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CATEGORY OF DENSITY POINTS OF FAT
CANTOR SETS

Abstract

Denote by Dγ(P ) the set of those points where the lower Lebesgue
density of P ⊂ R is bigger or equal than γ. We show that if γ > 0.5
then Dγ(P )∩P is always of first category in any nowhere dense perfect
set P . On the other hand, there exists a fat Cantor set Q which is a
subset of D0.5(Q) while for other fat Cantor sets P it is possible that
D+(P ) = ∪γ>0Dγ(P ) is of first category in Q.

1 Introduction

In this note we answer a question asked from us by A. Danielyan during the
Sixteenth Spring Miniconference on Real Analysis. First it seemed that the not
too difficult answer to this question is known and published but we could not
find any reference to it. Danielyan’s question was motivated by his research
in Complex Analysis, namely, study of convergence properties of polynomials
bounded on certain sets, see [4], [5], and [6]. So this argument might be of
interest for people outside of Real Analysis.

Let us start with the original question. We will use the Lebesgue measure
λ on R. We call a nowhere dense perfect set P ⊂ R a fat Cantor set if each of
its portions is of positive Lebesgue measure. The lower density of P at x ∈ R,
denoted by D(x, P ), is defined as

lim inf
h→0

λ((x− h, x + h) ∩ P )
2h

.
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Given γ ∈ (0, 1] we denote by Dγ(P ) the set of those points in R where
D(x, P ) ≥ γ. Of course, D1(P ) is the set of Lebesgue density points of P . For
these points one could use lim instead of lim inf in the definition of D(x, P )
and by Lebesgue’s density theorem almost all points of P are in D1(P ), that
is, λ(P \D1(P )) = 0. The points of positive lower density of P , namely, those
points where D(x, P ) > 0 will be denoted by D+(P ). Since P \ D+(P ) ⊂
P \ D1(P ), we also have λ(P \ D+(P )) = 0. So D1(P ) ∩ P and D+(P ) ∩ P
are large. Danielyan’s questions were concerning what can be said about the
Baire category of D1(P ) and D+(P ). The answers are the following.

In Theorem 1 we show that for any γ > 0.5 and any nowhere dense perfect
set, Dγ(P ) is always of first category. So for fat Cantor sets P \ D1(P ) and
D1(P )∩P give a natural decomposition into two subsets, one having measure
zero, the other one being of first category. This “unpleasant relationship”
of measure and category is the topic of Oxtoby’s book [8]. In the proof of
Theorem 4.1 of our joint paper with W. F. Pfeffer, [3], the interested reader
can find an argument how can one use the category theorem in some difficult
situations.

In Theorem 2 we show that there exists a fat Cantor set, P , such that
D0.5(P ) ⊃ P. On the other hand, in Theorem 3 we show that there are fat
Cantor sets for which D+(P ) ∩ P is of first category in P . So if the lower
density is less than or equal 1/2 then the geometry of the set determines how
large is Dγ(P ).

In the metric case one can ask that apart from having Lebesgue measure
zero how small the set P \D1(P ) should be, if one considers Hausdorff measure.
For results of this flavor see the classical papers [1] and [2] by Besicovitch.

In our search of the literature about results related to the topic of this
paper we also found interesting the sequence of results by O’Malley, Malý,
Preiss and Zaj́ıček, [9], [7], and [10] related to the O’Malley density property
which states that if A ⊂ R is a bounded Fσ set with left density one at all of
its points then its complement contains a point with right density one.

2 Main Results

Theorem 1. If γ > 0.5 and P ⊂ R is any nowhere dense perfect set then
Dγ(P ) is always of first category in P .

Proof. Proceeding towards a contradiction assume that Dγ(P ) is of second
category. Choose γ′ such that 0.5 < γ′ < γ. Set

Hn =
{

x ∈ P :
λ((x− h, x + h) ∩ P )

2h
≥ γ′, ∀h ∈ (0,

1
n

)
}

.



Category of Density Points of Fat Cantor Sets 499

Then Dγ(P ) ⊂ ∪nHn. So there exists an n such that Hn is of second category
in P. Choose and fix such an n. Then there exists a portion of P such that
Hn is dense in it, that is, there is an open interval J such that J ∩ P 6= ∅ and
Hn is dense in J ∩ P. Since P is nowhere dense one can choose an interval
I = (a, b) which is contiguous to P, [a, b] ⊂ J , and b − a < 1

n . Then by the
density of Hn in J ∩ P one can choose a point p ∈ Hn ⊂ P, close to a ∈ P
such that letting h = b− p we have h < 1/n and λ((p−h, p + h)∩P )/2h < γ′

contradicting the definition of Hn.

Theorem 2. There exists a fat Cantor set P ⊂ R such that P ⊂ D0.5(P ).

Proof. Set

Gn =
⋃
l∈Z

(
l

2n2 ,
l

2n2 +
1

2n2+n

)
,

and P = R \ ∪∞n=1Gn. If

I =
(

j

2m2 ,
j + 1
2m2

)
6⊂

m−1⋃
n=1

Gn

then one can easily see that

λ(I \
∞⋃

n=m

Gn) ≥
∞∏

n=m

(1− 1
2n

)λ(I) = exp

( ∞∑
n=m

log(1− 1
2n

)

)
λ(I) >

> exp

(
2

∞∑
n=m

− 1
2n

)
λ(I) = exp(− 1

2m−2
)λ(I).

Therefore,

λ(I ∩
∞⋃

n=m

Gn) ≤ (1− exp(− 1
2m−2

))λ(I).

Assume x ∈ P, 0 < h < 1/2 and choose m such that

1
2(m+1)2

< h ≤ 1
2m2 .

We separate two cases.
Case I. First we also assume that

1
2 · 2m2 ≤ h ≤ 1

2m2 . (1)
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Since x ∈ P there is an interval I1 of the form [j/2m2
, (j + 1)/2m2

] which is
not a subset of the closure of ∪m−1

n=1 Gn and contains x. Then (1) implies that
there is a subinterval I2 ⊂ I1 ∩ (x− h, x + h) which is of length h. Now,

λ((x− h, x + h) ∩ P ) ≥ λ(I2 ∩ P ) = λ(I2 \
∞⋃

n=m

Gn) ≥

≥ λ(I2)− λ(I1 ∩
∞⋃

n=m

Gn) ≥ λ(I2)− λ(I1)(1− exp(− 1
2m−2

)) ≥

≥ h− 2h(1− exp(− 1
2m−2

)) = h(1− 2(1− exp(− 1
2m−2

))) = hνm,

where νm → 1 as m →∞.
Case II. Now assume 1

2(m+1)2 < h < 1
2·2m2 . Choose I1 as above and I2 ⊂

I1 ∩ (x − h, x + h) such that it is of length h and I2 ∩
⋃m

n=1 Gn = ∅. Our
assumption about h, λ(I2) = h and the way Gn’s are defined now imply that

λ(I2 \
∞⋃

n=m+1

Gn) ≥
∞∏

n=m+1

(
1− 2

2n

)
λ(I2) ≥ h exp(− 1

2m−2
).

Then,

λ((x− h, x + h) ∩ P ) ≥ λ(I2 ∩ P ) = λ(I2 \
∞⋃

n=m+1

Gn) ≥

≥ h exp(− 1
2m−2

) = hν′m,

where ν′m → 1 as m →∞.
From the above two cases it follows that D(x, P ) ≥ 0.5.

Theorem 3. There exists a fat Cantor set P ⊂ R such that D+(P ) is of first
category in P.

Proof. We will choose the sequence δn by induction so that, apart from one
more later assumption, we have 0 < δn < 1/n, δn < δn−1, and

∑∞
n=1 δn < 0.1.

We will define our fat Cantor set P as the intersection of the nested sets
En, n = 0, 1, ... . We choose E0 = [0, 1], δ1 = 0.05. We define our sets En by
induction so that En will consist of 3n many disjoint nondegenerate closed
intervals, so called base intervals of En. We also assume that δn+1 is chosen
so small that it is less than any of the gaps between the intervals comprising
En.
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Assume n is fixed, I = [a, b] is a base interval of En−1. Set I1 = [a, a+(b−
a) δn

n ], I2 = [a + (b − a)( δn

n + δn), a+b
2 ] and I3 = [a+b

2 + (b − a)δn, b]. We will
define En so that En∩ [a, b] = I1∪I2∪I3. Then λ(I1∪I2∪I3) = (1−2δn)λ(I)
and adding these equalities together for all base intervals of En−1 we have
λ(En) = (1 − 2δn)λ(En−1). If En−1 consists of 3n−1 intervals then En will
consist of 3n.

If x ∈ I1 then

λ((x− (b− a)δn, x + (b− a)δn) ∩ En) = (b− a)δn/n. (2)

By induction one can see that λ(I ∩Em) =
∏m

k=n(1− 2δk)λ(I) for m > n,
and λ(I ∩ P ) =

∏∞
k=n(1− 2δk)λ(I) > 0. So P is fat.

Now we can argue as in the proof of Theorem 1. Proceeding towards a
contradiction assume that D+(P ) is of second category.

Set

Hn =
{

x ∈ P :
λ((x− h, x + h) ∩ P )

2h
≥ 1

n
, ∀h ∈ (0,

1
n

)
}

.

If x ∈ D+(P ) then there exists an n for which x ∈ Hn. Hence we can choose an
n for which Hn is of second category. Choose a portion (α, β)∩P 6= ∅ such that
Hn is dense in (α, β)∩P and β−α < 1/n. Select an x0 ∈ (α, β)∩P and an m >
n so large that the component, I = [a, b], of Em−1 containing x0 is in (α, β).
Since Hn is dense in (α, β)∩P there is x1 ∈ Hn ∩ I1 = Hn ∩ [a, a+(b−a) δm

m ].
Then using h = (b− a)δm and (2) we obtain

1
n
≤ λ((x− h, x + h) ∩ P )

2h
≤ λ((x− h, x + h) ∩ Em)

2h
=

1
2m

,

which is a contradiction.
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