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CARDINALITY OF BASES OF FAMILIES
OF THIN SETS

Abstract

We construct a family of Dirichlet sets of cardinality c such that
the arithmetic sum of any two members of the family contains an open
interval. As a corollary we obtain that every basis of many families
of thin sets has cardinality at least c. Especially, every basis of any of
trigonometric families D, pD, B0, N0, B, N , wD and A has cardinality at
least c. Moreover, we construct an increasing tower of pseudo Dirichlet
sets of cardinality t.

In our paper [BB] we investigated the relationship between families of thin
sets obtained from different functions. The main tool for our results was a
generalization of a classical lemma by J. Arbault [Ar]. As a byproduct, we
have shown that any basis of any of the families B0, N0 and A has cardinality
at least c. In this note, combining the idea of [BB] with an idea from J.
Marcinkiewicz [Ma], we show that any basis of some other families of thin
sets, including the families D, pD and N , has also cardinality greater or equal
to c.

The classical trigonometric families

D, pD, B0, N0, B, N , A, wD, (1)

were studied e.g. in [BKR]. We recall some notions. We work with the topo-
logical group T = R/Z. We may identify T with the interval 〈−1/2, 1/2〉
identifying −1/2 and 1/2 with the operation of addition mod 1. ‖x‖ is the
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distance of the real x to the nearest integer. A subset E of T is called a
Dirichlet set, a pseudo Dirichlet set or an A-set, if there exists an increasing
sequence of natural numbers {nk}∞k=0 such that the sequence {‖nkx‖}∞k=0 con-
verges uniformly, quasi–uniformly or pointwise to 0 on the set E, respectively.
The families of all Dirichlet, pseudo Dirichlet and A-sets are denoted by D,
pD and A, respectively. The other definitions can be found e.g. in [BKR].

A family F ⊆ P(T) is called a family of thin sets (see [BKR], [BL]) if F
contains every singleton {x}, x ∈ T, with any A ∈ F also every subset of A
belongs to F , and F does not contain any (nontrivial) open interval. Each of
the families (1) is a family of thin sets. The families

Df , pDf , B0f , N0f , Bf , Nf , Af , wDf (2)

defined in [BZ] by a continuous function f : T −→ 〈0,+∞) are another exam-
ples of families of thin sets.

A family G ⊆ F is called a basis of F if for any A ∈ F there is a set B ∈ G
such that A ⊆ B. Everyone of families (2) has a basis consisting of Borel sets
and therefore of cardinality at most c.

The arithmetic sum A + B of two subsets of T is the set

A + B = {z ∈ T; z = x + y for some x ∈ A and some y ∈ B}.

A family F of thin sets is called trigonometric like, if for every A ∈ F the
arithmetic sum1 A + A also belongs to F . All trigonometric families (1) are
trigonometric like.

J. Marcinkiewicz [Ma] constructed two Dirichlet sets A, B such that the
union A ∪B is not an A-set. We use his idea for constructing a family of the
cardinality c of Dirichlet sets such that the arithmetic sum of any two of them
contains an open interval. As a corollary we obtain the promised result about
the cardinality of bases of corresponding families of thin sets, assuming.

Throughout the paper, {pk}∞k=0 is a fixed increasing sequence of natural
numbers greater than 1. For proving the main result we shall need that

the sequence of differences {pk+1 − pk}∞k=0 is increasing (3)

For an infinite subset K ⊆ N we denote2 by M(K) the set

M(K) = {x ∈ T; (∀k ∈ K) ‖2pk · x‖ ≤ 2pk−pk+1}.

1In [BL] we considered the arithmetic difference A−A instead of the sum. If 0 ∈ A, then
A + A ⊆ (A−A)− (A−A), so our notion is weaker than that of [BL].

2M in honor of J. Marcinkiewicz.
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If condition (3) holds, then limk→∞ 2pk−pk+1 = 0 and M(K) is a Dirichlet set
(compare [Ma], [BZ]).

Two infinite subsets K, L ⊆ N are said to be almost disjoint if their in-
tersection K ∩ L is finite. It is well known (see e.g. [Va]) that there exists a
family E ⊆ P(N) of cardinality c of pairwise almost disjoint sets.

We start with a simple strengthening of well known Marcinkiewicz result.

Lemma 1. If K, L are almost disjoint infinite subsets of N, then the arith-
metic sum M(K) + M(L) contains an open interval.

Proof. Let K, L ⊆ N be infinite, k0 being such that k /∈ K ∩ L for k ≥ k0.
We show that (0, 2−pk0 ) ⊆ M(K) + M(L). We shall use the following simple
observation. Let

x =
∞∑

i=1

xi

2i
, xi = 0, 1 (4)

If xi = 0 for every i, p < i ≤ q, then ‖2p · x‖ ≤ 2p−q.
Now take arbitrary x ∈ (0, 2−pk0 ) and assume that (4) holds true. Then

xi = 0 for any i ≤ k0. Thus for k < k0 we have

|2pk · x| ≤ 2pk−pk0 ≤ 2pk−pk+1 .

We set

y =
∞∑

i=1

yi

2i
, where yi =

{
0 for pk < i ≤ pk+1, k ∈ K,
xi otherwise.

z =
∞∑

i=1

zi

2i
, where zi =

{
xi for pk < i ≤ pk+1, k ∈ K,
0 otherwise.

Thus x = y + z.
By definition ‖2pk · y‖ ≤ 2pk−pk+1 for k ∈ K and therefore y ∈ M(K). On

the other hand one can easily see that zi = 0 for pk < i ≤ pk+1, k ∈ L, k ≥ k0

and therefore ‖2pk · z‖ ≤ 2pk−pk+1 . Hence z ∈ M(L).

Theorem 2. Let F be a family of thin sets such that

a) D ⊆ F and

b) there exists a trigonometric like family of thin sets H such that F ⊆ H.

Then any basis of the family F has cardinality at least c.
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Proof. Let G be a basis of the family F . Let E be a family of almost disjoint
subsets of N of cardinality c. By (3) for any K ∈ E , M(K) is a Dirichlet set.

Let K, L ∈ E , K 6= L. Toward a contradiction assume that there exists a
set H ∈ G containing both sets M(K) and M(L). By the assumption b) we
have H + H ∈ H. Since M(K) + M(L) ⊆ H + H, by Lemma 1 we obtain that
H + H contains an open interval - a contradiction.

Thus every set from the basis G contains at most one set M(K), K ∈ E and
each set M(K), K ∈ E is contained in at least one set from G. Consequently
|G| ≥ |E| = c.

Corollary 3. Every basis of each trigonometric family has cardinality at
least c.

Proof. Any of the trigonometric families (1) contains the family D of Dirich-
let sets as a subfamily. Since every trigonometric family (1) is trigonometric
like, the assertion follows immediately.

The cardinal t, the smallest cardinality of a maximal tower of subset of N
is defined e.g. in [Va]. In [BB] we have constructed a t-tower of B0-, N0- and
A-sets. We extend this result for pseudo Dirichlet sets.

Theorem 4. There is a sequence {Pξ; ξ < t} of pseudo Dirichlet sets such
that

a) Pξ ⊆ Pη for any ξ < η < t,

b) for any ξ < η < t, the set Pη \ Pξ contains a perfect subset,

c) there is no A-set containing all sets Pξ, ξ < t.

We start with an observation. Let qk = p0· . . . ·pk. For every real x ∈ 〈0, 1〉
there are integers xk, k ∈ N such that (compare [BB])

x =
∞∑

k=0

xk

p0· . . . ·pk
, |xk| ≤

pk

2
for k > 0, x0 = 0, . . . , p0.

One can easily see that

qnx =
xn+1

pn+1
+ θn mod 1, |θn| ≤ 1/pn+1 (5)

and therefore
|xn+1| − 1

pn+1
≤ ‖qnx‖ ≤ |xn+1|+ 1

pn+1
.
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More generally, if m > n + 1 and xi = 0 for n + 2 ≤ i ≤ m, then

qnx =
xn+1

pn+1
+ θn mod 1, |θn| ≤

qn

qm
≤ 1

pm
.

For an infinite subset K ⊆ N let

P(K) = {x ∈ T; (∃n0)(∀n ∈ K, n ≥ n0) ‖qn · x‖ ≤ 1/pn+1},
A(K) = {x ∈ T; lim

n∈K
‖n · x‖ = 0}.

Evidently, P(K) is a pseudo Dirichlet set and A(K) is an A-set. Moreover, let
us remark that if K, L ⊆ N are infinite sets, then

if K \ L is finite, then P(K) ⊆ P(L) and A(K) ⊆ A(L). (6)

Moreover, one can easily check that

1/qn ∈ P(K) for any infinite K ⊆ N and any n ∈ N.

On the other side, for an infinite set M ⊆ N, one can easily see that for any
positive integer k

if 1/k ∈ A(M), then k divides all but finitely many elements of M. (7)

Actually, if m = k · n + r, 0 < r < k, then ‖m · 1/k‖ ≥ 1/k.
Now we can prove the easy version of Arbault’s lemma (see [Ar], [BB]).

Lemma 5. Let M ⊆ N be an infinite set. If 1/qn ∈ A(M) for every n ∈ N,
then there are sequences of natural numbers {sn}∞n=0, and {ln}∞n=0, a sequence
of integers {rn}∞n=0 and a natural number n0 such that:

a) mn = (sn · pl(n)+1 + rn)ql(n) for every n ≥ n0;

b) 0 < |rn| ≤ 1/2pl(n)+1 for every n;

c) the sequence {l(n)}∞n=0 is unbounded.

Proof is easy. By (7) there exists an n0 such that mn is divisible by q0 for
all n ≥ n0. For n ≥ n0, let l(n) be the greatest l such that mn is divisible by
ql. Then there exist integers sn ≥ 0, 0 < |rn| ≤ 1/2pl(n)+1 such that

mn = (sn · pl(n)+1 + rn)ql(n).

By (7) for a given k there exists an n1 such that every mn, n ≥ n1 is
divisible by qk. Then l(n1) ≥ k. Thus c) holds.
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Lemma 6. Assume that {sn}∞n=0, {rn}∞n=0 and {ln}∞n=0 are sequences of nat-
ural numbers satisfying conditions a), b), c) of Lemma 5. Moreover assume
that for any k ∈ N the inequality

mk · pl(k)+1 ≤ pl(k+1) · ql(k) (8)

holds. If the set {lk; k ∈ N} \K is infinite, then P(K) * A(M).

Proof. We shall follow the proof of lemma 18 of [BB]. If i = lk + 1, lk /∈ K,
take an integer xi < 1

2qi such that xi > 1
4pl(k)+1. Otherwise set xi = 0. Let

x =
∑∞

i=0 xi/qi. If i ∈ K, then xi+1 = 0 and qix = θi. By (5) we have
‖qix‖ < 2−pi+1 and therefore x ∈ P(K).

If lk /∈ K, then we have mod 1

mkx = (sl(k)pl(k)+1 + rk)ql(k)x = rk

xl(k)+1

pl(k)+1
+

mk

ql(k)
θl(k).

Since the last term is small, we obtain ‖mkx‖ ≥ 1/8|rk| ≥ 1/8 for sufficiently
large k. Thus lim

k→∞
mkx 6= 0 and therefore x /∈ A(M).

Lemma 7. If K, L, K \L are infinite subsets of N, then P(L)\P(K) contains
a perfect subset.

Proof. Again, we can follow the proof of lemma 17 of [BB]. Since f is not
identically equal to zero, there are reals α, β, γ such that −1/2 < α < β < 1/2
and f(x) ≥ γ > 0 for any x ∈ 〈α, β〉. Let N ⊆ K \ L be an infinite set such
that 2/pk < β − α for any k ∈ N .

We set xi to be an integer such that α < (xi − 1)/pi < (xi + 1)/pi < β if
i−1 ∈ N . Otherwise set xi = 0. Let x(N) =

∑∞
i=0 xi/qi. For every k ∈ N ⊆ K

we have
qkx(N) = xk+1/pk+1 + θk mod 1 and |θk| ≤ 1/pk+1

and therefore for any k ∈ N we have α < ‖qkx(N)‖ < β. Hence x(N) /∈ P(K).
On the other hand, if k ∈ L, then xk+1 = 0 and therefore ‖qkx(N)‖ ≤ 1/pk+1.
Thus x(N) ∈ P(L).

Since for different N ’s the reals x(N) are different and we can find c many
infinite sets N ⊆ K \ L, the difference P(L) \ P(K) has the power of the
continuum. Being a Borel set it contains a perfect subset.

Proof of Theorem 4. Let Kξ; ξ < t be a tower of subsets of N; i.e., for any
ξ < η < t the set Kη \Kξ is finite, the set Kξ \Kη is infinite, and there is no
infinite set L ⊆ N such that L \Kξ is finite for any ξ < t. We set Pξ = P(Kξ)
for ξ < t. By (6) and Lemma 7 we obtain immediately the assertions a) and
b) of theorem.
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Toward a contradiction assume that there exists an A-set A(M) containing
all sets Pξ, ξ ∈ t. Since P0 ⊆ A(M), there are sequences satisfying the asser-
tions of Lemma 5. Passing to a subset of M we may achieve that condition
(8) is satisfied. By the definition of a tower there exists a ξ < t such that
{lk; k ∈ N} \ Kξ is infinite. Then, by Lemma 6 we obtain P(Kξ) * A(M) -
a contradiction.
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