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APPROXIMATION OF CONVEX
FUNCTIONS

Abstract

In this note we give an elementary proof that an arbitrary convex
function can be uniformly approximated by a convex C∞-function on
any closed bounded subinterval of the domain. An interesting byprod-
uct of our proof is a global equation for a polygonal (piecewise affine)
function.

1 Convex functions

A real valued, not necessarily differentiable, function f defined on an open
interval I is convex if for any two points u, v in the domain of f the portion
of the graph between u and v lies below the corresponding secant. Formally,
for any u, v ∈ I,

f((1− t)u+ tv) ≤ (1− t)f(u) + tf(v) for all t ∈ [0, 1]. (1.1)

Geometrically (1.1) means that the slopes of secants of f increase in the fol-
lowing sense: If x1 < x2 < x3, then according to [1] or [4],

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
≤ f(x3)− f(x2)

x3 − x2
.

The function f is strictly convex if the inequality (1.1) is strict for all
t ∈ (0, 1), and affine if the inequality (1.1) is always an equality. (It is well
known that the general form of an affine function g is g(x) = αx+ β for some
constants α, β ∈ R.) A convex function f is continuous on I. Hence on each
compact subinterval [a, b] of I, f can be uniformly approximated by a C∞-
function. An extra effort must go into ensuring that we can choose a convex
approximating function on [a, b].
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It is well known that such an approximation is possible (see Ghomi [2]),
based on a convolution of f with an infinitely smooth nonnegative function θ.
This approach requires the knowledge of Lebesgue integral and convolutions,
and some sophisticated mathematical reasoning.

The aim of the present paper is to give an elementary proof of the ap-
proximation of convex functions by convex C∞-functions, requiring only first
year calculus and linear algebra. Details of elementary properties of convex
functions needed in this note can be found in [1] or in the monograph [4] by
Roberts and Varberg.

First we look at one of the simplest convex functions, f(x) = |x|, defined
on R. To approximate f by a differentiable convex function g, we may try to
round off the cusp of |x| by a suitable circular arc touching |x|; this leads to
a once differentiable convex function. To improve on differentiability, we may
round off the cusp with an arc of a sinusoid touching |x| whose tangent points
are also inflection points, this time obtaining twice differentiable function.

Our ultimate objective is attained when we use a branch of a hyperbola
which has |x| for asymptotes.

Lemma 1. Let ε > 0 and let Φε be defined by

Φε(x) =
√
x2 + ε2, x ∈ R. (1.2)

Then Φε is a strictly convex C∞-function satisfying∣∣|x| − Φ(x)
∣∣ ≤ ε for all x ∈ R. (1.3)

Proof. For any x ∈ R and any ε > 0,

0 ≤
√
x2 + ε2 − |x| = ε2√

x2 + ε2 + |x|
≤ ε2

ε
= ε.

Figure 1

The strict convexity of Φε follows from the positivity of the second derivative,

Φ′′ε (x) =
ε2

(x2 + ε2)3/2
> 0.

By induction we find that, for any n ∈ N,

Φ(n)
ε (x) =

qn(x)

(x2 + ε2)n−1/2
,

where qn(x) is a polynomial in x of degree n−2; hence Φε is a C∞-function.
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2 Polygonal functions

Since we know how to approximate |x| and, more generally |x − a|, by C∞-
functions, we also know how to approximate linear combinations of such func-
tions. It turns out that every polygonal function can be expressed as a linear
combination of functions of the form |x− ak|.

A function P defined on a compact interval [a, b] is polygonal (or piecewise
affine) if it is continuous and if there is a partition Q given by

a = a0 < a1 < · · · < an−1 < an = b (2.1)

such that P (x) is affine on each subinterval [ak−1, ak], k = 1, . . . , n. The points
(ak, P (ak)) ∈ R2 are the vertices of P . We define the norm of Q by ‖Q‖ =
maxi=1,...,n(ai − ai−1). A polygonal function P is uniquely identified by its
vertices (a0, b0), (a1, b1), . . . , (an, bn). We now derive a global representation
for polygonal functions.

Theorem 1. The polygonal function P with the vertices (a0, b0), . . . , (an, bn)
based on a partition (2.1) has a unique representation of the form

P (x) =

n∑
k=0

pk|x− ak| = (p0 − pn)x+ (pnan − p0a0) +

n−1∑
k=1

pk|x− ak| (2.2)

for all x ∈ [a, b]. The coefficients pk are given by

pk = 1
2 (sk+1 − sk), k = 0, 1, . . . , n, (2.3)

where

sn+1 =
bn + b0
an − a0

= −s0, sk =
bk − bk−1
ak − ak−1

, k = 1, . . . , n. (2.4)

Proof. Let us define R(x) =
∑n
k=0 pk|x − ak| with some real coefficients pk.

Then R is continuous and affine on each subinterval [ak−1, ak] (k = 1, . . . , n);
hence R is a polygonal function with the vertices (ak, R(ak)), k = 0, . . . , n.
We determine the coefficients pk to satisfy

R(ak) = bk, k = 0, . . . , n.

This is a linear system which can be written in matrix form as

Ap = b,
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where

A =


0 a1 − a0 a2 − a0 . . . an − a0

a1 − a0 0 a2 − a1 . . . an − a1
a2 − a0 a2 − a1 0 . . . an − a2
. . . . . . . . . . . . . . .

an − a0 an − a1 an − a2 . . . 0

 , b =


b0
b1
b2
. . .
bn

 , p =


p0
p1
p2
. . .
pn

 .
It is not difficult to find the inverse of A. Each row of the symmetric matrix
A−1 has only three nonzero entries,

A−1 =


c00 c01 0 0 . . . 0 0 c0n
c01 c11 c12 0 · · · 0 0 0
0 c12 c22 c23 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . · · ·
0 0 0 . . . 0 cn−2,n−1 cn−1,n−1 cn−1,n
c0n 0 0 . . . 0 0 cn−1,n cnn

 ,

where

c00 =
1

2

(
1

an − a0
− 1

a1 − a0

)
, c01 =

1

2

1

a1 − a0
, c0n =

1

2

1

an − a0
,

ck,k−1 =
1

2

1

ak − ak−1
, ckk = −1

2

(
1

ak+1 − ak
+

1

ak − ak−1

)
,

ck,k+1 =
1

2

1

ak+1 − ak
, k = 1, . . . , n− 1,

cn−1,n =
1

2

1

an − an−1
, cnn =

1

2

(
1

an − a0
− 1

an − an−1

)
.

This can be checked by matrix multiplication. Then p = A−1b. A straight-
forward calculation shows that the coordinates of p are given by (2.3) and
(2.4).

Remark. In numerical mathematics, polygonal functions are regarded as lin-
ear splines (see, for instance, [3, Chapter 6]). Our construction amounts to
showing that the vector space of all linear splines based on the partition Q
defined by (2.1) has a basis consisting of the functions α + βx, |x − a1|,. . . ,
|x − an−1|, while giving an explicit expression for the coordinates relative to
this basis. An alternative basis, given in [3, p. 231], consists of the functions
α+βx, (x−a1)+,. . . , (x−an−1)+. We can recover the results in [3] for linear
splines using the relation u+ = 1

2 (|u|+ u).
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3 Approximation of convex functions

We can now present our main theorem.

Theorem 2. Let f be a function convex on an open interval I. For any
subinterval [a, b] of I and any ε > 0 there exists a convex C∞-function h on
[a, b] such that |f(x)− h(x)| ≤ ε for all x ∈ [a, b].

Proof. Let [a, b] ⊂ I and let ε > 0 be given. Then f is uniformly continuous
on [a, b], and there exists δ > 0 such that for any x1, x2 ∈ [a, b] satisfying
|x1 − x2| < δ we have |f(x1) − f(x2)| ≤ 1

2ε. Let Q be a partition of [a, b]
defined by (2.1), with ‖Q‖ < 1

2δ. Let P be the polygonal function on [a, b]
with the vertices (a0, b0), . . . , (an, bn), where bk = f(ak) (k = 0, . . . , n). We
observe that

|f(x)− P (x)| ≤ 1
2ε for all x ∈ [a, b]. (3.1)

Since f is convex, the slopes sk = (bk−bk−1)/(ak−ak−1) are increasing with
k (k = 1, . . . , n− 1). Hence P is of the form (2.2) with pk = 1

2 (sk+1 − sk) ≥ 0

for k = 1, . . . , n− 1. Let ρ =
∑n−1
k=1 pk; we may assume that ρ > 0, otherwise

P is affine. Let Φ = Φε/2ρ and define

h(x) = (p0 − pn)x+ (pnan − p0a0) +

n−1∑
k=1

pkΦ(x− ak).

Then h is a C∞-function whose second derivative is nonnegative in view of
Lemma 1:

h′′(x) =

n−1∑
k=1

pkΦ′′(x− ak) ≥ 0 for all x ∈ [a, b];

hence, h is convex. Further, by Lemma 1,

|P (x)− h(x)| ≤
n−1∑
k=1

pk
∣∣|x− ak| − Φ(x− ak)

∣∣ ≤ ρ ε

2ρ
=

1

2
ε. (3.2)

Combining (3.1) and (3.2), we obtain the result.

4 Example

We give an example of the approximation process described in our main the-
orem. Given the interval [−3, 3], we choose the partition Q as

−3 < − 3
2 < −

1
2 < 0 < 1 < 5

2 < 3.
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The polygonal function P (x) based on this partition with vertices on the graph
of the convex function f(x) = x2 is given by

P (x) = 1
2x− 6 + 5

4

∣∣x+ 3
2

∣∣+ 3
4

∣∣x+ 1
2

∣∣+ 3
4

∣∣x∣∣+ 5
4

∣∣x− 1
∣∣+
∣∣x− 5

2

∣∣
(Figure 2 on the left.) The smoothing function h with ε2 = 0.05 (Figure 2 on
the right) is given by

h(x) = 1
2x− 6 + 5

4Φ
(
x+ 3

2

)
+ 3

4Φ
(
x+ 1

2

)
+ 3

4Φ(x) + 5
4Φ(x− 1) + Φ

(
x− 5

2

)
,

where Φ(x) =
√
x2 + 0.05. Even with this rather coarse partition we get a

reasonable resemblance of the function f(x) = x2.
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Figure 2
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