Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland. e-mail: grande@ab-byd.edu.pl

QUASICONTINUITY AND MEASURABILITY OF FUNCTIONS OF **TWO VARIABLES**

Abstract

In this article we establish some conditions concerning the sections f^y of a function $f: \mathbb{R}^2 \to \mathbb{R}$ having Lebesgue measurable sections f_x which imply the measurability of f. The first condition is more general than condition \mathcal{A} introduced in [5].

Let \mathbb{R} be the set of all reals and let $D \subset \mathbb{R}$ be a nonempty set.

A function $h: D \to \mathbb{R}$ is quasicontinuous [resp. upper semi-quasicontinuous] {lower semi-quasicontinuous}([6, 7]) at a point $x \in D$ if for every positive real η and for every open interval I containing x there is an open interval $J \subset I$ such that $J \cap D \neq \emptyset$ and $h(J \cap D) \subset (h(x) - \eta, h(x) + \eta)$ [resp. $h(J \cap D) \subset (-\infty, h(x) + \eta)] \{h(J \cap D) \subset (h(x) - \eta, \infty)\}.$

Denote by μ the Lebesgue measure in \mathbb{R} and by μ_e the outer Lebesgue measure in \mathbb{R} . For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $D_{\mu}(A, x)$ $(D_{l}(A, x))$ of the set A at the point x as

$$\limsup_{h \to 0^+} \frac{\mu_e(A \cap [x - h, x + h])}{2h}$$

(
$$\liminf_{h \to 0^+} \frac{\mu_e(A \cap [x - h, x + h])}{2h} \text{ respectively}).$$

A point x is said to be an outer density point (a density point) of a set A if $D_l(A, x) = 1$ (if there is a Lebesgue measurable set $B \subset A$ such that $D_l(B, x) = 1).$

The family, T_d , of all sets A for which the implication

$$x \in A \Longrightarrow x$$
 is a density point of A

Received by the editors January 21, 2001

Key Words: Quasicontinuity, measurability, section, density topology, function of two variables Mathematical Reviews subject classification: 26B05, 26A15

^{*}Supported by Bydgoszcz Academy grant 2000

holds, is a topology called the density topology ([1, 11]). The sets $A \in T_d$ are measurable.

In [5] the family, \mathcal{A} , of all functions $g : \mathbb{R} \to \mathbb{R}$ for which the sets D(g) of all discontinuity points of g are nowhere dense and for each nonempty set $E \subset D(g)$ belonging to the density topology, T_d , the restricted function $g \upharpoonright E$ is quasicontinuous, was introduced and the following theorem is proved:

Theorem 1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that all sections $f_x, x \in \mathbb{R}$, are (Lebesgue) measurable. If all sections $f^y, y \in \mathbb{R}$, are quasicontinuous and belong to the family \mathcal{A} then f is (Lebesgue) measurable as the function of two variables.

In this article, I generalize this theorem.

Let \mathcal{E} be the family of all functions $g : \mathbb{R} \to \mathbb{R}$ which are upper and lower semi-quasicontinuous at each point $x \in \mathbb{R}$ such that for each nonempty set $E \subset D(g)$ belonging to the density topology the restricted function $g \upharpoonright E$ is upper and lower semi-quasicontinuous at each point $u \in E$.

It is obvious to observe that the family of all quasicontiuous functions $g \in \mathcal{A}$ is a nowhere dense subset in the space of all functions $g \in \mathcal{E}$ with the metric

$$\rho_C(g,h) = \min(1, \sup_{x \in \mathbb{R}} |g(x) - h(x)|)$$

of uniform convergence. So, the following theorem is a generalization of Theorem 1.

Theorem 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that the sections $f_x, x \in \mathbb{R}$, are measurable. If the sections $f^y \in \mathcal{E}$ for $y \in \mathbb{R}$ then f is measurable as the function of two variables.

In the proof of this theorem we apply the following Lemma which is a particular case of Davies Lemma from [2] and a remark on functions from the family \mathcal{E} .

Lemma 1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function. If for every positive real η and for each measurable set $A \subset \mathbb{R}^2$ of positive measure there is a measurable set $B \subset A$ of positive measure such that $\operatorname{osc}_B f \leq \eta$ then the function f is measurable.

Remark 1. Let $g \in \mathcal{E}$ be a bounded function and let $A \subset \mathbb{R}$ be a nonempty set belonging to T_d . For each positive real η there is an open interval I such that $I \cap A \neq \emptyset$ and $\operatorname{osc}_{(I \cap A)} g < \eta$.

PROOF. If $A \setminus D(g) \neq \emptyset$ then g is continuous at a point belonging to A and in this case the proof is obvious. So suppose that $A \subset D(g)$. The function g is bounded on A then we find a point $x \in A$ such that $g(x) > \sup_A g - \frac{\eta}{4}$. Since the restricted function g/A is lower semi-quasicontinuous at x, there is an open interval I with $I \cap A \neq \emptyset$ and $g(I \cap A) \subset (g(x) - \frac{\eta}{4}, \infty)$. But

$$g(I \cap A) \subset (-\infty, g(x) + \frac{\eta}{4}),$$

so $\operatorname{osc}_{(I \cap A)} g \leq \frac{\eta}{2} < \eta$.

PROOF OF THEOREM 2. Without loss of the generality we may assume that f is bounded, since in the contrary case we can consider the function arctgf.

We will show that the function f satisfies the assumptions of the above Lemma. Let $A \subset \mathbb{R}^2$ be a set of positive measure and let η be a positive real. For $x, y \in \mathbb{R}$ denote by $A_x = \{u \in \mathbb{R}; (x, u) \in A\}$ the vertical section of the set A corresponding to x and respectively by $A^y = \{t \in \mathbb{R}; (t, y) \in A\}$ the horizontal section of the set A corresponding to y. Moreover let

$$K = \{(x, y) \in A; x \text{ is a density point of } A^y\},$$
$$E = \{(x, y) \in K; x \in D(f^y)\}$$

and let $H = K \setminus E$. Denote by μ_2 the Lebesgue measure in \mathbb{R}^2 and observe that by well known theorem from Saks monograph [9] (p. 130-131) $\mu_2(A \setminus K) = 0$.

Now we will consider two cases.

Case I. The set H is not of measure 0.

Then for every point $(x, y) \in H$ there are open intervals $I(x, y) \ni x$ and J(x, y) with rational endpoints such that $\mu(I(x, y) \cap K^y) > 0$ and $d(J(x, y) < \frac{\eta}{4} (d(J(x, y)))$ denotes the length of the interval J(x, y) and $f^y(I(x, y)) \subset J(x, y)$. Let $I_1, I_2, \ldots, I_n, \ldots$ be a sequence of all open intervals with rational endpoints, let J_1, \ldots, J_n, \ldots be an enumeration of all open intervals with $d(J_n) < \frac{\eta}{4}$ and for $n, m = 1, 2, \ldots$ let

$$A_{n,m} = \{(x,y) \in H; I(x,y) = I_n \text{ and } J(x,y) = J_m\}.$$

Then $H = \bigcup_{n,m=1}^{\infty} A_{n,m}$, and consequently there is a pair of positive integers j, k for which the set $A_{j,k}$ is not of measure zero. Let

$$V = \{y; \exists_x(x, y) \in A_{j,k}\}$$
$$U = \{y; y \text{ is an outer density point of } V\}$$

and $X = K \cap (I_j \times U)$. The set X is measurable and by Fubini's Theorem it is of positive measure. Put $B = X \cap f^{-1}(L_k)$, where $L_k = [a_k, b_k]$ is the closed interval having the same center as J_k and the length equal η . Evidently, $K \cap (I_i \times V) \subset B$.

We will prove that the set $X \setminus B$ is of measure zero. Really, if the set $X \setminus B$ is of positive outer measure, then by the equality

$$X \setminus B = (X \cap f^{-1}((-\infty, a_k))) \cup (X \cap f^{-1}((b_k, \infty))),$$

at least one of the sets on the right side of the above equality is of positive outer measure. Assume that the set $Y = X \cap f^{-1}((-\infty, a_k))$ is not of measure zero. By the upper semi-quasicontinuity of the sections f^y for each point $(x, y) \in Y$ there is an open interval $K(x, y) \subset I_j$ with rational endpoints such that for $t \in K(x, y)$ we have $f(t, y) < a_k$. Let K_1 be an open interval such that the set

$$Z = \{(x, y) \in Y; K(x, y) = K_1\}$$

is of positive outer measure. Put $W = \{y \in \mathbb{R}; \exists_x(x, y) \in Z\}$ and let $v \in K_1$ be a point. Then for $y \in W$ we have $f(v, y) \in \mathbb{R} \setminus L_k$ and for $y \in V$ the relation $f(v, y) \in J_k \subset L_k$ holds.

Observe that $V, W \subset U$, the set W is of positive outer measure, every point of the set U is an outer density point of the set V and $f_v(W) \subset \mathbb{R} \setminus L_k$ and $f_v(V) \subset L_k$. This contradicts to the measurability of the section f_v .

Let $B \subset X$ and $\mu_2(X \setminus B) = 0$. Then the set $B \subset A$ is measurable and $\mu_2(B) > 0$ and $\operatorname{osc}_B f \leq \eta$.

Case II. The set H is of measure 0.

In this case we put $F_1 = \{(x, y) \in E; x \text{ is a density point of } E^y\}$. Since all sections $f^y \in \mathcal{E}, y \in \mathbb{R}$, analogously as in case I by Remark 1 we find open intervals I, J and a set $P \subset \mathbb{R}$ such that $d(J) < \frac{\eta}{4}$, P is not of measure zero, $I \cap (F_1)^y \neq \emptyset$ for $y \in P$ and $f(x, y) \in J$ for $(x, y) \in F_1 \cap (I \times P)$. Let

 $Z = \{y; \text{ the outer density of the set } P \text{ at } y \text{ is equal } 1\}$

and $S = F_1 \cap (I \times Z)$. Then the set S is measurable and by Fubini's Theorem $\mu_2(S) > 0$. Put $U = \{(x, y) \in S; f(x, y) \in \mathbb{R} \setminus L\}$, where L is the open interval of length equal η having the same center as J.

We will prove that $\mu_2(U) = 0$. Really, in the opposite case since the sections $f^y \in \mathcal{E}$, there are an open interval $I_1 \subset I$ and a set $B_1 \subset Z$ which is not of measure zero such that $\mu(I \cap S_x) > 0$ for $y \in B_1$, and $f(x, y) \in \mathbb{R} \setminus J$ for $(x, y) \in S \cap (I_1 \times B_1)$. If $x \in I_1$ is a point such that $\mu(S_x) > 0$ then we obtain a contradiction with the measurability of the section f_x .

So, $\mu_2(U) = 0$, the set $B = S \setminus U \subset K \subset A$ is measurable, $\mu_2(B) > 0$ and $\operatorname{osc}_B f \leq \eta$.

Remark 2. It is obvious to observe that the family of all functions $g : \mathbb{R}^2 \to \mathbb{R}$ satisfying the hypothesis of Theorem 1 is a nowhere dense subset in the space of all functions satisfying the hypothesis of Theorem 2 with the metric ρ_C of uniform convergence.

Before the formulation of the next theorem we recall two examples of nonmeasurable functions of two variables.

Example 1. (W. Sierpiński [10]). There is a nonmeasurable set $A \subset \mathbb{R}^2$ such that for every straight line p the inequality $card(A \cap p) \leq 2$ is true. Let ϕ be the characteristic function of the set A.

Example 2. (R. O. Davies [2]) Martin's Axiom (Continuum Hypothesis) implies that there is a nonmeasurable function $\psi : \mathbb{R}^2 \to [0, 1]$ such that the sections $\psi^y, y \in \mathbb{R}$, are approximately continuous and for each $x \in \mathbb{R}$ the set $\{t \in \mathbb{R}; f(x, t) \neq 0\}$ is of measure zero (is countable).

Remark 3. Observe that for every countable set $G \subset \mathbb{R}$ there is a set $H \subset \mathbb{R}$ of measure zero such that the restricted sections $\{\phi^y/(\mathbb{R}\setminus H)\}_{y\in G}$ and $\{\psi^y/(\mathbb{R}\setminus H)\}_{y\in G}$ are equal zero.

We will say that the sections $f^y, y \in \mathbb{R}$, of a function $f : \mathbb{R}^2 \to \mathbb{R}$ satisfy the condition

(*) if for each positive real η , for each nonempty open set $U \subset \mathbb{R}$ and for all $u, v \in \mathbb{R}$ the condition

$$\operatorname{cl}(\{x \in U; |f(x, u) - f(x, v)| \le \eta\}) \supset U$$

(cl denotes the closure operation) implies the inequality

$$|f(t,u) - f(t,v)| \le \eta$$
 for all $t \in U$.

In [8] O'Malley introduced the topology T_r generated by the basis of all sets A belonging to the density topology which are simultaneously F_{σ} -sets and G_{δ} -sets.

Observe that if the sections f^y are T_r -continuous then they satisfy the condition (*).

We will say that a function $f : \mathbb{R}^2 \to \mathbb{R}$ satisfies the condition (**) if the sections f^y , $y \in \mathbb{R}$, are of the first Baire class, the sections f_x , $x \in \mathbb{R}$ are measurable and for each nonempty set $A \in T_d$ there is a point $y \in A$ such that for each nonempty set $B \in T_d$ and for each positive real η there are a nonempty set $F \subset A$ belonging to T_d and a sequence $(u_n)_n$ such that $y \in F$, $B \cap \operatorname{int}(\operatorname{cl}(\{u_n; n \ge 1\})) \neq \emptyset$ and $|f(u_n, z) - f(u_n, t)| \le \eta$ for all $z, t \in F$ and $n = 1, 2, \ldots$ (int denotes the interior operation).

Theorem 3. If a function $f : \mathbb{R}^2 \to \mathbb{R}$ satisfies the conditions (*) and (**) then f is measurable.

PROOF. We will prove that f satisfies the hypothesis of Lemma 1. For this fix a real $\eta > 0$ and a measurable set $H \subset \mathbb{R}^2$ of positive measure. There is a set $G \subset H$ such that $\mu_2(H \setminus G) = 0$ and for each point $(x, y) \in G$ the sections $G_x, G^y \in T_d$ ([3]). Since the sections $f^y, y \in \mathbb{R}$, are Baire 1 class, for each point $y \in Pr_Y(G) = \{y; \exists_x(x, y) \in G\}$ there is an open interval I(y)with rational endpoints such that $I(y) \cap G^y \neq \emptyset$ and $\operatorname{osc}_{(I \cap G^y)} f^y < \frac{\eta}{4}$. The family of intervals with rational endpoints is countable, so there is an open interval I for which the set $M = \{y \in Pr_Y(G); I(y) = I\}$ is of positive outer measure. Let A be the set of all outer density points of the set M. The set A is nonempty and belongs to T_d . Put $P = G \cap (I \times A)$. The set P is measurable, and by Fubini's theorem, $\mu_2(P) > 0$. So, there is a nonempty set $K \in T_d$ which is contained in the set $\{y \in Pr_Y(P); \mu(P^y) > 0\}$. By the hypothesis (**) there is a point $v \in K$ such that for each nonempty set $B \in T_d$ there are a nonempty set $F \in T_d$ and a sequence $(u_n)_n$ such that $v \in F \subset K$ and $|f(u_n,t) - f(u_n,y)| < \frac{\eta}{4}$ for all $t, y \in F$ and $n \ge 1$ and $B \cap \operatorname{int}(\operatorname{cl}(\{u_n; n \geq 1\})) \neq \emptyset$. Find a nonempty set $F \in T_d$ and a sequence $(u_n)_n$ satisfying the above conditions for the set $B = P^v$. Let $E = P \cap (I \times F)$. Then $E \subset H$ is a measurable set of positive measure and for arbitrary points $(x, y), (s, t) \in E$, we have

$$|f(x,y) - f(s,t)| \le |f(x,y) - f(s,y)| + |f(s,y) - f(s,t)| < \frac{\eta}{4} + \frac{\eta}{4} = \frac{\eta}{2}.$$

So, $\operatorname{osc}_E f \leq \frac{\eta}{2} < \eta$.

Observe that the functions ϕ and ψ from Examples 1 and 2 satisfy the condition (**) but they are not measurable. So they do not satisfy the condition (*).

An open problem is the following.

Problem. ([4], Probl. 1232.) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that the sections $f^y, y \in \mathbb{R}$, are T_r -continuous and the sections $f_x, x \in \mathbb{R}$, are measurable. Must the function f be measurable as the function of two variables?

The next example shows that there are T_r -continuous functions $g: \mathbb{R} \to \mathbb{R}$ which do not belong to the family \mathcal{E} . So, the answer to the above problem does not result from Theorem 2. Theorem 3 gives only a partial answer to this problem.

Example 3. Let $C \subset (0, 1)$ be a Cantor set of positive measure and let $(I_n)_n$ be an enumeration of all components of the set $(0, 1) \setminus C$. In every component

 $I_n = (a_n, b_n), n \ge 1$, of the open set $(0, 1) \setminus C$ we find a closed interval $J_n = [c_n, d_n] \subset I_n$ and a continuous function $f_n : (a_n, b_n) \to [0, 1]$ such that: $f_n(J_n) = [0, 1]$ and $f_n((a_n, b_n) \setminus J_n) = \{1\}$, and

$$\frac{d_n - c_n}{\min(c_n - a_n, b_n - d_n)} < \frac{1}{n}.$$

Putting

$$g(x) = \begin{cases} f_n(x) & \text{for } x \in I_n, \ n \ge 1\\ 1 & \text{otherwise} \end{cases}$$

we obtain an approximately continuous function which is continuous at each point $x \in \mathbb{R} \setminus C$ and such that the restricted function $g \upharpoonright C$ is also continuous. So g is in the class B_1^* (see [8]) and consequently T_r -continuous.

Let $A \subset C$ is a nonempty set belonging to T_d and for every index $n \geq 1$ let $K_n \subset J_n$ be an open interval for which $f(K_n) \subset [0, \frac{1}{3}]$. Then the set

$$M = A \cup \bigcup_{n} K_n \in T_d,$$

but the restricted function g/M is not upper semi-quasicontinuous at points $x \in A$. So the function g is not in the class \mathcal{E} .

References

- A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math., 659, Springer-Verlag, Berlin 1978.
- [2] R. O. Davies, Separate approximate continuity implies measurability, Proc. Cambridge. Philos. Soc., 73 (1973), 461–465.
- [3] Z. Grande, La mesurabilité des fonctions de deux variables et de la superposition F(x, f(x)), Dissert. Math., **159** (1978), 1–45.
- [4] Z. Grande, Semiéquicontinuité approximative et mesurabilité, Colloq. Math., 45 (1981), 133–135.
- [5] Z. Grande, On the measurability of functions f : ℝ² → ℝ having Pawlak's property in one variable, Real Anal. Exch., 24 No. 2 (1999–2000), 647– 652.
- [6] S. Kempisty, Sur les fonctions quasi-continues, Fund. Math., 19 (1932), 184–197.

- [7] T. Neubrunn, Quasi-continuity, Real Anal. Exchange, 14 No. 2 (1988-89), 259–306.
- [8] R. J. O'Malley, Approximately differentiable functions. The r topology, Pac. Math. J., 72 (1977), 207–222.
- [9] S. Saks, Theory of the integral, Warsaw 1937.
- [10] W. Sierpiński, Sur un probléme concernant les ensembles mesurables superficiellement, Fund. Math., 1 (1920), 112–115.
- [11] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275-284.