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Abstract

We generalize the functionally-small-Riemann-sum (FSRS) property
for the Henstock integral to the n-dimensional Euclidean space. We
prove a convergence theorem and its connection with the equi-integrability
condition.

1 Introduction

Darmawijaya [1] and others [2] gave the functionally-small-Riemann-sum (FSRS)
property for the Henstock integral on the real line. Gong [2] used the FSRS
property for the Henstock integral on the real line to give some convergence
theorems. He used the dominated convergence theorem to deduce his theo-
rems. In this paper, we extend Gong’s convergence theorem to the n-dimensional
space (Theorem 2) and establish its connection with the equi-Henstock inte-
grability theorem (Theorem 5 and (Theorem 6).

Let Rn be the n-dimensional Euclidean space with norm

‖x‖∞ = max{|xk| : 1 ≤ k ≤ n}.

Let E be a cell (non-degenerate interval) of Rn. We use |E| to represent the
Lebesgue measure of E, that is, the volume of a cell E. All functions in this
paper are real-valued functions on a cell.
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If E is a cell and δ is a positive function on E, for x ∈ E

B(x, δ(x)) = {y : ‖x− y‖∞ < δ(x)}

is called an open ball with center at x and radius δ(x). A collection of cell-
point pairs,

D = {(I,x)} = {(I1,x1), (I2,x2), ..., (Ip,xp)},

is called δ-fine partition of a cell E, if E = ∪p
i=1Ii with xi ∈ Ii ⊆ B(xi, δ(xi)),

and Io
i ∩Io

j = ∅ for i 6= j where i = 1, 2, ..., p. Furthermore, (I,x) ∈ D is called
δ-fine cell I with associated point x. If ∪p

i=1Ii ⊆ E then the partition is called
δ-fine partial partition in E.

A function f defined on a cell E is said to be Henstock integrable or H-
integrable on a cell E, if there is a number A such that for any ε > 0 there is
a positive function δ on E such that for any δ-fine partition D = {(I,x)} of
E we have

|(D)
∑

f(x)|I| −A| < ε.

Here, (D)
∑

f(x)|I| is taken to mean the sum over the δ-fine partition D of
E. If a function f is H -integrable on a cell E, then the H-integral value of f
on E is unique. Furthermore, the number A is called the H-integral value of
f on E and will be written

A = (H)
∫

E

f.

If we only want to know whether a function f is Henstock integrable on a cell
E without using its H-integral value, we may use Cauchy’s Criterion. More
precisely, A function f is Henstock integrable on a cell E, if and only if for
any ε > 0 there is a positive function δ on E such that for any two δ-fine
partitions D1 = {(I ′,x′)} and D2 = {(I ′′,x′′)} of E we have

|(D1)
∑

f(x′)|I ′| − (D2)
∑

f(x′′)|I ′′|| < ε.

If f is H-integrable on E and I is a subcell of E then f is H-integrable
on I. Let F (I) denote the H-integral of f on I ⊆ E. Then F is called the
primitive of f on E and Henstock’s Lemma holds. More precisely, a function
f defined on E is H -integrable with primitive F if and only if for every ε > 0
there is a positive function δ on E such that for any δ-fine partial partition D
in E we have

|(D)
∑

(f(x)|I| − F (I))| < ε.

Henstock’s Lemma is a powerful tool in proving theorems that only need
partial partitions in E.
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2 The FSRS Property

A measurable function f has functionally small Riemann sums or the FSRS
property on a cell E ⊂ Rn, if for every ε > 0 there exist a non-negative
Lebesgue integrable function g and a positive function δ on E such that for
any δ-fine partition D = {(I,x)} of E, we have

|(D)
∑

|f(x)|>g(x)

f(x)|I|| < ε,

where the sum is taken over D = {(I,x)} for which |f(x)| > g(x).

Theorem 1. A measurable function f has the FSRS property on a cell E if
and only if f is Henstock integrable on E.

For a proof see [2] or [5].
A sequence {fk} of measurable functions has uniformly functionally

small Riemann sums or the UFSRS property, if the conditions for FSRS hold
with f replaced by fk and both g and δ independent of k.

The proof of the convergence theorem involving the UFSRS property
and the rest of the theorems need the uniformly strong Lusin condition and
Egoroff’s Lemma [3].
A sequence {Fk} is said to satisfy uniformly strong Lusin or the USL condition
if for every ε > 0 and every set S of measure zero there exists a positive function
δ, independent of k, such that for any δ-fine partial partition D = {(I,x)},
with x ∈ S, and for all k we have

(D)
∑

|Fk(I)| < ε.

If Fk = F for all k, then F is said to satisfy the strong Lusin condition.

Theorem 2. Let fk, k = 1, 2, . . ., be Henstock integrable on a cell E with the
primitive Fk, k = 1, 2, . . ., respectively. If {fk} has the UFSRS property, and
fk → f almost everywhere in E, then f is Henstock integrable on E and

lim
k→∞

(H)
∫

E

fk = (H)
∫

E

f, as k →∞.

The proof follows that of Gong [2]. We sketch as follows. From the hy-
pothesis, f has the FSRS property. Then, from Theorem 1, f is H-integrable
on E. For the rest of the proof, we use the dominated convergence theorem
and the UFSRS property. �
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3 Equivalence with Equi-Henstock Integrability

The UFSRS condition plays a role in the above convergence theorem similar
to that of equi-Henstock integrability in an early result [6]. In what follows, we
give the relationship between these two conditions (Theorem 5 and Theorem
6).

A sequence of functions {fk} is said to be equi-Henstock integrable on a
cell E, if for every ε > 0 there is a positive function δ on E, independent of k,
such that for any δ-fine partition D = {(I,x)} of E and for every k

|(D)
∑

fk(x)|I| − (H)
∫

E

fk| < ε.

By the equi-Henstock integrability we have a convergence theorem for Hen-
stock integral in the n-dimensional Euclidean space (Theorem 3). However,
this theorem is well-known. For a proof, see [4] or Wang Pujie [6].

Theorem 3. Let fk, k = 1, 2, . . ., be Henstock integrable on a cell E with the
primitives Fk, k = 1, 2, . . ., respectively. If the sequence {fk} is equi-Henstock
integrable on the cell E, and fk → f almost everywhere in E as k →∞, and
{Fk} satisfies the USL condition on E, then f is Henstock integrable on E.
Furthermore,

lim
k→∞

(H)
∫

E

fk = (H)
∫

E

f, as k →∞.

We need the following lemma.

Lemma 4. Let fk, k = 1, 2, . . ., be Henstock integrable on a cell E with the
primitives Fk, k = 1, 2, . . ., respectively. If there is a non-negative Lebesgue
integrable function g on E such that |fk(x)| ≤ g(x) almost everywhere for
every k, and fk → f almost everywhere in E as k → ∞, then {Fk} satisfies
the USL condition on E and {fk} is equi-Henstock integrable on E .

The first part follows from the fact that the primitive of g satisfies the
strong Lusin condition. The second part of proof follows from Egoroff’s Lemma
and the absolute continuity of G, the primitive of g. See [4]. �

Now we prove the two main theorems.

Theorem 5. Let fk, k = 1, 2, . . ., be Henstock integrable on a cell E with the
primitives Fk, k = 1, 2, . . ., respectively. If the sequence {fk} is equi-Henstock
integrable on the cell E, fk → f almost everywhere in E as k → ∞, and
{Fk} satisfies the USL condition on E, then {fk} is a sequence of measurable
functions which has the UFSRS property on E.



Convergence Theorems for the Henstock Integral 485

Proof. Let ε > 0 be given. It follows from Theorem 3, that f is Henstock
integrable on E. There is a positive function δ∗ on E such that for any δ∗-fine
partition D of E and for every k, we have

|(D)
∑

fk(x)|I| − Fk(E)| < ε,

and
|(D)

∑
f(x)|I| − F (E)| < ε.

Also, there is a positive integer K such that for every k ≥ K

|Fk(E)− F (E)| < ε.

Consequently, for any δ∗-fine partition D of E and for every k ≥ K

|(D)
∑

fk(x)|I| − (D)
∑

f(x)|I|| < 3ε.

Similarly, it follows from Lemma 4, that there is a positive function δ∗∗
such that for any δ∗∗ -fine partition D of E and for every k ≥ K, we have

|(D)
∑

|fk(x)|≤g(x)

fk(x)|I| − (D)
∑

|f(x)|≤g(x)

f(x)|I|| < ε.

Further, by Theorem 1, there is a non-negative Lebesgue integrable func-
tion g and a positive function δ∗∗∗ such that for any δ∗∗∗-fine partition D of
E we have

|(D)
∑

|f(x)|>g(x)

f(x)|I|| < ε.

Put 0 < δ(x) ≤ min{δ∗(x), δ∗∗(x), δ∗∗∗(x)}. Then, for any δ-fine partition D
of E and for k ≥ K, we have

|(D)
∑

|fk(x)|>g(x)

fk(x)|I|| ≤|(D)
∑

fk(x)|I| − (D)
∑

f(x)|I||

+ |(D)
∑

|fk(x)|≤g(x)

fk(x)|I| − (D)
∑

|f(x)|≤g(x)

f(x)|I||

+ |(D)
∑

|f(x)|>g(x)

f(x)|I|| < 5ε.

Modify δ and g, if necessary, so that the above inequality holds for all k.
Hence {fk} has the UFSRS property on E.
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Theorem 6. Let fk, k = 1, 2, . . ., be Henstock integrable function on a cell
E with the primitives Fk, k = 1, 2, . . ., respectively. If the sequence {fk} has
the UFSRS property on the cell E, and fk → f almost everywhere in E as
k →∞, then {fk } is equi-Henstock integrable on E .

Proof. Let ε > 0 be given. Since {fk} has the UFSRS property, then
there exist a non-negative Lebesgue integrable function g on E and a positive
function δ∗, both independently of k, such that for any δ∗-fine partition D of
E and for every k, we have

|(D)
∑

|fk(x)|>g(x)

fk(x)|I|| < ε.

It follows from Lemma 4, that there is a positive function δ∗ such that for any
two δ∗-fine partitions D1 = {(I ′,x′)} and D2 = {(I ′′,x′′)} of E and for every
k, we have

|(D1)
∑

|fk(x′)|≤g(x′)

fk(x′)|I ′| − (D2)
∑

|fk(x′′)|≤g(x′′)

fk(x′′)|I ′′|| < ε.

Put 0 < δ(x) ≤ min{δ∗(x), δ∗(x)}. Then, for any two δ-fine partitions D1 =
{(I ′,x′)} and D2 = {(I ′′,x′′)} of E and for every k

|(D1)
∑

fk(x′)|I ′| − (D2)
∑

fk(x′′)|I ′′||

≤|(D1)
∑

|fk(x′)|≤g(x′)

fk(x′)|I ′| − (D2)
∑

|fk(x”)|≤g(x”)

fk(x′′)|I ′′||

+ |(D1)
∑

|fk(x′)|>g(x′)

fk(x′)|I ′| − (D2)
∑

|fk(x”)|>g(x”)

fk(x′′)|I ′′||

<3ε.

That is, {fk} is equi-Henstock integrable on E.

As a corollary, if fk → f everywhere in E as k → ∞, then the UFSRS
property of {fk} is equivalent to its equi-Henstock integrability.
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