Lev Bukovský^{*}, Institute of Mathematics, Faculty of Sciences, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia. email: bukovsky@kosice.upjs.sk

CARDINALITY OF BASES OF FAMILIES OF THIN SETS

Abstract

We construct a family of Dirichlet sets of cardinality \mathfrak{c} such that the arithmetic sum of any two members of the family contains an open interval. As a corollary we obtain that every basis of many families of thin sets has cardinality at least \mathfrak{c} . Especially, every basis of any of trigonometric families \mathcal{D} , $p\mathcal{D}$, \mathcal{B}_0 , \mathcal{N}_0 , \mathcal{B} , \mathcal{N} , $w\mathcal{D}$ and \mathcal{A} has cardinality at least \mathfrak{c} . Moreover, we construct an increasing tower of pseudo Dirichlet sets of cardinality \mathfrak{t} .

In our paper [BB] we investigated the relationship between families of thin sets obtained from different functions. The main tool for our results was a generalization of a classical lemma by J. Arbault [Ar]. As a byproduct, we have shown that any basis of any of the families \mathcal{B}_0 , \mathcal{N}_0 and \mathcal{A} has cardinality at least \mathfrak{c} . In this note, combining the idea of [BB] with an idea from J. Marcinkiewicz [Ma], we show that any basis of some other families of thin sets, including the families \mathcal{D} , $p\mathcal{D}$ and \mathcal{N} , has also cardinality greater or equal to \mathfrak{c} .

The classical trigonometric families

$$\mathcal{D}, \ p\mathcal{D}, \ \mathcal{B}_0, \ \mathcal{N}_0, \ \mathcal{B}, \ \mathcal{N}, \ \mathcal{A}, \ w\mathcal{D},$$
(1)

were studied e.g. in [BKR]. We recall some notions. We work with the topological group $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. We may identify \mathbb{T} with the interval $\langle -1/2, 1/2 \rangle$ identifying -1/2 and 1/2 with the operation of addition mod 1. ||x|| is the

147

Key Words: trigonometric thin sets, family of thin sets, basis, tower.

Mathematical Reviews subject classification: Primary:03E05, 42A20; Secondary:03E75, 42A28, 26A99

Received by the editors October 14, 2002

Communicated by: Krzysztof Chris Ciesielski

^{*}The work on this research has been supported by the grant 1/7555/20 of Slovenská grantová agentúra VEGA and partially by NATO grant PST.CLG.977652. The main results of the paper were presented at Logic Colloquium 2002 in Münster.

distance of the real x to the nearest integer. A subset E of \mathbb{T} is called a *Dirichlet set*, a *pseudo Dirichlet set* or an A-*set*, if there exists an increasing sequence of natural numbers $\{n_k\}_{k=0}^{\infty}$ such that the sequence $\{\|n_k x\|\}_{k=0}^{\infty}$ converges uniformly, quasi–uniformly or pointwise to 0 on the set E, respectively. The families of all Dirichlet, pseudo Dirichlet and A-sets are denoted by \mathcal{D} , $p\mathcal{D}$ and \mathcal{A} , respectively. The other definitions can be found e.g. in [BKR].

A family $\mathcal{F} \subseteq \mathcal{P}(\mathbb{T})$ is called a family of thin sets (see [BKR], [BL]) if \mathcal{F} contains every singleton $\{x\}, x \in \mathbb{T}$, with any $A \in \mathcal{F}$ also every subset of A belongs to \mathcal{F} , and \mathcal{F} does not contain any (nontrivial) open interval. Each of the families (1) is a family of thin sets. The families

$$\mathcal{D}_f, \ p\mathcal{D}_f, \ \mathcal{B}_{0f}, \ \mathcal{N}_{0f}, \ \mathcal{B}_f, \ \mathcal{N}_f, \ \mathcal{A}_f, \ w\mathcal{D}_f$$
(2)

defined in [BZ] by a continuous function $f : \mathbb{T} \longrightarrow (0, +\infty)$ are another examples of families of thin sets.

A family $\mathcal{G} \subseteq \mathcal{F}$ is called *a basis* of \mathcal{F} if for any $A \in \mathcal{F}$ there is a set $B \in \mathcal{G}$ such that $A \subseteq B$. Everyone of families (2) has a basis consisting of Borel sets and therefore of cardinality at most \mathfrak{c} .

The arithmetic sum A + B of two subsets of \mathbb{T} is the set

 $A + B = \{ z \in \mathbb{T} ; z = x + y \text{ for some } x \in A \text{ and some } y \in B \}.$

A family \mathcal{F} of thin sets is called *trigonometric like*, if for every $A \in \mathcal{F}$ the arithmetic sum¹ A + A also belongs to \mathcal{F} . All trigonometric families (1) are trigonometric like.

J. Marcinkiewicz [Ma] constructed two Dirichlet sets A, B such that the union $A \cup B$ is not an A-set. We use his idea for constructing a family of the cardinality \mathfrak{c} of Dirichlet sets such that the arithmetic sum of any two of them contains an open interval. As a corollary we obtain the promised result about the cardinality of bases of corresponding families of thin sets, assuming.

Throughout the paper, $\{p_k\}_{k=0}^{\infty}$ is a fixed increasing sequence of natural numbers greater than 1. For proving the main result we shall need that

the sequence of differences
$$\{p_{k+1} - p_k\}_{k=0}^{\infty}$$
 is increasing (3)

For an infinite subset $K \subseteq \mathbb{N}$ we denote² by $\mathsf{M}(K)$ the set

$$\mathsf{M}(K) = \{ x \in \mathbb{T}; (\forall k \in K) \| 2^{p_k} \cdot x \| \le 2^{p_k - p_{k+1}} \}.$$

¹In [BL] we considered the arithmetic difference A - A instead of the sum. If $0 \in A$, then $A + A \subseteq (A - A) - (A - A)$, so our notion is weaker than that of [BL].

²M in honor of J. Marcinkiewicz.

If condition (3) holds, then $\lim_{k\to\infty} 2^{p_k-p_{k+1}} = 0$ and $\mathsf{M}(K)$ is a Dirichlet set (compare [Ma], [BZ]).

Two infinite subsets $K, L \subseteq \mathbb{N}$ are said to be *almost disjoint* if their intersection $K \cap L$ is finite. It is well known (see e.g. [Va]) that there exists a family $\mathcal{E} \subseteq \mathcal{P}(\mathbb{N})$ of cardinality \mathfrak{c} of pairwise almost disjoint sets.

We start with a simple strengthening of well known Marcinkiewicz result.

Lemma 1. If K, L are almost disjoint infinite subsets of \mathbb{N} , then the arithmetic sum $\mathsf{M}(K) + \mathsf{M}(L)$ contains an open interval.

PROOF. Let $K, L \subseteq \mathbb{N}$ be infinite, k_0 being such that $k \notin K \cap L$ for $k \geq k_0$. We show that $(0, 2^{-p_{k_0}}) \subseteq \mathsf{M}(K) + \mathsf{M}(L)$. We shall use the following simple observation. Let

$$x = \sum_{i=1}^{\infty} \frac{x_i}{2^i}, \ x_i = 0, 1 \tag{4}$$

If $x_i = 0$ for every $i, p < i \le q$, then $||2^p \cdot x|| \le 2^{p-q}$.

Now take arbitrary $x \in (0, 2^{-p_{k_0}})$ and assume that (4) holds true. Then $x_i = 0$ for any $i \leq k_0$. Thus for $k < k_0$ we have

$$|2^{p_k} \cdot x| \le 2^{p_k - p_{k_0}} \le 2^{p_k - p_{k+1}}.$$

We set

$$y = \sum_{i=1}^{\infty} \frac{y_i}{2^i}, \text{ where } y_i = \begin{cases} 0 & \text{for } p_k < i \le p_{k+1}, k \in K, \\ x_i & \text{otherwise.} \end{cases}$$
$$z = \sum_{i=1}^{\infty} \frac{z_i}{2^i}, \text{ where } z_i = \begin{cases} x_i & \text{for } p_k < i \le p_{k+1}, k \in K, \\ 0 & \text{otherwise.} \end{cases}$$

Thus x = y + z.

By definition $||2^{p_k} \cdot y|| \leq 2^{p_k - p_{k+1}}$ for $k \in K$ and therefore $y \in \mathsf{M}(K)$. On the other hand one can easily see that $z_i = 0$ for $p_k < i \leq p_{k+1}, k \in L, k \geq k_0$ and therefore $||2^{p_k} \cdot z|| \leq 2^{p_k - p_{k+1}}$. Hence $z \in \mathsf{M}(L)$.

Theorem 2. Let \mathcal{F} be a family of thin sets such that

- a) $\mathcal{D} \subseteq \mathcal{F}$ and
- b) there exists a trigonometric like family of thin sets \mathcal{H} such that $\mathcal{F} \subseteq \mathcal{H}$.

Then any basis of the family $\mathcal F$ has cardinality at least $\mathfrak c$.

PROOF. Let \mathcal{G} be a basis of the family \mathcal{F} . Let \mathcal{E} be a family of almost disjoint subsets of \mathbb{N} of cardinality \mathfrak{c} . By (3) for any $K \in \mathcal{E}$, M(K) is a Dirichlet set.

Let $K, L \in \mathcal{E}, K \neq L$. Toward a contradiction assume that there exists a set $H \in \mathcal{G}$ containing both sets $\mathsf{M}(K)$ and $\mathsf{M}(L)$. By the assumption b) we have $H + H \in \mathcal{H}$. Since $\mathsf{M}(K) + \mathsf{M}(L) \subseteq H + H$, by Lemma 1 we obtain that H + H contains an open interval - a contradiction.

Thus every set from the basis \mathcal{G} contains at most one set $\mathsf{M}(K), K \in \mathcal{E}$ and each set $\mathsf{M}(K), K \in \mathcal{E}$ is contained in at least one set from \mathcal{G} . Consequently $|\mathcal{G}| \geq |\mathcal{E}| = \mathfrak{c}$.

Corollary 3. Every basis of each trigonometric family has cardinality at least c.

PROOF. Any of the trigonometric families (1) contains the family \mathcal{D} of Dirichlet sets as a subfamily. Since every trigonometric family (1) is trigonometric like, the assertion follows immediately.

The cardinal \mathfrak{t} , the smallest cardinality of a maximal tower of subset of \mathbb{N} is defined e.g. in [Va]. In [BB] we have constructed a \mathfrak{t} -tower of B_0 -, N_0 - and A-sets. We extend this result for pseudo Dirichlet sets.

Theorem 4. There is a sequence $\{P_{\xi}; \xi < \mathfrak{t}\}$ of pseudo Dirichlet sets such that

- a) $P_{\xi} \subseteq P_{\eta}$ for any $\xi < \eta < \mathfrak{t}$,
- b) for any $\xi < \eta < \mathfrak{t}$, the set $P_{\eta} \setminus P_{\xi}$ contains a perfect subset,
- c) there is no A-set containing all sets P_{ξ} , $\xi < \mathfrak{t}$.

We start with an observation. Let $q_k = p_0 \cdot \ldots \cdot p_k$. For every real $x \in \langle 0, 1 \rangle$ there are integers $x_k, k \in \mathbb{N}$ such that (compare [BB])

$$x = \sum_{k=0}^{\infty} \frac{x_k}{p_0 \cdots p_k}, \ |x_k| \le \frac{p_k}{2} \text{ for } k > 0, \ x_0 = 0, \dots, p_0.$$

One can easily see that

$$q_n x = \frac{x_{n+1}}{p_{n+1}} + \theta_n \mod 1, \ |\theta_n| \le 1/p_{n+1} \tag{5}$$

and therefore

$$\frac{|x_{n+1}| - 1}{p_{n+1}} \le ||q_n x|| \le \frac{|x_{n+1}| + 1}{p_{n+1}}$$

More generally, if m > n+1 and $x_i = 0$ for $n+2 \le i \le m$, then

$$q_n x = \frac{x_{n+1}}{p_{n+1}} + \theta_n \mod 1, \ |\theta_n| \le \frac{q_n}{q_m} \le \frac{1}{p_m}$$

For an infinite subset $K \subseteq \mathbb{N}$ let

$$\mathsf{P}(K) = \{ x \in \mathbb{T}; (\exists n_0) (\forall n \in K, n \ge n_0) \| q_n \cdot x \| \le 1/p_{n+1} \}, \\ \mathsf{A}(K) = \{ x \in \mathbb{T}; \lim_{n \in K} \| n \cdot x \| = 0 \}.$$

Evidently, $\mathsf{P}(K)$ is a pseudo Dirichlet set and $\mathsf{A}(K)$ is an A-set. Moreover, let us remark that if $K, L \subseteq \mathbb{N}$ are infinite sets, then

if
$$K \setminus L$$
 is finite, then $\mathsf{P}(K) \subseteq \mathsf{P}(L)$ and $\mathsf{A}(K) \subseteq \mathsf{A}(L)$. (6)

Moreover, one can easily check that

 $1/q_n \in \mathsf{P}(K)$ for any infinite $K \subseteq \mathbb{N}$ and any $n \in \mathbb{N}$.

On the other side, for an infinite set $M\subseteq\mathbb{N},$ one can easily see that for any positive integer k

if $1/k \in A(M)$, then k divides all but finitely many elements of M. (7)

Actually, if $m = k \cdot n + r$, 0 < r < k, then $||m \cdot 1/k|| \ge 1/k$. Now we can prove the easy version of Arbault's lemma (see [Ar], [BB]).

Lemma 5. Let $M \subseteq \mathbb{N}$ be an infinite set. If $1/q_n \in A(M)$ for every $n \in \mathbb{N}$, then there are sequences of natural numbers $\{s_n\}_{n=0}^{\infty}$, and $\{l_n\}_{n=0}^{\infty}$, a sequence of integers $\{r_n\}_{n=0}^{\infty}$ and a natural number n_0 such that:

- a) $m_n = (s_n \cdot p_{l(n)+1} + r_n)q_{l(n)}$ for every $n \ge n_0$;
- b) $0 < |r_n| \le 1/2p_{l(n)+1}$ for every n;
- c) the sequence $\{l(n)\}_{n=0}^{\infty}$ is unbounded.

PROOF is easy. By (7) there exists an n_0 such that m_n is divisible by q_0 for all $n \ge n_0$. For $n \ge n_0$, let l(n) be the greatest l such that m_n is divisible by q_l . Then there exist integers $s_n \ge 0$, $0 < |r_n| \le 1/2p_{l(n)+1}$ such that

$$m_n = (s_n \cdot p_{l(n)+1} + r_n)q_{l(n)}.$$

By (7) for a given k there exists an n_1 such that every m_n , $n \ge n_1$ is divisible by q_k . Then $l(n_1) \ge k$. Thus c) holds.

Lemma 6. Assume that $\{s_n\}_{n=0}^{\infty}$, $\{r_n\}_{n=0}^{\infty}$ and $\{l_n\}_{n=0}^{\infty}$ are sequences of natural numbers satisfying conditions a), b), c) of Lemma 5. Moreover assume that for any $k \in \mathbb{N}$ the inequality

$$m_k \cdot p_{l(k)+1} \le p_{l(k+1)} \cdot q_{l(k)} \tag{8}$$

holds. If the set $\{l_k; k \in \mathbb{N}\} \setminus K$ is infinite, then $\mathsf{P}(K) \not\subseteq \mathsf{A}(M)$.

PROOF. We shall follow the proof of lemma 18 of [BB]. If $i = l_k + 1$, $l_k \notin K$, take an integer $x_i < \frac{1}{2}q_i$ such that $x_i > \frac{1}{4}p_{l(k)+1}$. Otherwise set $x_i = 0$. Let $x = \sum_{i=0}^{\infty} x_i/q_i$. If $i \in K$, then $x_{i+1} = 0$ and $q_i x = \theta_i$. By (5) we have $||q_i x|| < 2^{-p_{i+1}}$ and therefore $x \in \mathsf{P}(K)$.

If $l_k \notin K$, then we have mod 1

$$m_k x = (s_{l(k)} p_{l(k)+1} + r_k) q_{l(k)} x = r_k \frac{x_{l(k)+1}}{p_{l(k)+1}} + \frac{m_k}{q_{l(k)}} \theta_{l(k)}.$$

Since the last term is small, we obtain $||m_k x|| \ge 1/8 |r_k| \ge 1/8$ for sufficiently large k. Thus $\lim_{k \to \infty} m_k x \ne 0$ and therefore $x \notin A(M)$.

Lemma 7. If $K, L, K \setminus L$ are infinite subsets of \mathbb{N} , then $\mathsf{P}(L) \setminus \mathsf{P}(K)$ contains a perfect subset.

PROOF. Again, we can follow the proof of lemma 17 of [BB]. Since f is not identically equal to zero, there are reals α, β, γ such that $-1/2 < \alpha < \beta < 1/2$ and $f(x) \geq \gamma > 0$ for any $x \in \langle \alpha, \beta \rangle$. Let $N \subseteq K \setminus L$ be an infinite set such that $2/p_k < \beta - \alpha$ for any $k \in N$.

We set x_i to be an integer such that $\alpha < (x_i - 1)/p_i < (x_i + 1)/p_i < \beta$ if $i-1 \in N$. Otherwise set $x_i = 0$. Let $x(N) = \sum_{i=0}^{\infty} x_i/q_i$. For every $k \in N \subseteq K$ we have

$$q_k x(N) = x_{k+1}/p_{k+1} + \theta_k \mod 1 \text{ and } |\theta_k| \le 1/p_{k+1}$$

and therefore for any $k \in N$ we have $\alpha < ||q_k x(N)|| < \beta$. Hence $x(N) \notin \mathsf{P}(K)$. On the other hand, if $k \in L$, then $x_{k+1} = 0$ and therefore $||q_k x(N)|| \le 1/p_{k+1}$. Thus $x(N) \in \mathsf{P}(L)$.

Since for different N's the reals x(N) are different and we can find \mathfrak{c} many infinite sets $N \subseteq K \setminus L$, the difference $\mathsf{P}(L) \setminus \mathsf{P}(K)$ has the power of the continuum. Being a Borel set it contains a perfect subset.

PROOF OF THEOREM 4. Let K_{ξ} ; $\xi < \mathfrak{t}$ be a tower of subsets of \mathbb{N} ; i.e., for any $\xi < \eta < \mathfrak{t}$ the set $K_{\eta} \setminus K_{\xi}$ is finite, the set $K_{\xi} \setminus K_{\eta}$ is infinite, and there is no infinite set $L \subseteq \mathbb{N}$ such that $L \setminus K_{\xi}$ is finite for any $\xi < \mathfrak{t}$. We set $P_{\xi} = \mathsf{P}(K_{\xi})$ for $\xi < \mathfrak{t}$. By (6) and Lemma 7 we obtain immediately the assertions a) and b) of theorem.

Toward a contradiction assume that there exists an A-set A(M) containing all sets $P_{\xi}, \xi \in \mathfrak{t}$. Since $P_0 \subseteq A(M)$, there are sequences satisfying the assertions of Lemma 5. Passing to a subset of M we may achieve that condition (8) is satisfied. By the definition of a tower there exists a $\xi < \mathfrak{t}$ such that $\{l_k; k \in \mathbb{N}\} \setminus K_{\xi}$ is infinite. Then, by Lemma 6 we obtain $\mathsf{P}(K_{\xi}) \nsubseteq A(M)$ a contradiction. \Box

References

- [Ar] J. Arbault, Sur l'Ensemble de Convergence Absolue d'une Série Trigonométrique, Bull. Soc. Math. France, 80 (1952), 253–317.
- [BZ] Z. Bukovská, Thin Sets Defined by a Sequence of Continuous Functions, Math. Slovaca, 49 (1999), 323–344.
- [BB] Z. Bukovská and L. Bukovský, Comparing Families of Thin Sets, Real Anal. Exchange, 27(2) (2001/2002), 609–625.
- [BL] L. Bukovský, Thin Sets of Harmonic Analysis in a General Setting, Tatra Mountains Mathematical Publications, 14 (1998), 241–260.
- [BKR] L. Bukovský, N. N. Kholshchevnikova and M. Repický, *Thin Sets of Harmonic Analysis and Infinite Combinatorics*, Real Anal. Exchange, **20** (1994–95), 454–509.
- [Ma] J. Marcinkiewicz, Quelques Théorèmes sur les Séries et les Fonctions, Bull. Sém. Math. Univ. Wilno, 1 (1938), 19–24.
- [Va] J. E. Vaughan, Small Uncountable Cardinals and Topology, in: Open Problems in Topology (van Mill J. and Reed G. M., eds), North-Holland, Amsterdam, New York, Oxford, Tokyo, 1990, 195–216.