CARDINALITY OF BASES OF FAMILIES OF THIN SETS

Abstract

We construct a family of Dirichlet sets of cardinality \mathfrak{c} such that the arithmetic sum of any two members of the family contains an open interval. As a corollary we obtain that every basis of many families of thin sets has cardinality at least \mathfrak{c}. Especially, every basis of any of trigonometric families $\mathcal{D}, p \mathcal{D}, \mathcal{B}_{0}, \mathcal{N}_{0}, \mathcal{B}, \mathcal{N}, w \mathcal{D}$ and \mathcal{A} has cardinality at least \mathfrak{c}. Moreover, we construct an increasing tower of pseudo Dirichlet sets of cardinality t .

In our paper $[\mathrm{BB}]$ we investigated the relationship between families of thin sets obtained from different functions. The main tool for our results was a generalization of a classical lemma by J. Arbault [Ar]. As a byproduct, we have shown that any basis of any of the families $\mathcal{B}_{0}, \mathcal{N}_{0}$ and \mathcal{A} has cardinality at least \mathfrak{c}. In this note, combining the idea of $[\mathrm{BB}]$ with an idea from J . Marcinkiewicz [Ma], we show that any basis of some other families of thin sets, including the families $\mathcal{D}, p \mathcal{D}$ and \mathcal{N}, has also cardinality greater or equal to c .

The classical trigonometric families

$$
\begin{equation*}
\mathcal{D}, p \mathcal{D}, \mathcal{B}_{0}, \mathcal{N}_{0}, \mathcal{B}, \mathcal{N}, \mathcal{A}, w \mathcal{D} \tag{1}
\end{equation*}
$$

were studied e.g. in [BKR]. We recall some notions. We work with the topological group $\mathbb{T}=\mathbb{R} / \mathbb{Z}$. We may identify \mathbb{T} with the interval $\langle-1 / 2,1 / 2\rangle$ identifying $-1 / 2$ and $1 / 2$ with the operation of addition $\bmod 1 .\|x\|$ is the

[^0]distance of the real x to the nearest integer. A subset E of \mathbb{T} is called a Dirichlet set, a pseudo Dirichlet set or an A-set, if there exists an increasing sequence of natural numbers $\left\{n_{k}\right\}_{k=0}^{\infty}$ such that the sequence $\left\{\left\|n_{k} x\right\|\right\}_{k=0}^{\infty}$ converges uniformly, quasi-uniformly or pointwise to 0 on the set E, respectively. The families of all Dirichlet, pseudo Dirichlet and A-sets are denoted by \mathcal{D}, $p \mathcal{D}$ and \mathcal{A}, respectively. The other definitions can be found e.g. in [BKR].

A family $\mathcal{F} \subseteq \mathcal{P}(\mathbb{T})$ is called a family of thin sets (see [BKR], [BL]) if \mathcal{F} contains every singleton $\{x\}, x \in \mathbb{T}$, with any $A \in \mathcal{F}$ also every subset of A belongs to \mathcal{F}, and \mathcal{F} does not contain any (nontrivial) open interval. Each of the families (1) is a family of thin sets. The families

$$
\begin{equation*}
\mathcal{D}_{f}, p \mathcal{D}_{f}, \mathcal{B}_{0 f}, \mathcal{N}_{0 f}, \mathcal{B}_{f}, \mathcal{N}_{f}, \mathcal{A}_{f}, w \mathcal{D}_{f} \tag{2}
\end{equation*}
$$

defined in [BZ] by a continuous function $f: \mathbb{T} \longrightarrow\langle 0,+\infty)$ are another examples of families of thin sets.

A family $\mathcal{G} \subseteq \mathcal{F}$ is called a basis of \mathcal{F} if for any $A \in \mathcal{F}$ there is a set $B \in \mathcal{G}$ such that $A \subseteq B$. Everyone of families (2) has a basis consisting of Borel sets and therefore of cardinality at most \mathfrak{c}.

The arithmetic sum $A+B$ of two subsets of \mathbb{T} is the set

$$
A+B=\{z \in \mathbb{T} ; z=x+y \text { for some } x \in A \text { and some } y \in B\}
$$

A family \mathcal{F} of thin sets is called trigonometric like, if for every $A \in \mathcal{F}$ the arithmetic sum ${ }^{1} A+A$ also belongs to \mathcal{F}. All trigonometric families (1) are trigonometric like.
J. Marcinkiewicz [Ma] constructed two Dirichlet sets A, B such that the union $A \cup B$ is not an A-set. We use his idea for constructing a family of the cardinality \mathfrak{c} of Dirichlet sets such that the arithmetic sum of any two of them contains an open interval. As a corollary we obtain the promised result about the cardinality of bases of corresponding families of thin sets, assuming.

Throughout the paper, $\left\{p_{k}\right\}_{k=0}^{\infty}$ is a fixed increasing sequence of natural numbers greater than 1 . For proving the main result we shall need that

$$
\begin{equation*}
\text { the sequence of differences }\left\{p_{k+1}-p_{k}\right\}_{k=0}^{\infty} \text { is increasing } \tag{3}
\end{equation*}
$$

For an infinite subset $K \subseteq \mathbb{N}$ we denote ${ }^{2}$ by $\mathrm{M}(K)$ the set

$$
\mathrm{M}(K)=\left\{x \in \mathbb{T} ;(\forall k \in K)\left\|2^{p_{k}} \cdot x\right\| \leq 2^{p_{k}-p_{k+1}}\right\}
$$

[^1]If condition (3) holds, then $\lim _{k \rightarrow \infty} 2^{p_{k}-p_{k+1}}=0$ and $\mathrm{M}(K)$ is a Dirichlet set (compare [Ma], [BZ]).

Two infinite subsets $K, L \subseteq \mathbb{N}$ are said to be almost disjoint if their intersection $K \cap L$ is finite. It is well known (see e.g. [Va]) that there exists a family $\mathcal{E} \subseteq \mathcal{P}(\mathbb{N})$ of cardinality \mathfrak{c} of pairwise almost disjoint sets.

We start with a simple strengthening of well known Marcinkiewicz result.
Lemma 1. If K, L are almost disjoint infinite subsets of \mathbb{N}, then the arithmetic sum $\mathrm{M}(K)+\mathrm{M}(L)$ contains an open interval.

Proof. Let $K, L \subseteq \mathbb{N}$ be infinite, k_{0} being such that $k \notin K \cap L$ for $k \geq k_{0}$. We show that $\left(0,2^{-p_{k_{0}}}\right) \subseteq \mathrm{M}(K)+\mathrm{M}(L)$. We shall use the following simple observation. Let

$$
\begin{equation*}
x=\sum_{i=1}^{\infty} \frac{x_{i}}{2^{i}}, x_{i}=0,1 \tag{4}
\end{equation*}
$$

If $x_{i}=0$ for every $i, p<i \leq q$, then $\left\|2^{p} \cdot x\right\| \leq 2^{p-q}$.
Now take arbitrary $x \in\left(0,2^{-p_{k_{0}}}\right)$ and assume that (4) holds true. Then $x_{i}=0$ for any $i \leq k_{0}$. Thus for $k<k_{0}$ we have

$$
\left|2^{p_{k}} \cdot x\right| \leq 2^{p_{k}-p_{k_{0}}} \leq 2^{p_{k}-p_{k+1}}
$$

We set

$$
\begin{aligned}
& y=\sum_{i=1}^{\infty} \frac{y_{i}}{2^{i}}, \text { where } y_{i}= \begin{cases}0 & \text { for } p_{k}<i \leq p_{k+1}, k \in K, \\
x_{i} & \text { otherwise }\end{cases} \\
& z=\sum_{i=1}^{\infty} \frac{z_{i}}{2^{i}}, \text { where } z_{i}= \begin{cases}x_{i} & \text { for } p_{k}<i \leq p_{k+1}, k \in K, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Thus $x=y+z$.
By definition $\left\|2^{p_{k}} \cdot y\right\| \leq 2^{p_{k}-p_{k+1}}$ for $k \in K$ and therefore $y \in \mathrm{M}(K)$. On the other hand one can easily see that $z_{i}=0$ for $p_{k}<i \leq p_{k+1}, k \in L, k \geq k_{0}$ and therefore $\left\|2^{p_{k}} \cdot z\right\| \leq 2^{p_{k}-p_{k+1}}$. Hence $z \in \mathrm{M}(L)$.

Theorem 2. Let \mathcal{F} be a family of thin sets such that
a) $\mathcal{D} \subseteq \mathcal{F}$ and
b) there exists a trigonometric like family of thin sets \mathcal{H} such that $\mathcal{F} \subseteq \mathcal{H}$.

Then any basis of the family \mathcal{F} has cardinality at least \mathbf{c}.

Proof. Let \mathcal{G} be a basis of the family \mathcal{F}. Let \mathcal{E} be a family of almost disjoint subsets of \mathbb{N} of cardinality \mathfrak{c}. By (3) for any $K \in \mathcal{E}, \mathrm{M}(K)$ is a Dirichlet set.

Let $K, L \in \mathcal{E}, K \neq L$. Toward a contradiction assume that there exists a set $H \in \mathcal{G}$ containing both sets $\mathrm{M}(K)$ and $\mathrm{M}(L)$. By the assumption b) we have $H+H \in \mathcal{H}$. Since $\mathrm{M}(K)+\mathrm{M}(L) \subseteq H+H$, by Lemma 1 we obtain that $H+H$ contains an open interval - a contradiction.

Thus every set from the basis \mathcal{G} contains at most one set $\mathrm{M}(K), K \in \mathcal{E}$ and each set $\mathrm{M}(K), K \in \mathcal{E}$ is contained in at least one set from \mathcal{G}. Consequently $|\mathcal{G}| \geq|\mathcal{E}|=\mathfrak{c}$.

Corollary 3. Every basis of each trigonometric family has cardinality at least c .

Proof. Any of the trigonometric families (1) contains the family \mathcal{D} of Dirichlet sets as a subfamily. Since every trigonometric family (1) is trigonometric like, the assertion follows immediately.

The cardinal \mathfrak{t}, the smallest cardinality of a maximal tower of subset of \mathbb{N} is defined e.g. in [Va]. In [BB] we have constructed a \mathfrak{t}-tower of $\mathrm{B}_{0^{-}}, \mathrm{N}_{0^{-}}$and A-sets. We extend this result for pseudo Dirichlet sets.

Theorem 4. There is a sequence $\left\{P_{\xi} ; \xi<\mathfrak{t}\right\}$ of pseudo Dirichlet sets such that
a) $P_{\xi} \subseteq P_{\eta}$ for any $\xi<\eta<\mathfrak{t}$,
b) for any $\xi<\eta<\mathfrak{t}$, the set $P_{\eta} \backslash P_{\xi}$ contains a perfect subset,
c) there is no A-set containing all sets $P_{\xi}, \xi<\mathfrak{t}$.

We start with an observation. Let $q_{k}=p_{0} \cdot \ldots \cdot p_{k}$. For every real $x \in\langle 0,1\rangle$ there are integers $x_{k}, k \in \mathbb{N}$ such that (compare $[\mathrm{BB}]$)

$$
x=\sum_{k=0}^{\infty} \frac{x_{k}}{p_{0} \cdot \ldots \cdot p_{k}},\left|x_{k}\right| \leq \frac{p_{k}}{2} \text { for } k>0, x_{0}=0, \ldots, p_{0}
$$

One can easily see that

$$
\begin{equation*}
q_{n} x=\frac{x_{n+1}}{p_{n+1}}+\theta_{n} \bmod 1,\left|\theta_{n}\right| \leq 1 / p_{n+1} \tag{5}
\end{equation*}
$$

and therefore

$$
\frac{\left|x_{n+1}\right|-1}{p_{n+1}} \leq\left\|q_{n} x\right\| \leq \frac{\left|x_{n+1}\right|+1}{p_{n+1}}
$$

More generally, if $m>n+1$ and $x_{i}=0$ for $n+2 \leq i \leq m$, then

$$
q_{n} x=\frac{x_{n+1}}{p_{n+1}}+\theta_{n} \bmod 1,\left|\theta_{n}\right| \leq \frac{q_{n}}{q_{m}} \leq \frac{1}{p_{m}}
$$

For an infinite subset $K \subseteq \mathbb{N}$ let

$$
\begin{aligned}
& \mathrm{P}(K)=\left\{x \in \mathbb{T} ;\left(\exists n_{0}\right)\left(\forall n \in K, n \geq n_{0}\right)\left\|q_{n} \cdot x\right\| \leq 1 / p_{n+1}\right\} \\
& \mathrm{A}(K)=\left\{x \in \mathbb{T} ; \lim _{n \in K}\|n \cdot x\|=0\right\}
\end{aligned}
$$

Evidently, $\mathrm{P}(K)$ is a pseudo Dirichlet set and $\mathrm{A}(K)$ is an A-set. Moreover, let us remark that if $K, L \subseteq \mathbb{N}$ are infinite sets, then

$$
\begin{equation*}
\text { if } K \backslash L \text { is finite, then } \mathrm{P}(K) \subseteq \mathrm{P}(L) \text { and } \mathrm{A}(K) \subseteq \mathrm{A}(L) \tag{6}
\end{equation*}
$$

Moreover, one can easily check that

$$
1 / q_{n} \in \mathrm{P}(K) \text { for any infinite } K \subseteq \mathbb{N} \text { and any } n \in \mathbb{N}
$$

On the other side, for an infinite set $M \subseteq \mathbb{N}$, one can easily see that for any positive integer k
if $1 / k \in \mathrm{~A}(M)$, then k divides all but finitely many elements of M.
Actually, if $m=k \cdot n+r, 0<r<k$, then $\|m \cdot 1 / k\| \geq 1 / k$.
Now we can prove the easy version of Arbault's lemma (see [Ar], $[\mathrm{BB}]$).
Lemma 5. Let $M \subseteq \mathbb{N}$ be an infinite set. If $1 / q_{n} \in \mathrm{~A}(M)$ for every $n \in \mathbb{N}$, then there are sequences of natural numbers $\left\{s_{n}\right\}_{n=0}^{\infty}$, and $\left\{l_{n}\right\}_{n=0}^{\infty}$, a sequence of integers $\left\{r_{n}\right\}_{n=0}^{\infty}$ and a natural number n_{0} such that:
a) $m_{n}=\left(s_{n} \cdot p_{l(n)+1}+r_{n}\right) q_{l(n)}$ for every $n \geq n_{0}$;
b) $0<\left|r_{n}\right| \leq 1 / 2 p_{l(n)+1}$ for every n;
c) the sequence $\{l(n)\}_{n=0}^{\infty}$ is unbounded.

Proof is easy. By (7) there exists an n_{0} such that m_{n} is divisible by q_{0} for all $n \geq n_{0}$. For $n \geq n_{0}$, let $l(n)$ be the greatest l such that m_{n} is divisible by q_{l}. Then there exist integers $s_{n} \geq 0,0<\left|r_{n}\right| \leq 1 / 2 p_{l(n)+1}$ such that

$$
m_{n}=\left(s_{n} \cdot p_{l(n)+1}+r_{n}\right) q_{l(n)}
$$

By (7) for a given k there exists an n_{1} such that every $m_{n}, n \geq n_{1}$ is divisible by q_{k}. Then $l\left(n_{1}\right) \geq k$. Thus c) holds.

Lemma 6. Assume that $\left\{s_{n}\right\}_{n=0}^{\infty},\left\{r_{n}\right\}_{n=0}^{\infty}$ and $\left\{l_{n}\right\}_{n=0}^{\infty}$ are sequences of natural numbers satisfying conditions a), b), c) of Lemma 5. Moreover assume that for any $k \in \mathbb{N}$ the inequality

$$
\begin{equation*}
m_{k} \cdot p_{l(k)+1} \leq p_{l(k+1)} \cdot q_{l(k)} \tag{8}
\end{equation*}
$$

holds. If the set $\left\{l_{k} ; k \in \mathbb{N}\right\} \backslash K$ is infinite, then $\mathrm{P}(K) \nsubseteq \mathrm{A}(M)$.
Proof. We shall follow the proof of lemma 18 of [BB]. If $i=l_{k}+1, l_{k} \notin K$, take an integer $x_{i}<\frac{1}{2} q_{i}$ such that $x_{i}>\frac{1}{4} p_{l(k)+1}$. Otherwise set $x_{i}=0$. Let $x=\sum_{i=0}^{\infty} x_{i} / q_{i}$. If $i \in K$, then $x_{i+1}=0$ and $q_{i} x=\theta_{i}$. By (5) we have $\left\|q_{i} x\right\|<2^{-p_{i+1}}$ and therefore $x \in \mathrm{P}(K)$.

If $l_{k} \notin K$, then we have $\bmod 1$

$$
m_{k} x=\left(s_{l(k)} p_{l(k)+1}+r_{k}\right) q_{l(k)} x=r_{k} \frac{x_{l(k)+1}}{p_{l(k)+1}}+\frac{m_{k}}{q_{l(k)}} \theta_{l(k)}
$$

Since the last term is small, we obtain $\left\|m_{k} x\right\| \geq 1 / 8\left|r_{k}\right| \geq 1 / 8$ for sufficiently large k. Thus $\lim _{k \rightarrow \infty} m_{k} x \neq 0$ and therefore $x \notin \mathrm{~A}(M)$.
Lemma 7. If $K, L, K \backslash L$ are infinite subsets of \mathbb{N}, then $\mathrm{P}(L) \backslash \mathrm{P}(K)$ contains a perfect subset.

Proof. Again, we can follow the proof of lemma 17 of [BB]. Since f is not identically equal to zero, there are reals α, β, γ such that $-1 / 2<\alpha<\beta<1 / 2$ and $f(x) \geq \gamma>0$ for any $x \in\langle\alpha, \beta\rangle$. Let $N \subseteq K \backslash L$ be an infinite set such that $2 / p_{k}<\beta-\alpha$ for any $k \in N$.

We set x_{i} to be an integer such that $\alpha<\left(x_{i}-1\right) / p_{i}<\left(x_{i}+1\right) / p_{i}<\beta$ if $i-1 \in N$. Otherwise set $x_{i}=0$. Let $x(N)=\sum_{i=0}^{\infty} x_{i} / q_{i}$. For every $k \in N \subseteq K$ we have

$$
q_{k} x(N)=x_{k+1} / p_{k+1}+\theta_{k} \bmod 1 \text { and }\left|\theta_{k}\right| \leq 1 / p_{k+1}
$$

and therefore for any $k \in N$ we have $\alpha<\left\|q_{k} x(N)\right\|<\beta$. Hence $x(N) \notin \mathrm{P}(K)$. On the other hand, if $k \in L$, then $x_{k+1}=0$ and therefore $\left\|q_{k} x(N)\right\| \leq 1 / p_{k+1}$. Thus $x(N) \in \mathrm{P}(L)$.

Since for different N 's the reals $x(N)$ are different and we can find \mathfrak{c} many infinite sets $N \subseteq K \backslash L$, the difference $\mathrm{P}(L) \backslash \mathrm{P}(K)$ has the power of the continuum. Being a Borel set it contains a perfect subset.

Proof of Theorem 4. Let $K_{\xi} ; \xi<\mathfrak{t}$ be a tower of subsets of \mathbb{N}; i.e., for any $\xi<\eta<\mathfrak{t}$ the set $K_{\eta} \backslash K_{\xi}$ is finite, the set $K_{\xi} \backslash K_{\eta}$ is infinite, and there is no infinite set $L \subseteq \mathbb{N}$ such that $L \backslash K_{\xi}$ is finite for any $\xi<\mathfrak{t}$. We set $P_{\xi}=\mathrm{P}\left(K_{\xi}\right)$ for $\xi<\mathfrak{t}$. By (6) and Lemma 7 we obtain immediately the assertions a) and b) of theorem.

Toward a contradiction assume that there exists an A -set $\mathrm{A}(M)$ containing all sets $P_{\xi}, \xi \in \mathfrak{t}$. Since $P_{0} \subseteq \mathrm{~A}(M)$, there are sequences satisfying the assertions of Lemma 5. Passing to a subset of M we may achieve that condition (8) is satisfied. By the definition of a tower there exists a $\xi<\mathfrak{t}$ such that $\left\{l_{k} ; k \in \mathbb{N}\right\} \backslash K_{\xi}$ is infinite. Then, by Lemma 6 we obtain $\mathrm{P}\left(K_{\xi}\right) \nsubseteq \mathrm{A}(M)$ a contradiction.

References

[Ar] J. Arbault, Sur l'Ensemble de Convergence Absolue d'une Série Trigonométrique, Bull. Soc. Math. France, 80 (1952), 253-317.
[BZ] Z. Bukovská, Thin Sets Defined by a Sequence of Continuous Functions, Math. Slovaca, 49 (1999), 323-344.
[BB] Z. Bukovská and L. Bukovský, Comparing Families of Thin Sets, Real Anal. Exchange, 27(2) (2001/2002), 609-625.
[BL] L. Bukovský, Thin Sets of Harmonic Analysis in a General Setting, Tatra Mountains Mathematical Publications, 14 (1998), 241-260.
[BKR] L. Bukovský, N. N. Kholshchevnikova and M. Repický, Thin Sets of Harmonic Analysis and Infinite Combinatorics, Real Anal. Exchange, 20 (1994-95), 454-509.
[Ma] J. Marcinkiewicz, Quelques Théorèmes sur les Séries et les Fonctions, Bull. Sém. Math. Univ. Wilno, 1 (1938), 19-24.
[Va] J. E. Vaughan, Small Uncountable Cardinals and Topology, in: Open Problems in Topology (van Mill J. and Reed G. M., eds), NorthHolland, Amsterdam, New York, Oxford, Tokyo, 1990, 195-216.

[^0]: Key Words: trigonometric thin sets, family of thin sets, basis, tower.
 Mathematical Reviews subject classification: Primary:03E05, 42A20; Secondary:03E75, 42A28, 26A99

 Received by the editors October 14, 2002
 Communicated by: Krzysztof Chris Ciesielski
 *The work on this research has been supported by the grant 1/7555/20 of Slovenská grantová agentúra VEGA and partially by NATO grant PST.CLG.977652. The main results of the paper were presented at Logic Colloquium 2002 in Münster.

[^1]: ${ }^{1}$ In [BL] we considered the arithmetic difference $A-A$ instead of the sum. If $0 \in A$, then $A+A \subseteq(A-A)-(A-A)$, so our notion is weaker than that of [BL].
 ${ }^{2} \mathrm{M}$ in honor of J. Marcinkiewicz.

