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MINIMIZING MOMENTS

Abstract

We will prove a certain characterization of the function x2 and of
some similar functions, in the style of Cauchy’s characterization of the
function ax by its additivity and boundedness over any interval of pos-
itive length.

The following proposition is fundamental in statistics. If X is a random vari-
able such that the expected value E(X2) < ∞, then the function E((X − t)2)
of the real variable t attains its minimum at the point t = E(X). Matatyahu
Rubin conjectured that if f is a function such that for every X, E(f(X − t))
attains its minimum at E(X), then f is of the form f(x) = αx2 + β, where
α, β are constants and α ≥ 0. The purpose of this note is to generalize and
prove this conjecture. The generalization is two-fold. First, the assumption
will be restricted to two-valued random variables. Second, the function x2 will
be replaced by any even function F (x) which is either strictly convex or equals
|x|. This generalization will be made precise in Theorem 2 below.

Our first observation is the following.

Theorem 1. If F is an even and strictly convex function, then for every
random variable X such that E(F (mX)) < ∞ for some m > 1, the function
E(F (X − t)) is defined and continuous for all real t and attains its minimum
at a unique point t0 which will be denoted by ξF (X).

Proof. The hypotheses on F and on X imply that

E(F (X − t)) = E(F (
1
m

mX +
m− 1

m
(− m

m− 1
t)))

≤ 1
m

E(F (mX)) +
m− 1

m
F (− m

m− 1
t) < ∞.
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To prove continuity, suppose that tn → t. Then

F (X − tn) ≤ 1
m

F (mX) +
m− 1

m
sup

n
F (

m

m− 1
tn)

and by the dominated convergence theorem E(F (X − tn)) → E(F (X − t)).
Without loss of generality we may assume that F (0) = 0. Then for 2l ≤ |t| <
2l+1 we can write

F (X − t) = F (t(
X

t
− 1)) ≥ 2F (

t

2
|X

t
− 1|) ≥ 2lF (2−lt|X

t
− 1|) ≥ 2lF (

X

t
− 1),

and by the dominated convergence theorem, E(F (X
t − 1)) → F (−1) and

E(F (X − t)) → ∞ as |t| → ∞. It follows that the minimum of E(F (X − t))
is attained at some point t. This t is unique by the strict convexity of F .

From now on let X be a two-valued random variable such that

P (X = a) = p, P (X = b) = q = 1− p.

We cannot expect an explicit general formula for the functional ξF (X)
in terms of F and the parameters a, b, and p. But for some special F this
is possible. We will show (see Step 1 in the proof of Theorem 2) that if
F (x) = |x|c with c > 1, then the functional ξF (X) = ξc(X) is given by the
formula

ξc(X) =
pra + qrb

pr + qr
= λa + (1− λ)b,

where r = 1
c−1 and λ = pr

pr+qr . Then, of course, ξ2(X) = E(X).
Also, if F (x) = e|x| and a < b,

ξF (X) =
a + b

2
+

1
2
log

(q

p

)
,

if a − b ≤ log
(

q
p

)
≤ b − a and ξF (X) = a or b if log

(
q
p

)
lies outside of this

interval.
Beside all functions F satisfying the hypotheses of Theorem 1 we also

consider the function F (x) = |x| which is convex but not strictly convex.
The latter was suggested to us by Fred S. Van Vleck. In this case, a fact of
importance in statistics, E(|X − t|) is minimized by any median of X, i.e., by
every number m such that

P (X ≤ m) ≥ 1
2

and P (X ≥ m) ≥ 1
2
.
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Let MX denote the set of all medians of X.
For a two-valued X, as above, MX = {a}, if p > 1

2 , MX = {b}, if q > 1
2 ,

and MX = [a, b], if p = q = 1
2 .

Our generalization of Rubin’s conjecture stated at the beginning is the
following.

Theorem 2. Let F be even and strictly convex. Let f be such that for every
two-valued random variable X, the expected value E(f(X−t)) attains its min-
imum at t = ξF (X). Then f(x) = αF (x) + β where α and β are constants,
α ≥ 0. The conclusion also holds if F (x) = |x| and E(f(X − t)) attains its
minimum at every t ∈ MX.

Remark 1. As it will be apparent from the proof, in the case when f and
F are known a priori to be differentiable, the phrase E(f(X − t)) attains its
minimum at t = ξk(X) could be replaced by E(f(X − t)) has a critical point
at t = ξk(X), in which case we do not claim that α ≥ 0.

Remark 2. As already mentioned, the functional ξk(X) = ξF (X), where
F (x) = |x|k with k 6= 1, appears to be a natural generalization of the median
and of the mean of X. In particular it seems to be natural to define the k-th
central moment of X as E(|X − ξk(X)|k) and not as E(|X − ξ2(X)|k) which
appears sometimes in the literature.

First let us point out some simple properties of the functional ξF (X) =
ξ(a, b, p). By definition this is the unique real t minimizing pF (a−t)+qF (b−t).
In other words ξ = ξF (X) iff

pF (a− t) + qF (b− t) ≥ pF (X − ξ) + qF (b− ξ) (1)

for all real t. Since F is even and convex, for every real t,

F (
a− b

2
) + F (

b− a

2
) = 2F (

b− a

2
) ≤ F (a− t) + F (b− t).

Also, since F (x) is strictly decreasing for x < 0 and strictly increasing for
x > 0, we get the following assertion.

Lemma 1. a < ξF (X) < b , ξF (X) = a+b
2 if p = q = 1

2 , ξF (X) = a if p = 1
and ξF (X) = b for q = 1.

For fixed a and b consider the function ξ(p) = ξF (X) = ξ(a, b, p). If
pn → p0 and if ξ(pn) → η, then passing to the limit in both sides of the
inequality (1) we conclude that η = ξ(p0) and by the compact graph theorem
we have the next lemma.
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Lemma 2. For fixed a < b the function p → ξ(p) is a continuous function of
p ∈ [0, 1].

We will need this lemma in the form of the intermediate value property.

Corollary 1. For every pair x0, x > 0 there exist b > 0 and p ∈ (0, 1) such that
the two-valued random variable X with P (X = 0) = p, P (X = b) = q satisfies
ξF (X) = x0 and b− ξF (X) = x.

Indeed, it suffices to take b = x0 + x. Then 0 < x < b and by continuity of ξ
there is a p ∈ (0, 1) such that ξF (X) = x.

Corollary 2. For 0 < p < 1, ξ(a, b, p) − a assumes all values in the interval
(0, b− a).

We will also use the following.

Lemma 3. With the notations as above we have ξ(−b,−a, q) = −ξ(a, b, p).

This is an immediate consequence of the assumption that F is even. Our next
lemma is of more general nature.

Lemma 4. Suppose that f is a real function defined and bounded on an inter-
val [a, b] and satisfying the condition f(x+y

2 ) ≤ f(x)+f(y)
2 for all x, y ∈ [a, b].

Then f is continuous on [a, b].

The conclusion is well known if f is additive and bounded on some interval.
For the sake of completeness we give the following simple argument. Let x be
arbitrary and xn, yn → x as n → ∞ be such that f(yn) → lim infy→x f(y) =
l and f(xn+yn

2 ) → lim supy→x f(y) = L. We use the assumption on f to
conclude that

L = lim
n→∞

f(
xn + yn

2
) ≤ 1

2
( lim
n→∞

f(yn) + lim sup
n→∞

f(xn)) ≤ l + L

2
,

so that l = L. Writing f(x) = f(x+ε+x−ε
2 ) ≤ f(x+ε)+f(x−ε)

2 and taking the
lim infε→0 we get f(x) ≤ L. Also, with xn → x such that f(xn) → l we
conclude, taking the lim infn→∞ in the inequality f(x+xn

2 ) ≤ f(x)+f(xn)
2 , that

f(x) ≥ l. It follows that l = f(x) = L and f is continuous at x.

Proof of Theorem 2. We may assume that f is not a constant, otherwise
the conclusion is trivial.

We begin with the proof in the case when F (x) = |x|. In this case

E(f(X − t)) = pf(a− t) + qf(b− t)
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is minimized by t = a if p > 1
2 , t = b when p < 1

2 and by any t of the form
sa + (1− s)b, 0 ≤ s ≤ 1 for p = 1

2 . In particular, for p = 1
2 ,

f(a− t) + f(b− t) ≥ f(a− a) + f(b− a),

which for t = b implies f(b − a) ≥ f(a − b). Similarly we get the reverse
inequality to conclude that f is even. Also, using p = 1

2 , t = 0 and s = 1
2 we

get f(a)+f(b)
2 ≥ f(a+b

2 ). In particular f(x) ≥ f(0) for all x. Replacing f(x) by
f(x) − f(0) we may assume that f(0) = 0. Again with p = 1

2 the hypothesis
on f implies that for 0 ≤ s ≤ 1,

f(a− sa− (1− s)b)) + f(b− sa− (1− s)b) = f((1− s)(a− b)) + f(s(b− a)

is constant and equals f(b − a) = f(a − b). We can rewrite this again as
f(y) = f((1−s)y)+f(sy), where y = b−a, because f is even. If A,B > 0, then
letting y = A+B and s = A/(A+B) we conclude that f(A+B) = f(A)+f(B)
provided A and B are of the same sign. In particular, for every M and every
x ∈ [0,M ] we have 0 ≤ f(x) = f(M)−f(M−x) ≤ f(M) so that f is bounded
on any finite interval in [0,∞). By Lemma 4 f is continuous on [0,∞) and
being additive it must be of the form f(x) = αx for x > 0. Since it is even,
the conclusion that f(x) = α|x| follows readily.

We are left with the case when F is strictly convex. We write f as the
sum of its even and odd parts: f = fe + fo where fe(x) = f(x)+f(−x)

2 and
fo(x) = f(x)−f(−x)

2 . Let us show the following.

Lemma 5. If f satisfies the assumption of Theorem 2, then so does fe .

Proof. We rewrite the hypothesis on f in the form of the inequality

pf(a− t) + qf(b− t) ≥ pf(a− ξ(a, b, p)) + qf(b− ξ(a, b, p)), (2)

for all t, a, b and p ∈ [0, 1]. By Lemma 2 the same inequality is true if f(x) is
replaced by f(−x). Adding those inequalities side by side, we conclude that
(2) holds also if f is replaced by fe. Thus Lemma 5 is proved.

Now let us show that fe is continuous. Letting a = b in (2) we see that
fe is bounded from below by f(0) = fe(0). We may assume that f(0) = 0.
Again, letting t = b in (2) and observing that, by Corollary 2, for 0 < p < 1,
ξ(a, b, p)−a assumes all values in the interval (0, b−a) we conclude that in this
interval fe is bounded from above by fe(b− a). It follows that fe is bounded
on any finite interval and by Lemma 3, fe is continuous.

The remainder of the argument is now divided into into 3 steps:
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1) f is everywhere continuous and continuously differentiable except pos-
sibly on a countable set.

2) f is even.
3)f is an arbitrary function.
Step 1). For a strictly convex F the one-sided derivatives F ′

+(x) and F ′
−(x)

exist for every x, and for x < y

F ′
−(x) ≤ F ′

+(x) < F ′
−(y) ≤ F ′

+(y).

In particular the derivative F ′ exists except possibly on an at most countable
set where it has positive jumps. Denote this set by S. For a two-valued
random variable X with parameters a, b, p, ξ = ξF (X) is the solution t of the
equation d

dtE(F (X − t)) = 0; i.e.,

pF ′(a− ξ) + qF ′(b− ξ) = 0, (3)

provided a − ξ and b − ξ are not in E. The hypothesis on f implies that for
all a, b, p,

pf ′(a− ξ) + qf ′(b− ξ)) = 0, (4)

if ξ is the unique solution of (3) and both a− ξ and b− ξ are outside a set S′

where the derivative f ′ fails to exist. Fix now x0 > 0 outside S ∪ S′ and for
an arbitrary x outside this set apply Corollary 1. Equation (3) implies that
p
q = − F ′(x)

F ′(−x0)
. Substituting into (4) we get

f ′(x) = −p

q
f ′(−x0) =

f ′(−x0)
F ′(−x0)

F ′(x).

It follows that f differs by a constant from a constant multiple of F which is
the conclusion of the Theorem.

Observe also that in the cases when F (x) = |x|c, c > 1, and F (x) = e|x|

equation (3) implies the formulas for ξF (X) announced earlier in this paper.
Step 2). In this case f = fe and as noticed at the beginning of the proof,

f is continuous. The inequality f(x) + f(y) ≥ 2f(x+y
2 ), together with the

continuity of f implies that f is convex. But then f is differentiable outside of
a countable set and the one-sided derivatives of f exist at every point of that
exceptional set. Thus by Step 1) we get the desired result.

Step 3). The main idea is to write f = fe+fo, use Step 2) to get fe = αF+β
and then show that fo = 0. By Lemma 5 fe satisfies the hypotheses of the
theorem and by Step 2), fe = αF+β. We can assume without loss of generality
that α = 1 and β = 0. Hence f = F + fo. Now we consider condition (2) with
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p = q = 1
2 . Then, by Lemma 1, ξ = a+b

2 and with a − t = x and b − t = −y
we get

F (x) + F (y)− 2F (
x + y

2
) + fo(x)− fo(y) ≥ fo(

x + y

2
) + fo(−

x + y

2
) = 0.

By symmetry in x, y this implies that |fo(x)−fo(y)| ≤ F (x)−2F (x+y
2 )+F (y).

Let x = y +2h and denote by ∆h the operator of difference with increment h.
Then the last inequality can be written as

|∆2hfo(y)| ≤ ∆2
hF (y). (5)

(5) implies that fo is continuous.
Assume for a moment that F is continuously differentiable. Then dividing

both sides of (5) by h and letting h → 0 we conclude (applying l’Hôpital’s
theorem to the right hand side of the inequality) that the derivative f ′o exists
and vanishes identically. Thus fo is a constant and since fo is odd, it is 0.
This concludes Step 3) for a differentiable F .

Now we will reduce the general case to the case of a continuously differen-
tiable F . This is done by regularization. Let ϕ ≥ 0 be an arbitrary, continu-
ously differentiable function on R vanishing outside of the interval [−1, 1] and
satisfying

∫
R ϕ(y)dy = 1. For a continuous g define

(ϕ ? g)(x) =
∫

R
ϕ(x− y)g(y)dy.

Then ϕ? g is continuously differentiable and satisfies ϕ? (∆hg) = (∆hϕ) ? g =
∆h(ϕ ? g). Also the functions of the form ϕ ? g approximate g uniformly on
any finite interval. In particular, if they are all constant, then so is g. With
this in mind we apply the operator ϕ? to both sides of (5) - this is legitimate
since fo is continuous. We get

|∆2h(ϕ?fo)(x)| = |ϕ?∆2hfo(x)| ≤ ϕ?|∆2hfo(x)| ≤ ϕ?∆2
hF (x) = ∆2

h(ϕ?F )(x).

Since now ϕ ? F is continuously differentiable, the previous argument allows
us to conclude that ϕ ? fo is constant and so is fo. This concludes Step 3) of
the proof.



138


