Szymon Plewik, Institute of Mathematics, University of Silesia in Katowice, ul. Bankowa 14, 40007 Katowice, Poland.
email: plewik@ux2.math.us.edu.pl

A SET OF MEASURE ZERO WHICH CONTANIS A COPY OF ANY FINITE SET

Abstract
We answer a question which was stated by R. E. Svetic in [11]. The Bergelson-Hindman-Weiss lemma, which was placed in [1], is improved.

1 On Svetic's Question

In [11, p. 537], there was stated the following question: Is it true that if a measurable set contains a copy of each finite set, then the set has positive measure?

If one means that a copy [a similar copy of a subset of real numbers] of a subset X it is a set of the form $x+t X=\{x+t y: y \in X\}$, where x and $t \neq 0$ are some real numbers, then the question had been stated by E. Marczewski in [6] or [7] and was answered negatively by P. Erdös and S. Kakutani in [3]. More subtle examples which answered the question negatively one can find in [2], too. If one assumes that a copy means a similar copy but with $t=1$: a set $x+X=\{x+y: y \in X\}$, where x is a real number; then the answer is negative, also. We present an answer which improves the P. Erdös and S. Kakutani result [3]. In [3] it was noted the followings.

Since for each n there holds $\sum_{m=n+1}^{\infty} \frac{m-1}{m!}=\frac{1}{n!}$, then every real $x \in[0,1)$ is uniquely of the form $x=\sum_{n=2}^{\infty} \frac{b_{n}}{n!}$, where always $b_{n} \in\{0,1, \ldots, n-2, n-1\}$ and infinitely many times there is $b_{n} \neq n-1$.

The subset

$$
S=\left\{\sum_{n=2}^{\infty} \frac{b_{n}}{n!}: b_{n} \in\{0,1, \ldots, n-3, n-2\}\right\} \subset[0,1)
$$

[^0]has Lebesgue measure zero. It is perfect and meager, too.
And some modification of the following lemma.
Lemma 1. Let $n \geq m \geq 3$ and $\left\{a_{n}, b_{n}\right\} \in\{0,1, \ldots, n-2, n-1\}$. If always, $a_{n}+b_{n} \neq n-2$ and $a_{n}+b_{n} \neq n-1$ and $a_{n}+b_{n} \neq 2 n-2$, then
$$
\sum_{n=m+1}^{\infty} \frac{a_{n}+b_{n}}{n!}=\sum_{n=m}^{\infty} \frac{c_{n}}{n!}
$$
where $c_{n} \in\{0,1, \ldots, n-3, n-2\}$.
Proof. Suppose $\sum_{n=m+1}^{\infty} \frac{a_{n}+b_{n}}{n!}=\sum_{n=m}^{\infty} \frac{c_{n}}{n!}$, where $c_{n} \in\{0,1, \ldots, n-2, n-1\}$.
For the digit c_{3} there holds
$$
\frac{c_{3}}{3!} \leq \sum_{n=4}^{\infty} \frac{a_{n}+b_{n}}{n!} \leq 2 \sum_{n=4}^{\infty} \frac{n-1}{n!}=\frac{2}{3!}
$$

Since for infinitely many n there holds $a_{n}+b_{n} \neq 2 n-2$, then the second inequality is sharp. Therefore $c_{3}<2$.

Again use this that for infinitely many n there holds $a_{n}+b_{n} \neq 2 n-2$. So, $m>3$ implies $c_{m}=a_{m}+b_{m}(\bmod m)$ or $c_{m}=a_{m}+b_{m}+1(\bmod m)$. But we assume that always holds $c_{m}<m$. Therefore $a_{m}+b_{m} \neq m-2$ and $a_{m}+b_{m} \neq m-1$ implies that $c_{m}<m-1$.

To answer Svetic's question we present the following theorem.
Theorem 1. The subset of real numbers

$$
\bigcup_{k=1}^{\infty} k \cdot S=\left\{k \sum_{n=2}^{\infty} \frac{b_{n}}{n!}: b_{n} \in\{0,1, \ldots, n-3, n-2\} \text { and } k \in\{1,2, \ldots\}\right\}
$$

has Lebesgue measure zero and contains a copy of any finite subsets of real numbers.

Proof. Since Lebesgue measure of S is zero, then any set $k \cdot S=\{k x: x \in S\}$ is of Lebesgue measure zero. Also the union $\bigcup_{k=1}^{\infty} k \cdot S$ is of Lebesgue measure zero, since it is an union of countably many sets of Lebesgue measure zero.

Let d be a natural number such that $\left\{x_{1}, x_{2}, \ldots, x_{q}\right\} \subset(0, d)$. Choose natural numbers a and m such that $m!x_{i}<a d$, for any $i \in\{1,2, \ldots, q\}$, and $m+1>2 q$. Hence

$$
\frac{x_{i}}{a d}=\sum_{k=m+1}^{\infty} \frac{b_{k}^{i}}{k!}, \quad \text { where } b_{k}^{i} \in\{0,1, \ldots, k-1\}
$$

If $n>m$, then $n>2 q$ and one can find natural numbers $b_{n}^{0} \in\{0,1, \ldots, n-$ $2, n-1\}$ such that $b_{n}^{i}+b_{n}^{0} \neq n-1$ and $b_{n}^{i}+b_{n}^{0} \neq n-2$ and $b_{n}^{i}+b_{n}^{0} \neq 2 n-2$, for each $i \in\{1,2, \ldots, q\}$. By Lemma 1 there holds

$$
\sum_{n=m+1}^{\infty} b_{n}^{i} n!+\sum_{n=m+1}^{\infty} \frac{b_{n}^{0}}{n!}=\sum_{n=m}^{\infty} \frac{c_{n}^{i}}{n!},
$$

where $c_{n}^{i} \in\{0,1, \ldots, n-3, n-2\}$. Therefore

$$
x_{i}+a d \sum_{n=m+1}^{\infty} \frac{b_{n}^{0}}{n!}=a d \sum_{n=m}^{\infty} \frac{c_{n}^{i}}{n!} \in a d \cdot S .
$$

This shows that $a d \cdot S \subset \bigcup_{k=1}^{\infty} k \cdot S$ contains a copy of $\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$.
Note that the set $a d \cdot S \subset \bigcup_{k=1}^{\infty} k \cdot S$ is an union of countably many perfect and meager sets. From the result of F. Galvin, J. Mycielski R. M. Solovay [4] it follows the following.

Theorem 2. If a set of real numbers X is countable, then for any meager set G there exists a real x such that $(x+X) \cap G=\emptyset$.

A proof of the above fact one can deduce from Theorem 3.5 which was placed in A. W. Miller, [8, p. 209]. Since a meager set can have the complement of Lebesgue measure zero, then any such complement has to contains a similar copy of any countable set. In other words, any dense G_{δ} set of Lebesgue measure zero contains a similar copy of each countable set. We have an other answer onto Svetic's question since a finite set is countable, too. But, no dense G_{δ} set of real numbers is an union of countably many perfect and meager sets. By this meaning, our Theorem 2 gives a more subtle answer onto Svetic's question.

2 A Uniform Density Theorem

Let E be an Euclidean space with a metric ϱ. For the Lebesgue measure λ on E and a compact set $X \subset E$ consider the following principle, where $B(X, h)=$ $\{x \in E: \inf \{\varrho(x, y): y \in X\}<h\}$. In [5], H. Hadwiger defined and used a principle we find useful in our context. Below, we state this principle and give a short proof.

Theorem 3 (Hadwiger Principle). For every $\varepsilon>0$ there exists $h>0$ such that for any $t \in B(\{0\}, h)$ it follows that

$$
\lambda(X)-\lambda(X \cap(X+t))<\varepsilon .
$$

Proof. For any $\varepsilon>0$ let $h>0$ be such that $\lambda(B(X, h))<\lambda(X)+\varepsilon$. So, for any $t \in B(\{0\}, h)$ there holds $X+t \subseteq B(X, h)$, and hence

$$
\lambda(X)-\lambda(X \cap(X+t)) \leq \lambda(B(X, h))-\lambda(X)<\varepsilon
$$

In the literature one can find this principle introduced as the sentence: If a set $X \subseteq E$ is compact, then $\lim _{t \rightarrow 0} \lambda(X \cap(X+t))=\lambda(X)$.

A set $X \subseteq E$ is called measurably large if X is measurable, and for every real number $h>0$ there holds $\lambda(X \cap B(\{0\}, h))>0$. This notion was introduced by V. Bergelson, N. Hindman and B. Weiss in [1, p. 63]. In fact, one can find it in Sz. Plewik and B. Voigt, [9, p. 138], where it was used in Theorem 1.

If X is a Lebesgue measurable set and X^{*} denotes its density points, then there holds the following. If $t \in X^{*}$ and $t+p \in X^{*}$, then for any real number $h>0$ the intersection $B(\{t\}, h) \cap(X-p) \cap X$ has positive Lebesgue measure. Since almost all points of X belong to X^{*} one has the following:

For any measurable set X there exists a measurable subset $X^{*} \subseteq X$
such that $\lambda(X)=\lambda\left(X^{*}\right)$ and if $p \in X^{*}$ and $t+p \in X^{*}$, then the intersection $(X-t-p) \cap(X-p)$ is measurably large.

The following lemma can be found in [1, Lemma 2.2].
Lemma 2 (Bergelson-Hindman-Weiss). Let $A \subseteq(0,1]$ be measurably large. There exist (many) $t \in A$ such that $A \cap(A-t)$ is measurably large.

We shall improve it. The word many is replaced by words for almost all. The next theorem was announced in Sz. Plewik, [10]

Theorem 4. If X is measurably large, then for almost all $t \in X$ the intersection $X \cap(X-t)$ is measurably large.

Proof. Fix a measurably large set $D \subseteq X^{*}$ such that $D_{1}=\{0\} \cup D \subseteq X$ is a compact set. Let $\alpha_{1}, \alpha_{2}, \ldots$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} \alpha_{n}<\lambda(D)$. By the Hadwiger argument there is a real number $h_{1}>0$ such that for any $t \in B\left(\{0\}, h_{1}\right)$ there holds $\lambda\left(D_{1}\right)<\lambda\left(D_{1} \cap\left(D_{1}-t\right)\right)+\alpha_{1}$. Fix $t_{1} \in D \cap B\left(\{0\}, h_{1}\right)$ and put $D_{2}=D_{1} \cap\left(D_{1}-t_{1}\right)$. The set D_{2} is compact and $\lambda\left(D_{1}\right)<\lambda\left(D_{2}\right)+\alpha_{1}$.

Suppose there have been defined compact sets $D_{1}, D_{2}, \ldots, D_{n}$ and points $\left\{t_{1}, t_{2}, \ldots, t_{n-1}\right\} \subseteq D$ such that $D_{k+1}=D_{k} \cap\left(D_{k}-t_{k}\right)$ and $\lambda\left(D_{k}\right)<\lambda\left(D_{k+1}\right)+$ α_{k}, for $0<k<n$. By the Hadwiger argument there is a positive real number $h_{n}>0$ such that for any $t \in B\left(\{0\}, h_{n}\right)$ there holds $\lambda\left(D_{n}\right)<$ $\lambda\left(D_{n} \cap\left(D_{n}-t\right)\right)+\alpha_{n}$. Fix $t_{n} \in D \cap B\left(\{0\}, h_{n}\right)$ and put $D_{n+1}=D_{n} \cap\left(D_{n}-t_{n}\right)$. The set D_{n+1} is compact and $\lambda\left(D_{n}\right)<\lambda\left(D_{n+1}\right)+\alpha_{n}$.

So, there have been defined compact sets D_{1}, D_{2}, \ldots such that

$$
\lambda(D)<\lambda\left(D_{1} \cap D_{2} \cap \ldots\right)+\sum_{n=1}^{\infty} \alpha_{n}
$$

We have assumed $\lambda(D)>\sum_{n=1}^{\infty} \alpha_{n}$, thus one infers that there exists a point $p \in D_{1} \cap D_{2} \cap \ldots$, where $p \neq 0$. Since

$$
p \in \cap\left\{D_{n}: n=1,2, \ldots\right\}=\cap\left\{D_{n} \cap\left(D_{n}-t_{n}\right): n=1,2, \ldots\right\}
$$

there always holds $p \in D_{n}-t_{n}$. So $p+t_{n} \in D_{n} \subseteq D \subseteq X^{*}$. By (*), because of $t_{n} \in D \subseteq X^{*}$, the intersection $\left(X-t_{n}\right) \cap\left(X-p-t_{n}\right)$ is always measurably large. Therefore $(X \cap(X-p))-t_{n}$ is always measurably large, too. For a real number $h>0$ take a set $A \subseteq B\left(\{0\}, \frac{h}{2}\right) \cap\left((X \cap(X-p))-t_{n}\right)$ such that $\lambda(A)>0$. If $t_{n} \in B\left(\{0\}, \frac{h}{2}\right)$, then $\lambda\left(A+t_{n}\right)>0$ and

$$
A+t_{n} \subseteq X \cap(X-p) \cap B(\{0\}, h)
$$

Since $h>0$ could be arbitrary one infers that $X \cap(X-p)$ is measurably large.
For every number $p \in D_{1} \cap D_{2} \cap \ldots$ the above argument works. Since the number $\sum_{n=1}^{\infty} \alpha_{n}<\lambda(D)$ could be arbitrarily small and $\lambda(X)=\lambda\left(X^{*}\right)$, then sets D_{n} could be chosen such that $\lambda\left(X \backslash\left(D_{1} \cap D_{2} \cap \ldots\right)\right)$ is arbitrary small, whenever $\lambda(X)<\infty$. This follows the finish conclusion.

References

[1] V. Bergelson, N. Hindman and B. Weiss, All-sum sets in (0,1 - category and measure, Mathematika, 44 (1997), 61-87.
[2] R. O. Davies, J. M. Marstrand and S. J. Taylor, On the intersections of transforms of linear sets, Colloquium Mathematicum, 7 (1960), 237-243.
[3] P. Erdös and S. Kakutani, On a perfect set, Colloquium Mathematicum, 4 (1957), 195-196.
[4] F. Galvin, J. Mycielski and R. M. Solovay, Strong measure zero sets, AMS Notices, 26 (1979), A-280.
[5] H. Hadwiger, Ein Translationsatz für Mengen positiven Masses, Portugaliae Mathematica, 5 (1946), 143-144.
[6] E. Marczewski, P 125, Colloquium Mathematicum, 3.1 (1954), 75.
[7] E. Marczewski, O przesuniȩciu zbiorów i o pewym twierdzeniu Steinhausa, Roczniki Polskiego Towarzystwa Matematycznego, Prac Matematycze, 1 (1955), 256-263 (in Polish).
[8] A. W. Miller, Special subsets of the real line, Handbook of the set-theoretic topology, Edited by K. Kunen and J. E. Vaughan, Elsevier Science Publishers B. V. (1984), 201-233.
[9] Sz. Plewik and B. Voigt, Partitions of reals: measurable approach, Journal of Combinatorial Theory (Series A), 58 (1991), 136-140.
[10] Sz. Plewik, Uniform density theorem, Real Anal. Exchange, 251 (2000), 65.
[11] R. E. Svetic, The Erdös similarity problem: a survey, Real Analysis Exchange, 262 (2000/2001), 525-539.

[^0]: Key Words: Svetic's question, Hadwiger principle, measurably large
 Mathematical Reviews subject classification: Primary 28A05; Secondary 03E05
 Received by the editors March 25, 2002
 Communicated by: Clifford E. Weil

