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A SET OF MEASURE ZERO WHICH
CONTANIS A COPY OF ANY FINITE SET

Abstract

We answer a question which was stated by R. E. Svetic in [11]. The
Bergelson-Hindman-Weiss lemma, which was placed in [1], is improved.

1 On Svetic’s Question

In [11, p. 537], there was stated the following question: Is it true that if
a measurable set contains a copy of each finite set, then the set has positive
measure?

If one means that a copy [a similar copy of a subset of real numbers] of a
subset X it is a set of the form x + tX = {x + ty : y ∈ X}, where x and t 6= 0
are some real numbers, then the question had been stated by E. Marczewski
in [6] or [7] and was answered negatively by P. Erdös and S. Kakutani in [3].
More subtle examples which answered the question negatively one can find in
[2], too. If one assumes that a copy means a similar copy but with t = 1:
a set x + X = {x + y : y ∈ X}, where x is a real number; then the answer
is negative, also. We present an answer which improves the P. Erdös and S.
Kakutani result [3]. In [3] it was noted the followings.

Since for each n there holds
∞∑

m=n+1

m− 1
m!

=
1
n!

, then every real x ∈ [0, 1)

is uniquely of the form x =
∞∑

n=2

bn

n!
, where always bn ∈ {0, 1, . . . , n− 2, n− 1}

and infinitely many times there is bn 6= n− 1.
The subset

S =

{ ∞∑
n=2

bn

n!
: bn ∈ {0, 1, . . . , n− 3, n− 2}

}
⊂ [0, 1)
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has Lebesgue measure zero. It is perfect and meager, too.
And some modification of the following lemma.

Lemma 1. Let n ≥ m ≥ 3 and {an, bn} ∈ {0, 1, . . . , n− 2, n− 1}. If always,
an + bn 6= n− 2 and an + bn 6= n− 1 and an + bn 6= 2n− 2, then

∞∑
n=m+1

an + bn

n!
=

∞∑
n=m

cn

n!
,

where cn ∈ {0, 1, . . . , n− 3, n− 2}.

Proof. Suppose
∞∑

n=m+1

an + bn

n!
=

∞∑
n=m

cn

n!
, where cn ∈ {0, 1, . . . , n−2, n−1}.

For the digit c3 there holds

c3

3!
≤

∞∑
n=4

an + bn

n!
≤ 2

∞∑
n=4

n− 1
n!

=
2
3!

.

Since for infinitely many n there holds an + bn 6= 2n − 2, then the second
inequality is sharp. Therefore c3 < 2.

Again use this that for infinitely many n there holds an + bn 6= 2n − 2.
So, m > 3 implies cm = am + bm (mod m) or cm = am + bm + 1 (mod m).
But we assume that always holds cm < m. Therefore am + bm 6= m − 2 and
am + bm 6= m− 1 implies that cm < m− 1.

To answer Svetic’s question we present the following theorem.

Theorem 1. The subset of real numbers
∞⋃

k=1

k · S =

{
k
∞∑

n=2

bn

n!
: bn ∈ {0, 1, . . . , n− 3, n− 2} and k ∈ {1, 2, . . .}

}
has Lebesgue measure zero and contains a copy of any finite subsets of real
numbers.

Proof. Since Lebesgue measure of S is zero, then any set k ·S = {kx : x ∈ S}

is of Lebesgue measure zero. Also the union
∞⋃

k=1

k · S is of Lebesgue measure

zero, since it is an union of countably many sets of Lebesgue measure zero.
Let d be a natural number such that {x1, x2, . . . , xq} ⊂ (0, d). Choose

natural numbers a and m such that m!xi < ad, for any i ∈ {1, 2, . . . , q}, and
m + 1 > 2q. Hence

xi

ad
=

∞∑
k=m+1

bi
k

k!
, where bi

k ∈ {0, 1, . . . , k − 1}.



A Set of Measure Zero Containing a Copy of Any Finite Set 415

If n > m, then n > 2q and one can find natural numbers b0
n ∈ {0, 1, . . . , n −

2, n− 1} such that bi
n + b0

n 6= n− 1 and bi
n + b0

n 6= n− 2 and bi
n + b0

n 6= 2n− 2,
for each i ∈ {1, 2, . . . , q}. By Lemma 1 there holds

∞∑
n=m+1

bi
nn! +

∞∑
n=m+1

b0
n

n!
=

∞∑
n=m

ci
n

n!
,

where ci
n ∈ {0, 1, . . . , n− 3, n− 2}. Therefore

xi + ad
∞∑

n=m+1

b0
n

n!
= ad

∞∑
n=m

ci
n

n!
∈ ad · S.

This shows that ad · S ⊂
⋃∞

k=1 k · S contains a copy of {x1, x2, . . . , xq}.
Note that the set ad ·S ⊂

⋃∞
k=1 k ·S is an union of countably many perfect

and meager sets. From the result of F. Galvin, J. Mycielski R. M. Solovay [4]
it follows the following.

Theorem 2. If a set of real numbers X is countable, then for any meager set
G there exists a real x such that (x + X) ∩G = ∅.

A proof of the above fact one can deduce from Theorem 3.5 which was
placed in A. W. Miller, [8, p. 209]. Since a meager set can have the complement
of Lebesgue measure zero, then any such complement has to contains a similar
copy of any countable set. In other words, any dense Gδ set of Lebesgue
measure zero contains a similar copy of each countable set. We have an other
answer onto Svetic’s question since a finite set is countable, too. But, no dense
Gδ set of real numbers is an union of countably many perfect and meager sets.
By this meaning, our Theorem 2 gives a more subtle answer onto Svetic’s
question.

2 A Uniform Density Theorem

Let E be an Euclidean space with a metric %. For the Lebesgue measure λ on
E and a compact set X ⊂ E consider the following principle, where B(X, h) =
{x ∈ E : inf{%(x, y) : y ∈ X} < h}. In [5], H. Hadwiger defined and used a
principle we find useful in our context. Below, we state this principle and give
a short proof.

Theorem 3 (Hadwiger Principle). For every ε > 0 there exists h > 0 such
that for any t ∈ B({0}, h) it follows that

λ(X)− λ(X ∩ (X + t)) < ε.
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Proof. For any ε > 0 let h > 0 be such that λ(B(X, h)) < λ(X) + ε. So, for
any t ∈ B({0}, h) there holds X + t ⊆ B(X, h), and hence

λ(X)− λ(X ∩ (X + t)) ≤ λ(B(X, h))− λ(X) < ε.

In the literature one can find this principle introduced as the sentence: If a
set X ⊆ E is compact, then limt→0 λ(X ∩ (X + t)) = λ(X).

A set X ⊆ E is called measurably large if X is measurable, and for every real
number h > 0 there holds λ(X ∩ B({0}, h)) > 0. This notion was introduced
by V. Bergelson, N. Hindman and B. Weiss in [1, p. 63]. In fact, one can find
it in Sz. Plewik and B. Voigt, [9, p. 138], where it was used in Theorem 1.

If X is a Lebesgue measurable set and X∗ denotes its density points, then
there holds the following. If t ∈ X∗ and t + p ∈ X∗, then for any real number
h > 0 the intersection B({t}, h)∩ (X − p)∩X has positive Lebesgue measure.
Since almost all points of X belong to X∗ one has the following:

For any measurable set X there exists a measurable subset X∗ ⊆ X
such that λ(X) = λ(X∗) and if p ∈ X∗ and t + p ∈ X∗, then the
intersection (X − t− p) ∩ (X − p) is measurably large.

(*)

The following lemma can be found in [1, Lemma 2.2].

Lemma 2 (Bergelson-Hindman-Weiss). Let A ⊆ (0, 1] be measurably large.
There exist (many) t ∈ A such that A ∩ (A− t) is measurably large.

We shall improve it. The word many is replaced by words for almost all.
The next theorem was announced in Sz. Plewik, [10]

Theorem 4. If X is measurably large, then for almost all t ∈ X the intersec-
tion X ∩ (X − t) is measurably large.

Proof. Fix a measurably large set D ⊆ X∗ such that D1 = {0}∪D ⊆ X is a
compact set. Let α1, α2, . . . be a sequence of positive real numbers such that∑∞

n=1 αn < λ(D). By the Hadwiger argument there is a real number h1 > 0
such that for any t ∈ B({0}, h1) there holds λ(D1) < λ(D1 ∩ (D1 − t)) + α1.
Fix t1 ∈ D ∩B({0}, h1) and put D2 = D1 ∩ (D1 − t1). The set D2 is compact
and λ(D1) < λ(D2) + α1.

Suppose there have been defined compact sets D1, D2, . . . , Dn and points
{t1, t2, . . . , tn−1} ⊆ D such that Dk+1 = Dk∩(Dk−tk) and λ(Dk) < λ(Dk+1)+
αk, for 0 < k < n. By the Hadwiger argument there is a positive real
number hn > 0 such that for any t ∈ B({0}, hn) there holds λ(Dn) <
λ(Dn∩(Dn−t))+αn. Fix tn ∈ D∩B({0}, hn) and put Dn+1 = Dn∩(Dn−tn).
The set Dn+1 is compact and λ(Dn) < λ(Dn+1) + αn.
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So, there have been defined compact sets D1, D2, . . . such that

λ(D) < λ(D1 ∩D2 ∩ . . .) +
∞∑

n=1

αn.

We have assumed λ(D) >
∑∞

n=1 αn, thus one infers that there exists a point
p ∈ D1 ∩D2 ∩ . . ., where p 6= 0. Since

p ∈ ∩{Dn : n = 1, 2, . . .} = ∩{Dn ∩ (Dn − tn) : n = 1, 2, . . .}

there always holds p ∈ Dn − tn. So p + tn ∈ Dn ⊆ D ⊆ X∗. By (∗), because
of tn ∈ D ⊆ X∗, the intersection (X − tn)∩ (X − p− tn) is always measurably
large. Therefore (X ∩ (X − p)) − tn is always measurably large, too. For a
real number h > 0 take a set A ⊆ B({0}, h

2 ) ∩ ((X ∩ (X − p))− tn) such that
λ(A) > 0. If tn ∈ B({0}, h

2 ), then λ(A + tn) > 0 and

A + tn ⊆ X ∩ (X − p) ∩B({0}, h).

Since h > 0 could be arbitrary one infers that X∩(X−p) is measurably large.
For every number p ∈ D1 ∩D2 ∩ . . . the above argument works. Since the

number
∑∞

n=1 αn < λ(D) could be arbitrarily small and λ(X) = λ(X∗), then
sets Dn could be chosen such that λ(X \ (D1 ∩D2 ∩ . . .)) is arbitrary small,
whenever λ(X) < ∞. This follows the finish conclusion.

References

[1] V. Bergelson, N. Hindman and B. Weiss, All-sum sets in (0, 1]– category
and measure, Mathematika, 44 (1997), 61–87.

[2] R. O. Davies, J. M. Marstrand and S. J. Taylor, On the intersections of
transforms of linear sets, Colloquium Mathematicum, 7 (1960), 237–243.

[3] P. Erdös and S. Kakutani, On a perfect set, Colloquium Mathematicum,
4 (1957), 195–196.

[4] F. Galvin, J. Mycielski and R. M. Solovay, Strong measure zero sets, AMS
Notices, 26 (1979), A-280.

[5] H. Hadwiger, Ein Translationsatz für Mengen positiven Masses, Portu-
galiae Mathematica, 5 (1946), 143–144.

[6] E. Marczewski, P 125, Colloquium Mathematicum, 3.1 (1954), 75.



418 Szymon Plewik
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