(0,0)=(0,1)=F(0,0)=F(G(1,0)), \\
& G(F(1,1))=G(1,0)=(0,0)=F(1,0)=F(G(1,1)) .
\end{aligned}
$$

However, $\operatorname{Fix}(F) \cap \operatorname{Fix}(G)=\emptyset$.

References

[1] A. Alikhani-Koopaei, On common fixed and periodic points of commuting functions, Intl. J. of Math. and Math. Sci. 21 (1998), 269-276.
[2] A. Alikhani-Koopaei, A counterexample of common periodic points of functions, Intl. J. of Math. and Math. Sci. 21 (1998), 823-827.
[3] F. Balibrea, A. Linero, Periodic structure of σ-permutation maps on I^{n}, Aequationes Math. 62 (2001), 265-279.
[4] W. M. Boyce, Commuting functions with no common fixed points, Trans. Amer. Math. Soc. 137 (1969), 77-92.
[5] W. M. Boyce, Г-compact maps on an interval and fixed points, Trans. Amer. Math. Soc. 160 (1971), 87-102.
[6] J. Cano, Common fixed points for a class of commuting mappings on an interval, Proc. Amer. Math. Soc. 86 (1982), 336-338.
[7] J. S. Cánovas, A. Linero, Topological dynamics classification of duopoly games, Chaos, Solitons \& Fractals 12 (2001), 1259-1266.
[8] S. C. Chu, R. D. Moyer, On continuous functions, commuting functions and fixed points, Fund. Math. 59 (1966), 91-95.
[9] H. Cohen, On fixed points of commuting functions, Proc. Amer. Math. Soc. 15 (1964), 293-296.
[10] A. Cournot, Recherches sur les Principes Mathématiques de la Théorie des Richesses, Hachette, Paris, 1838.
[11] R.-A. Dana, L. Montrucchio, Dynamic Complexity in Duopoly Games, J. Econom. Theory 40 (1986), 40-56.
[12] R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139-1141.
[13] R. DeMarr, A common fixed point theorem for commuting mappings, Amer. Math. Monthly 70 (1963), 535-537.
[14] M. Grinč, On common fixed points of commuting triangular maps, Bull. Polish Acad. Sci. Math. 47 (1999), 61-67.
[15] M. Grinč, Ľ. Snoha, Jungck Theorem for triangular maps and related results, Applied General Topology 1 (2000), 83-92.
[16] J. P. Huneke, On common fixed points of commuting continuous functions on an interval, Trans. Amer. Math. Soc. 139 (1969), 371-381.
[17] J. R. Jachymski, Equivalent conditions involving common fixed points for maps on the unit interval, Proc. Amer. Math. Soc. 124 (1996), 3229-3233.
[18] G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc. 103 (1988), 977-983.
[19] G. Jungck, Common fixed points for compatible maps on the unit interval, Proc. Amer. Math. Soc. 115 (1992), 495-499.
[20] T. Mitchell, Common fixed points for equicontinuous semigroups of mappings, Proc. Amer. Math. Soc. 33 (1972), 146-150.
[21] T. Puu, Nonlinear economic dynamics, Springer-Verlag, Berlin, 1997.
[22] J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), 399-448.
[23] A. J. Schwartz, Common periodic points of commuting functions, Michigan Math. J. 12 (1965), 353-355.
[24] A. N. Sharkovskii, Coexistence of cycles of a continuous map of the line into itself, Ukrain. Math. J. 16 (1964), 61-71 (in Russian).
[25] A.N. Sharkovskii, S.F. Kolyada, A.G. Sivak and V.V. Fedorenko, Dynamics of One-Dimensional Maps, Kluwer Academic Publishers, 1997.
[26] A. L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703-706.
[27] T. H. Steele, A note on periodic points and commuting functions, Real Anal. Exchange 24 (1998/9), 781-790.

[^0]: Key Words: Commuting functions, periodic point, common fixed point, Cournot duopoly, Cournot maps, Jungck's Theorem, equicontinuous family

 Mathematical Reviews subject classification: 37E99, 26A18
 Received by the editors April 15, 2002
 *The author wishes to thank Professor José S. Cánovas for his fruitful suggestions and comments in order to improve the reading of the paper. This paper has been partially supported by the D.G.E.S.I.C. Grant PB98-0374-C03-01 and Fundación Séneca Grant PI8/00807/FS/01.

