Jan Mycielski, Department of Mathematics, University of Colorado, Boulder, CO 80309. email: jmyciel@euclid.colorado.edu
Pawel Szeptycki, Department of Mathematics, University of Kansas, Lawrence, KS 66045. email: szeptyck@math.ukans.edu

MINIMIZING MOMENTS

Abstract

We will prove a certain characterization of the function x^{2} and of some similar functions, in the style of Cauchy's characterization of the function $a x$ by its additivity and boundedness over any interval of positive length.

The following proposition is fundamental in statistics. If X is a random variable such that the expected value $E\left(X^{2}\right)<\infty$, then the function $E\left((X-t)^{2}\right)$ of the real variable t attains its minimum at the point $t=E(X)$. Matatyahu Rubin conjectured that if f is a function such that for every $X, E(f(X-t))$ attains its minimum at $E(X)$, then f is of the form $f(x)=\alpha x^{2}+\beta$, where α, β are constants and $\alpha \geq 0$. The purpose of this note is to generalize and prove this conjecture. The generalization is two-fold. First, the assumption will be restricted to two-valued random variables. Second, the function x^{2} will be replaced by any even function $F(x)$ which is either strictly convex or equals $|x|$. This generalization will be made precise in Theorem 2 below.

Our first observation is the following.
Theorem 1. If F is an even and strictly convex function, then for every random variable X such that $E(F(m X))<\infty$ for some $m>1$, the function $E(F(X-t))$ is defined and continuous for all real t and attains its minimum at a unique point t_{0} which will be denoted by $\xi_{F}(X)$.

Proof. The hypotheses on F and on X imply that

$$
\begin{aligned}
E(F(X-t)) & =E\left(F\left(\frac{1}{m} m X+\frac{m-1}{m}\left(-\frac{m}{m-1} t\right)\right)\right) \\
& \leq \frac{1}{m} E(F(m X))+\frac{m-1}{m} F\left(-\frac{m}{m-1} t\right)<\infty .
\end{aligned}
$$

[^0]To prove continuity, suppose that $t_{n} \rightarrow t$. Then

$$
F\left(X-t_{n}\right) \leq \frac{1}{m} F(m X)+\frac{m-1}{m} \sup _{n} F\left(\frac{m}{m-1} t_{n}\right)
$$

and by the dominated convergence theorem $E\left(F\left(X-t_{n}\right)\right) \rightarrow E(F(X-t))$. Without loss of generality we may assume that $F(0)=0$. Then for $2^{l} \leq|t|<$ 2^{l+1} we can write
$F(X-t)=F\left(t\left(\frac{X}{t}-1\right)\right) \geq 2 F\left(\frac{t}{2}\left|\frac{X}{t}-1\right|\right) \geq 2^{l} F\left(2^{-l} t\left|\frac{X}{t}-1\right|\right) \geq 2^{l} F\left(\frac{X}{t}-1\right)$, and by the dominated convergence theorem, $E\left(F\left(\frac{X}{t}-1\right)\right) \rightarrow F(-1)$ and $E(F(X-t)) \rightarrow \infty$ as $|t| \rightarrow \infty$. It follows that the minimum of $E(F(X-t))$ is attained at some point t. This t is unique by the strict convexity of F.

From now on let X be a two-valued random variable such that

$$
P(X=a)=p, P(X=b)=q=1-p
$$

We cannot expect an explicit general formula for the functional $\xi_{F}(X)$ in terms of F and the parameters a, b, and p. But for some special F this is possible. We will show (see Step 1 in the proof of Theorem 2) that if $F(x)=|x|^{c}$ with $c>1$, then the functional $\xi_{F}(X)=\xi_{c}(X)$ is given by the formula

$$
\xi_{c}(X)=\frac{p^{r} a+q^{r} b}{p^{r}+q^{r}}=\lambda a+(1-\lambda) b
$$

where $r=\frac{1}{c-1}$ and $\lambda=\frac{p^{r}}{p^{r}+q^{r}}$. Then, of course, $\xi_{2}(X)=E(X)$.
Also, if $F(x)=e^{|x|}$ and $a<b$,

$$
\xi_{F}(X)=\frac{a+b}{2}+\frac{1}{2} \log \left(\frac{q}{p}\right)
$$

if $a-b \leq \log \left(\frac{q}{p}\right) \leq b-a$ and $\xi_{F}(X)=a$ or b if $\log \left(\frac{q}{p}\right)$ lies outside of this interval.

Beside all functions F satisfying the hypotheses of Theorem 1 we also consider the function $F(x)=|x|$ which is convex but not strictly convex. The latter was suggested to us by Fred S. Van Vleck. In this case, a fact of importance in statistics, $E(|X-t|)$ is minimized by any median of X, i.e., by every number m such that

$$
P(X \leq m) \geq \frac{1}{2} \text { and } P(X \geq m) \geq \frac{1}{2}
$$

Let $M X$ denote the set of all medians of X.
For a two-valued X, as above, $M X=\{a\}$, if $p>\frac{1}{2}, M X=\{b\}$, if $q>\frac{1}{2}$, and $M X=[a, b]$, if $p=q=\frac{1}{2}$.

Our generalization of Rubin's conjecture stated at the beginning is the following.

Theorem 2. Let F be even and strictly convex. Let f be such that for every two-valued random variable X, the expected value $E(f(X-t))$ attains its minimum at $t=\xi_{F}(X)$. Then $f(x)=\alpha F(x)+\beta$ where α and β are constants, $\alpha \geq 0$. The conclusion also holds if $F(x)=|x|$ and $E(f(X-t))$ attains its minimum at every $t \in M X$.

Remark 1. As it will be apparent from the proof, in the case when f and F are known a priori to be differentiable, the phrase $E(f(X-t))$ attains its minimum at $t=\xi_{k}(X)$ could be replaced by $E(f(X-t))$ has a critical point at $t=\xi_{k}(X)$, in which case we do not claim that $\alpha \geq 0$.

Remark 2. As already mentioned, the functional $\xi_{k}(X)=\xi_{F}(X)$, where $F(x)=|x|^{k}$ with $k \neq 1$, appears to be a natural generalization of the median and of the mean of X. In particular it seems to be natural to define the k-th central moment of X as $E\left(\left|X-\xi_{k}(X)\right|^{k}\right)$ and not as $E\left(\left|X-\xi_{2}(X)\right|^{k}\right)$ which appears sometimes in the literature.

First let us point out some simple properties of the functional $\xi_{F}(X)=$ $\xi(a, b, p)$. By definition this is the unique real t minimizing $p F(a-t)+q F(b-t)$. In other words $\xi=\xi_{F}(X)$ iff

$$
\begin{equation*}
p F(a-t)+q F(b-t) \geq p F(X-\xi)+q F(b-\xi) \tag{1}
\end{equation*}
$$

for all real t. Since F is even and convex, for every real t,

$$
F\left(\frac{a-b}{2}\right)+F\left(\frac{b-a}{2}\right)=2 F\left(\frac{b-a}{2}\right) \leq F(a-t)+F(b-t) .
$$

Also, since $F(x)$ is strictly decreasing for $x<0$ and strictly increasing for $x>0$, we get the following assertion.

Lemma 1. $a<\xi_{F}(X)<b, \xi_{F}(X)=\frac{a+b}{2}$ if $p=q=\frac{1}{2}, \xi_{F}(X)=a$ if $p=1$ and $\xi_{F}(X)=b$ for $q=1$.

For fixed a and b consider the function $\xi(p)=\xi_{F}(X)=\xi(a, b, p)$. If $p_{n} \rightarrow p_{0}$ and if $\xi\left(p_{n}\right) \rightarrow \eta$, then passing to the limit in both sides of the inequality (1) we conclude that $\eta=\xi\left(p_{0}\right)$ and by the compact graph theorem we have the next lemma.

Lemma 2. For fixed $a<b$ the function $p \rightarrow \xi(p)$ is a continuous function of $p \in[0,1]$.

We will need this lemma in the form of the intermediate value property.
Corollary 1. For every pair $x_{0}, x>0$ there exist $b>0$ and $p \in(0,1)$ such that the two-valued random variable X with $P(X=0)=p, P(X=b)=q$ satisfies $\xi_{F}(X)=x_{0}$ and $b-\xi_{F}(X)=x$.

Indeed, it suffices to take $b=x_{0}+x$. Then $0<x<b$ and by continuity of ξ there is a $p \in(0,1)$ such that $\xi_{F}(X)=x$.

Corollary 2. For $0<p<1, \xi(a, b, p)-a$ assumes all values in the interval $(0, b-a)$.

We will also use the following.
Lemma 3. With the notations as above we have $\xi(-b,-a, q)=-\xi(a, b, p)$.
This is an immediate consequence of the assumption that F is even. Our next lemma is of more general nature.

Lemma 4. Suppose that f is a real function defined and bounded on an interval $[a, b]$ and satisfying the condition $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$ for all $x, y \in[a, b]$. Then f is continuous on $[a, b]$.

The conclusion is well known if f is additive and bounded on some interval. For the sake of completeness we give the following simple argument. Let x be arbitrary and $x_{n}, y_{n} \rightarrow x$ as $n \rightarrow \infty$ be such that $f\left(y_{n}\right) \rightarrow \liminf _{y \rightarrow x} f(y)=$ l and $f\left(\frac{x_{n}+y_{n}}{2}\right) \rightarrow \limsup _{y \rightarrow x} f(y)=L$. We use the assumption on f to conclude that

$$
L=\lim _{n \rightarrow \infty} f\left(\frac{x_{n}+y_{n}}{2}\right) \leq \frac{1}{2}\left(\lim _{n \rightarrow \infty} f\left(y_{n}\right)+\limsup _{n \rightarrow \infty} f\left(x_{n}\right)\right) \leq \frac{l+L}{2}
$$

so that $l=L$. Writing $f(x)=f\left(\frac{x+\epsilon+x-\epsilon}{2}\right) \leq \frac{f(x+\epsilon)+f(x-\epsilon)}{2}$ and taking the $\liminf _{\epsilon \rightarrow 0}$ we get $f(x) \leq L$. Also, with $x_{n} \rightarrow x$ such that $f\left(x_{n}\right) \rightarrow l$ we conclude, taking the $\liminf _{n \rightarrow \infty}$ in the inequality $f\left(\frac{x+x_{n}}{2}\right) \leq \frac{f(x)+f\left(x_{n}\right)}{2}$, that $f(x) \geq l$. It follows that $l=f(x)=L$ and f is continuous at x.

Proof of Theorem 2. We may assume that f is not a constant, otherwise the conclusion is trivial.

We begin with the proof in the case when $F(x)=|x|$. In this case

$$
E(f(X-t))=p f(a-t)+q f(b-t)
$$

is minimized by $t=a$ if $p>\frac{1}{2}, t=b$ when $p<\frac{1}{2}$ and by any t of the form $s a+(1-s) b, 0 \leq s \leq 1$ for $p=\frac{1}{2}$. In particular, for $p=\frac{1}{2}$,

$$
f(a-t)+f(b-t) \geq f(a-a)+f(b-a)
$$

which for $t=b$ implies $f(b-a) \geq f(a-b)$. Similarly we get the reverse inequality to conclude that f is even. Also, using $p=\frac{1}{2}, t=0$ and $s=\frac{1}{2}$ we get $\frac{f(a)+f(b)}{2} \geq f\left(\frac{a+b}{2}\right)$. In particular $f(x) \geq f(0)$ for all x. Replacing $f(x)$ by $f(x)-f(0)$ we may assume that $f(0)=0$. Again with $p=\frac{1}{2}$ the hypothesis on f implies that for $0 \leq s \leq 1$,

$$
f(a-s a-(1-s) b))+f(b-s a-(1-s) b)=f((1-s)(a-b))+f(s(b-a)
$$

is constant and equals $f(b-a)=f(a-b)$. We can rewrite this again as $f(y)=f((1-s) y)+f(s y)$, where $y=b-a$, because f is even. If $A, B>0$, then letting $y=A+B$ and $s=A /(A+B)$ we conclude that $f(A+B)=f(A)+f(B)$ provided A and B are of the same sign. In particular, for every M and every $x \in[0, M]$ we have $0 \leq f(x)=f(M)-f(M-x) \leq f(M)$ so that f is bounded on any finite interval in $[0, \infty)$. By Lemma $4 f$ is continuous on $[0, \infty)$ and being additive it must be of the form $f(x)=\alpha x$ for $x>0$. Since it is even, the conclusion that $f(x)=\alpha|x|$ follows readily.

We are left with the case when F is strictly convex. We write f as the sum of its even and odd parts: $f=f_{e}+f_{o}$ where $f_{e}(x)=\frac{f(x)+f(-x)}{2}$ and $f_{o}(x)=\frac{f(x)-f(-x)}{2}$. Let us show the following.
Lemma 5. If f satisfies the assumption of Theorem 2, then so does f_{e}.
Proof. We rewrite the hypothesis on f in the form of the inequality

$$
\begin{equation*}
p f(a-t)+q f(b-t) \geq p f(a-\xi(a, b, p))+q f(b-\xi(a, b, p)) \tag{2}
\end{equation*}
$$

for all t, a, b and $p \in[0,1]$. By Lemma 2 the same inequality is true if $f(x)$ is replaced by $f(-x)$. Adding those inequalities side by side, we conclude that (2) holds also if f is replaced by f_{e}. Thus Lemma 5 is proved.

Now let us show that f_{e} is continuous. Letting $a=b$ in (2) we see that f_{e} is bounded from below by $f(0)=f_{e}(0)$. We may assume that $f(0)=0$. Again, letting $t=b$ in (2) and observing that, by Corollary 2, for $0<p<1$, $\xi(a, b, p)-a$ assumes all values in the interval $(0, b-a)$ we conclude that in this interval f_{e} is bounded from above by $f_{e}(b-a)$. It follows that f_{e} is bounded on any finite interval and by Lemma $3, f_{e}$ is continuous.

The remainder of the argument is now divided into into 3 steps:

1) f is everywhere continuous and continuously differentiable except possibly on a countable set.
2) f is even.
3) f is an arbitrary function.

Step 1). For a strictly convex F the one-sided derivatives $F_{+}^{\prime}(x)$ and $F_{-}^{\prime}(x)$ exist for every x, and for $x<y$

$$
F_{-}^{\prime}(x) \leq F_{+}^{\prime}(x)<F_{-}^{\prime}(y) \leq F_{+}^{\prime}(y)
$$

In particular the derivative F^{\prime} exists except possibly on an at most countable set where it has positive jumps. Denote this set by S. For a two-valued random variable X with parameters $a, b, p, \xi=\xi_{F}(X)$ is the solution t of the equation $\frac{d}{d t} E(F(X-t))=0$; i.e.,

$$
\begin{equation*}
p F^{\prime}(a-\xi)+q F^{\prime}(b-\xi)=0 \tag{3}
\end{equation*}
$$

provided $a-\xi$ and $b-\xi$ are not in E. The hypothesis on f implies that for all a, b, p,

$$
\begin{equation*}
\left.p f^{\prime}(a-\xi)+q f^{\prime}(b-\xi)\right)=0 \tag{4}
\end{equation*}
$$

if ξ is the unique solution of (3) and both $a-\xi$ and $b-\xi$ are outside a set S^{\prime} where the derivative f^{\prime} fails to exist. Fix now $x_{0}>0$ outside $S \cup S^{\prime}$ and for an arbitrary x outside this set apply Corollary 1. Equation (3) implies that $\frac{p}{q}=-\frac{F^{\prime}(x)}{F^{\prime}\left(-x_{0}\right)}$. Substituting into (4) we get

$$
f^{\prime}(x)=-\frac{p}{q} f^{\prime}\left(-x_{0}\right)=\frac{f^{\prime}\left(-x_{0}\right)}{F^{\prime}\left(-x_{0}\right)} F^{\prime}(x)
$$

It follows that f differs by a constant from a constant multiple of F which is the conclusion of the Theorem.

Observe also that in the cases when $F(x)=|x|^{c}, c>1$, and $F(x)=e^{|x|}$ equation (3) implies the formulas for $\xi_{F}(X)$ announced earlier in this paper.

Step 2). In this case $f=f_{e}$ and as noticed at the beginning of the proof, f is continuous. The inequality $f(x)+f(y) \geq 2 f\left(\frac{x+y}{2}\right)$, together with the continuity of f implies that f is convex. But then f is differentiable outside of a countable set and the one-sided derivatives of f exist at every point of that exceptional set. Thus by Step 1) we get the desired result.

Step 3). The main idea is to write $f=f_{e}+f_{o}$, use Step 2) to get $f_{e}=\alpha F+\beta$ and then show that $f_{o}=0$. By Lemma $5 f_{e}$ satisfies the hypotheses of the theorem and by Step 2), $f_{e}=\alpha F+\beta$. We can assume without loss of generality that $\alpha=1$ and $\beta=0$. Hence $f=F+f_{o}$. Now we consider condition (2) with
$p=q=\frac{1}{2}$. Then, by Lemma $1, \xi=\frac{a+b}{2}$ and with $a-t=x$ and $b-t=-y$ we get

$$
F(x)+F(y)-2 F\left(\frac{x+y}{2}\right)+f_{o}(x)-f_{o}(y) \geq f_{o}\left(\frac{x+y}{2}\right)+f_{o}\left(-\frac{x+y}{2}\right)=0 .
$$

By symmetry in x, y this implies that $\left|f_{o}(x)-f_{o}(y)\right| \leq F(x)-2 F\left(\frac{x+y}{2}\right)+F(y)$. Let $x=y+2 h$ and denote by Δ_{h} the operator of difference with increment h. Then the last inequality can be written as

$$
\begin{equation*}
\left|\Delta_{2 h} f_{o}(y)\right| \leq \Delta_{h}^{2} F(y) \tag{5}
\end{equation*}
$$

(5) implies that f_{o} is continuous.

Assume for a moment that F is continuously differentiable. Then dividing both sides of (5) by h and letting $h \rightarrow 0$ we conclude (applying l'Hôpital's theorem to the right hand side of the inequality) that the derivative f_{o}^{\prime} exists and vanishes identically. Thus f_{o} is a constant and since f_{o} is odd, it is 0 . This concludes Step 3) for a differentiable F.

Now we will reduce the general case to the case of a continuously differentiable F. This is done by regularization. Let $\varphi \geq 0$ be an arbitrary, continuously differentiable function on \mathbb{R} vanishing outside of the interval $[-1,1]$ and satisfying $\int_{\mathbb{R}} \varphi(y) d y=1$. For a continuous g define

$$
(\varphi \star g)(x)=\int_{\mathbb{R}} \varphi(x-y) g(y) d y
$$

Then $\varphi \star g$ is continuously differentiable and satisfies $\varphi \star\left(\Delta_{h} g\right)=\left(\Delta_{h} \varphi\right) \star g=$ $\Delta_{h}(\varphi \star g)$. Also the functions of the form $\varphi \star g$ approximate g uniformly on any finite interval. In particular, if they are all constant, then so is g. With this in mind we apply the operator $\varphi \star$ to both sides of (5) - this is legitimate since f_{o} is continuous. We get
$\left|\Delta_{2 h}\left(\varphi \star f_{o}\right)(x)\right|=\left|\varphi \star \Delta_{2 h} f_{o}(x)\right| \leq \varphi \star\left|\Delta_{2 h} f_{o}(x)\right| \leq \varphi \star \Delta_{h}^{2} F(x)=\Delta_{h}^{2}(\varphi \star F)(x)$.
Since now $\varphi \star F$ is continuously differentiable, the previous argument allows us to conclude that $\varphi \star f_{o}$ is constant and so is f_{o}. This concludes Step 3) of the proof.

[^0]: Key Words: Continuity, convexity, moments, percentiles, variance
 Mathematical Reviews subject classification: 26A51, 60A99
 Received by the editors September 142002
 Communicated by: Krzysztof Chris Ciesielski

