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GRAPHS OF GÂTEAUX DERIVATIVES
ARE w?-CONNECTED

Abstract

We show that if (X, ‖.‖) is a separable Banach space, Ω ⊂ X is
open, connected and f : Ω → R is an everywhere Gâteaux differentiable
Lipschitz continuous function, then the graph of the derivative of f is
connected in (Ω, ‖.‖)× (X?, w?).

1 Introduction

As a generalization of the classical Darboux property, J. Malý has proved ([1],
Theorem 1, page 168) that the range of the derivative of a Fréchet differentiable
function is connected in X? endowed with the norm topology.

Theorem 1.1. Let f be a Fréchet differentiable function defined on an open
subset D of the Banach space X. Then for any closed, convex set K ⊂ D with
nonempty interior, f ′(K) is a connected subset of (X?, ‖.‖X?).

On the other hand, a result of R. Deville and P. Hájek ([5], Theorem
1) shows that the above mentioned theorem of J. Malý does not hold if the
condition of Fréchet differentiability is weakened to Gâteaux differentiability.
(For more details and other related results see the remarks at the end of this
note.) In view of this fact, D. Azagra asked whether it is true that the range
of a Gâteaux derivative is connected at least if X? is endowed with the w?

topology. We answer his question in the affirmative.
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Theorem 1.2. Let (X, ‖.‖) be a separable Banach space, Ω ⊂ X be open,
connected and let f : Ω → R be an everywhere Gâteaux differentiable locally
Lipschitz function. Then the graph of the derivative,

Graph(f ′) = {(x, f ′(x)) : x ∈ Ω} ⊂ (Ω, ‖.‖)× (X?, w?)

is connected.

Our reference for the basic notions concerning differentiability is [7], for
topological notions we refer to [9] and [7].

For a Banach space X, BX(x, r) denotes the open ball in X centered at x
with radius r. For the unit ball we write BX . We denote the norm in X? by
‖.‖X? .

The symbol clX stands always for norm closure in X, while ∂X indicates
the corresponding boundary.

For the value at v ∈ X of a functional x? ∈ X? we use x?(v).
We denote by N the set of nonnegative integers.
Fσ stands for the sets which can be obtained as countable union of closed

sets.

2 Proof of Theorem

We will use the following two well-known theorems. For the proof of the first,
see [9], Volume 1., Chapter II., §27, page 301., while the second can be found
in [7], Chapter 3., Proposition 62, page 56 and in [8], 1.9.37.

Theorem 2.1. Let h be a function of the first Baire class between metric
spaces; that is, the inverse image of open sets under h are Fσ. Then the set
of discontinuity points of h is of the first category.

Theorem 2.2. If the Banach space X is separable, then (X?, w?) is metriz-
able, (BX? , w?) is compact, metrizable, so in particular separable.

The new element of our proof is contained in the following result.

Theorem 2.3. Let (X, ‖.‖) be a separable Banach space, Ω ⊂ X be open,
connected and let F : Ω → (X?, w?) be a function with the following properties:

1. F is of the first Baire class;

2. if V is a finite dimensional linear subspace of X, w ∈ V , r > 0 satis-
fying clV BV (w, r) ⊂ Ω, then for every u ∈ ∂V BV (w, r) we have F (u) ∈
clV ?F (BV (w, r)).
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Then Graph(F ) ⊂ (Ω, ‖.‖)× (X?, w?) is connected.

The connection between Theorem 1.2 and Theorem 2.3 is established in
the following two lemmas.

Lemma 2.4. Let (X, ‖.‖) be a separable Banach space, Ω ⊂ X open and
f : Ω → R an everywhere Gâteaux differentiable locally Lipschitz function.
Then f ′ : (Ω, ‖.‖) → (X?, w?) is of the first Baire class.

Lemma 2.5. Let V be a finite dimensional Banach space, Ω ⊂ V open.
Let w ∈ V , r > 0 satisfying clV BV (w, r) ⊂ Ω, and let u ∈ ∂V BV (w, r).
Suppose that f : Ω → R is everywhere Fréchet differentiable. Then f ′(u) ∈
clV ?f ′(BV (w, r)).

Before giving the proofs we note that Lemma 2.5 is a straightforward corol-
lary of Theorem 1.1. A more general statement has been observed by R. Deville
and P. Hájek ([5], Proposition on page 2.) where a proof based on the above
mentioned result of Malý was given. In the form as stated below, this result is
a very easy consequence of Ekeland’s variational principle (see [1], Lemma 2,
page 168). However, since this independent proof would be mainly technical,
we give only a proof based on Theorem 1.1.

Proof of Lemma 2.5 Take an x ∈ BV (w, r) and ρ < r such that ∂V BV (x, ρ)∩
∂V BV (w, r) = {u}. Then Theorem 1.1 for K = clV BV (x, ρ) gives that
f ′(clV BV (x, ρ)) is connected, specially

f ′(u) ∈ clV ?f ′(K \ {u}) ⊂ clV ?f ′(BV (w, r)).

Proof of Lemma 2.4 We have to show that whenever B ⊂ (X?, w?) is open,
{x ∈ Ω : f ′(x) ∈ B} is Fσ. Suppose first that f is Lipschitz with constant L.
We can assume that L < 1. From the continuity of f we have that for every
direction w ∈ ∂XBX , closed set J ⊂ R and real T > 0 the set

Aw,J,T =
{

x ∈ Ω :
f(x + tw)− f(x)

t
∈ J, 0 < |t| ≤ T

}
is relatively closed.

Now let I ⊂ R be an open interval. Since f is Gâteaux differentiable
everywhere, whenever Ji ⊂ I, i ∈ N is a sequence of closed intervals with
Ji ⊂ Jk for i ≤ k and

⋃
i∈N Ji = I, we have

{x ∈ Ω : (f ′(x))(w) ∈ I} =
⋃
i∈N

⋃
n∈N

Aw,Ji,
1

n+1
,
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an Fσ set. Note that from L < 1 we have f ′(x) ∈ BX? for every x ∈ Ω. Thus
if

w1, . . . , wm ∈ ∂XBX

are directions and I1 . . . , Im ⊂ R are open intervals, for the basic open set

B = {x? ∈ BX? : x?(wj) ∈ Ij}

we have that the set

{x ∈ Ω : f ′(x) ∈ B} =
m⋂

j=1

{x ∈ Ω : (f ′(x))(wj) ∈ Ij}

is Fσ. Since X is separable, we have from Theorem 2.2 that BX? is metrizable
and separable, so every open set in BX? is the countable union of basic open
sets, which proves the statement for Lipschitz functions.

Consider now the general case. Since X is separable, there is a countable
collection of open sets {Ωi : i ∈ N} such that

Ω =
⋃
i∈N

Ωi

and f is Lipschitz on Ωi. Then for any open set B ⊂ X?,

{x ∈ Ω : f ′(x) ∈ B} =
⋃
i∈N

{x ∈ Ωi : f ′(x) ∈ B}.

From the preceding we know that {x ∈ Ωi : f ′(x) ∈ B} is Fσ in Ωi, so it is Fσ

in Ω, that the inverse image of open sets under f ′ is Fσ.

Proof of Theorem 2.3. Suppose that Graph(F ) is not connected; that is
there are disjoint open sets A,B ⊂ Ω×X? such that Graph(F ) ⊂ A ∪B and
A ∩ Graph(F ) 6= ∅, B ∩ Graph(F ) 6= ∅. Using PrΩ for the projection to Ω,
we set

A = PrΩ(A ∩Graph(F )),

B = PrΩ(B ∩Graph(F )).

The sets A and B are nonempty disjoint subsets of the connected set Ω; so
P = clXA∩ clXB∩Ω is nonempty. The set P is relatively closed in Ω, that is,
of second category. Since X is separable, Theorem 2.2 implies that (X?, w?) is
metrizable. Since F is of the first Baire class, by Lemma 2.1 we can find a point
of continuity x0 of F |P . By symmetry, we can assume that (x0, F (x0)) ∈ A.
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Since Ω and A are open, there is a ρ > 0 and directions

x1, x2, . . . , xm ∈ ∂XBX

such that BX(x0, ρ) ⊂ Ω and for every y ∈ X and y? ∈ X?, ‖y − x0‖ < ρ and
|y?(xj)− (F (x0))(xj)| < ρ, j = 1, . . . ,m imply (y, y?) ∈ A. By the continuity
of F |P at x0, there is an 0 < ε < ρ such that for every x ∈ P ∩BX(x0, ε) and
1 ≤ j ≤ m we have

|(F (x))(xj)− (F (x0))(xj)| <
ρ

2
. (1)

So P ∩BX(x0, ε) ⊂ A; that is, B is open in BX(x0, ε).
Since x0 ∈ clXB, we can find an xm+1 ∈ B ∩BX(x0, ε). Let be V ≤ X be

the linear space spanned by x0, x1, . . . , xm, xm+1. From x0 ∈ BV (x0, ε) ∩ A
and xm+1 ∈ BV (x0, ε) ∩ B we have that the set

W = BV (x0, ε) ∩ B

is nonempty, W 6= BV (x0, ε) and, as noticed above, W is open.
Since V is finite dimensional, W is open and W 6= BV (x0, ε), we can find

a ball contained in W touching ∂V (V ∩ B); that is, a w ∈ W and an r > 0
such that BV (w, r) ⊂ W and ∂V BV (w, r) ∩ ∂V W is a nonempty subset of
BV (x0, ε). Let u ∈ ∂V BV (w, r) ∩ ∂V W . Note that from u ∈ A and u ∈ clV W
we have u ∈ P ∩BV (x0, ε).

From ε < ρ we have that clV BV (w, r) ⊂ Ω, and BV (w, r) ⊂ W ⊂ B implies
that

|(F (x))(xj)− (F (x0)(xj)| ≥ ρ

for at least one index j ∈ {1, 2, . . . ,m} whenever x ∈ BV (w, r). On the other
hand, it follows from u ∈ P ∩BX(x0, ε) and (1) that

|(F (u))(xj)− (F (x0)(xj)| <
ρ

2

for every j = 1, . . . ,m. Thus

F (u) /∈ clV ?F (BV (w, r)),

which contradicts to the second condition.

Proof of Theorem 1.2 Let F = f ′. According to Lemma 2.4, F is of the
first Baire class. Since in finite dimensional spaces the notion of Fréchet and
Gâteaux differentiability coincides for locally Lipschitz functions, for every
finite dimensional subspace V ≤ X, the restriction f |V is everywhere Fréchet
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differentiable; that is, from Lemma 2.5 we have that F |V = f ′|V satisfies the
second condition of Theorem 2.3. Thus Graph(f ′) ⊂ (Ω, ‖.‖) × (X?, w?) is
connected, as stated.

Remarks.
1. R. Deville and P. Hájek ([5], Theorem 1) have constructed an every-

where Gâteaux differentiable function f : l1 → R such that f ′ is norm to w?

continuous and for which f ′(l1) ⊂ (l?1, ‖.‖l?1
) has an isolated point. This shows

that the range of Gâteaux differentiable functions need not to be connected
in the norm topology.

R. Deville and P. Hájek ([5], Theorem 2) have also constructed a mapping
f : l1 → R2 such that

‖f ′(x)− f ′(y)‖L(l1,R2) ≥ 1

whenever x, y ∈ l1, x 6= y. Thus the range of the derivative of vector valued
functions can be very disconnected in the norm topology.

2. J. Saint Raymond ([6], Example 14.) constructed an everywhere Fréchet
differentiable mapping f : R2 → R2, such that the Jacobi determinant det f ′(x)
admits exactly two values. Therefore, f ′(R2) is not connected. This shows
that the vector valued analogue of the result of Malý or Theorem 1.2 does
not hold even in finite dimensional spaces. On the other hand, he also proved
([6], Theorem 20.) that if det f ′ is non-vanishing, then the graph of det f ′ is
connected.

3. Let X be an infinite dimensional Banach space with separable dual,
and let M ⊂ X? be an analytic set satisfying some extra arcwise connectivity
conditions. M. Fabian, Ondřej Kalenda and Jan Kolář in [2] have proved
that such a set M can be obtained as a range of a continuously differentiable
bump. This implies that the range of a derivative does not have to be simply
connected or locally connected.

Analogous finite and infinite dimensional results can be found in [3] or in
[4].
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