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CHAOS AND THE RECURRENT SET

Abstract

Let f be an element of C(I, I) with R(f) = {x ∈ I : x ∈ ω(x, f)} its
recurrent set. We study the relationship between the structure of R(f)
and the chaotic nature of the function f . We show that R(f) is always a
Gδ set whenever f has zero topological entropy, although R(f) is closed
for the typical continuous function f with zero topological entropy. We
also develop necessary and sufficient conditions on f for R(f) to be
closed.

1 Introduction

A recurring error made in the study of discrete dynamical systems has been
the assertion that the recurrent point set of a continuous self-map of a compact
interval is closed if and only if the function in question possesses zero topo-
logical entropy. Found in Sarkovskii’s early work, this error has more recently
appeared in [2] and [14]. The purpose of this paper is to study the relationship
between the chaotic nature of a function f in C(I, I) and the structure of its
recurrent set R(f) = {x ∈ I : x ∈ ω(x, f)}.

We begin in Section two with a presentation of the notation, definitions
and previously known results we will need in the balance of the paper. There
we also review the three forms of chaos we consider in the sequel: topological
entropy, Li and Yorke’s notion of a scrambled set, and the Baire class of
Bruckner and Ceder’s map ωf : I → K given by x 7→ ω(x, f). In Section three
we find that for a continuous function possessing zero topological entropy is
a necessary but not a sufficient condition for its recurrent set to be closed; a
construction found in [10] provides an example of a function f ∈ C(I, I) with
zero topological entropy for which R(f) is not closed. We are able to show,
however, that R(f) is always a Gδ set whenever f possesses zero topological
entropy, and R(f) is closed whenever the map ωf : I → K given by x 7→
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ω(x, f) is in the first Baire class. This does not provide a necessary condition,
however, as there are functions f in C(I, I) for which ωf is not in the first Baire
class, yet R(f) is still closed. We conclude in Section four by showing that the
typical function f in C(I, I) possessing zero topological entropy does have a
closed recurrent set, so that in some sense functions like that constructed in
[10] are exceptional.

2 Preliminaries

We shall be concerned with the class C(I, I) of continuous functions mapping
the unit interval I = [0, 1] into itself, and the iterative properties this class
of functions possesses. For f in C(I, I) and any integer n ≥ 1, fn denotes
the nth iterate of f . Let P (f) represent those points x ∈ I that are periodic
under f . For each x in I, we call the set of all subsequential limits of the
trajectory τ(x, f) = {fn(x)}∞n=0 the ω-limit set of f generated by x, and
write ω(x, f). Let Λ(f) = ∪x∈Iω(x, f) represent the ω-limit points of f , while
Ω(f) = {ω(x, f) : x ∈ I} denotes the set composed of the ω-limit sets of f . If
x ∈ ω(x, f), we call x a recurrent point of f ; let R(f) represent those points
which are recurrent with respect to f .

A function f : X → Y is in the first Baire class if it is a pointwise limit of
a sequence of continuous functions from X to Y . Let B1 represent the class
of functions in the first class of Baire.

We now turn our attention to the Baire Category Theorem. Let (X, ρ) be
a metric space. A set is of the first category in (X, ρ) if it can be written as
a countable union of nowhere dense sets; otherwise, the set is of the second
category. A set is residual if it is the complement of a first category set; an
element of a residual subset of (X, ρ) is called a typical element of X. With
these definitions in mind, we recall Baire’s theorem on category.

Theorem 2.1. Let (X, ρ) be a complete metric space, with S a first category
subset of X. Then X \ S is dense in X.

In addition to the usual, Euclidean metric d on I = [0, 1], we will be working
in two metric spaces. Within C(I, I) we will use the supremum metric given
by ‖f − g‖ = sup{| f(x) − g(x) |: x ∈ I}. Our second metric space (K, H)
is composed of the class of nonempty closed sets K in I endowed with the
Hausdorff metric H given by H(E,F ) = inf{δ > 0 : E ⊂ Bδ(F ), F ⊂ Bδ(E)},
where Bδ(F ) = {x ∈ I : d(x, y) < δ, y ∈ F}. This space is compact [4] . Our
interest in the space (K, H) stems from the following two theorems from [1]
and [3] respectively.

Theorem 2.2. For any f in C(I, I), the set Λ(f) is closed in I.
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Theorem 2.3. For any f in C(I, I), the set Ω(f) is closed in (K, H).

We also make use of three different formulations of chaos.
Throughout the sequel we will restrict our attention to a closed subset E of

C(I, I) composed of those functions f having zero topological entropy, denoted
by h(f) = 0. The reader is referred to Theorem A of [8] for an extensive list
of equivalent formulations of topological entropy zero. For our purposes, it
suffices to note that every periodic orbit of a continuous function with zero
topological entropy has cardinality of a power of two. The following theorem,
due to Smital [12], sheds considerable light on the structure of infinite ω-limit
sets for functions with zero topological entropy.

Theorem 2.4. If ω is an infinite ω-limit set of f ∈ C(I, I) possessing zero
topological entropy, then there exists a sequence of closed intervals {Jk}∞k=1 in
[0, 1] such that

1. for each k, {f i(Jk)}2k

i=1 are pairwise disjoint, and Jk = f2k

(Jk);

2. for each k, Jk+1 ∪ f2k

(Jk+1) ⊂ Jk;

3. for each k, ω ⊂ ∪2k

i=1f
i(Jk);

4. and for each k and i, ω ∩ f i(Jk) 6= ∅.

We make the following definitions with Smital’s Theorem in mind. Let
ω be an infinite compact subset of I, and let f map ω into itself. We call
f a simple map on ω if ω has a decomposition S ∪ T into compact portions
that f exchanges, and f2 is simple on each of these portions. From Smital’s
Theorem, one sees that every map f with zero topological entropy is simple on
each of its infinite ω-limit sets. Let {Jk}∞k=1 be a nested sequence of compact
periodic intervals with respect to ω and f as described in Smital’s Theorem.
Every set of the form ω ∩ f i(Jk) is periodic of period 2k, and we call each
such set a periodic portion of rank k. This system of periodic portions of ω,
or of the corresponding periodic intervals, is called the simple system of ω

with respect to f . Since Jk+1 ∪ f2k

(Jk+1) ⊂ Jk for all k ≥ 1, the sequence
{∪2k

i=1f
i(Jk)}∞k=1} is descending, so that ∩k≥1 ∪2k

i=1 f i(Jk) is nonempty. Set
L = ∩k≥1 ∪2k

i=1 f i(Jk).
Given the very specific behavior that functions of zero topological entropy

must demonstrate on their infinite ω-limit sets, it may not be too surprising
that Bruckner and Smital have been able to characterize these sets [6].

Theorem 2.5. An infinite compact set W ⊂ (0, 1) is an ω-limit set of a map
f ∈ C(I, I) with zero topological entropy if and only if W = Q ∪ P where
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Q is a Cantor set and P is empty or countably infinite, disjoint with Q, and
satisfies the following conditions:

1. every interval contiguous to Q contains at most two points of P ;

2. each of the intervals [0,minQ), (max Q, 1] contains at most one point of
P ;

3. and P = Q ∪ P .

We now define chaos in the sense of Li and Yorke [11] .
Take δ ≥ 0, with f in C(I, I). Suppose S ⊆ I such that for any x, y ∈ S

with x 6= y we have lim supn→∞ |fn(x)− fn(y)| > δ and lim infn→∞ |fn(x)−
fn(y)| = 0. We call S a scrambled set of f , and if f possesses an uncountable
scrambled set, then f is said to be chaotic in the sense of Li and Yorke. While
not immediately apparent, a function f is chaotic in the sense of Li and Yorke
if and only if there is a point x ∈ I which is not approximately periodic with
respect to f .

Our third notion of chaos comes from Bruckner and Ceder [5] .
To each function f ∈ C(I, I) associate the map ωf : I → (K, H) given

by x 7→ ω(x, f). Bruckner and Ceder show that the Baire class of the map
ωf : I → (K, H) well reflects the chaotic nature of the function f . In fact, those
functions f for which ωf is in the first Baire class exhibit a form of nonchaos
that allows scrambled sets but not positive topological entropy. That is, f
not chaotic in the sense of Li and Yorke ⇒ ωf : I → (K, H) is in the first
Baire class ⇒ f possesses zero topological entropy, but none of the reverse
implications is true.

3 R(f) and Chaos

We begin with a brief description of the function found in [10] as it provides
an example of a function with zero topological entropy for which the recurrent
set is not closed.

Let g be the function constructed in [10]. There exists an ω-limit set
ω(x0, g) of g such that ω(x0, g) = Q∪P in accordance with Theorem 2.5, and
P is nonempty. Moreover, there is a sequence of periodic points {pn} ⊂ P (g)
such that limn→∞ pn = y, where y = min{x : x ∈ ω(x0, g)} and y ∈ P . Since
P ∩R(g) = ∅, it follows that R(g) is not closed. If we set ωn = ω(pn, g), we can
use the fact that Ω(g) is closed and (K, H) is compact to find a subsequence
{ωnk

} ⊂ {ωn} such that limn→∞ ωnk
= ω(x0, g) = Q ∪ P in (K, H). Thus,

ω(x0, g) = Q∪P can be approximated by periodic ω-limit sets in (K, H) even
though the generating trajectory τ(x0, g) is not approximately periodic.
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Let us now turn our attention to the relationship between R(f) and the
chaotic nature of the function f . We begin with a well known result.

Lemma 3.1. If f ∈ C(I, I) and R(f) is closed, then h(f) = 0.

Proof. Suppose f ∈ C(I, I) and h(f) > 0. Let X ⊆ I so that fn(X) = X
and fn | X is semiconjugate to the shift operator σ on two symbols, for some
natural number n [7] . Then X ⊆ R(f), but X − R(f) 6= ∅, so that R(f) is
not closed.

The example of [10] shows us that the converse of Lemma 3.1 is false, so
that there are functions f with zero topological entropy for which R(f) is not
closed. Our next proposition does show, however, that the set structure of
R(f) cannot be too complicated for a function with zero topological entropy.
Whenever f ∈ C(I, I) such that h(f) = 0, the set R(f) is always a Gδ set;
that is, R(f) can be expressed as the intersection of a countable collection of
open sets.

Proposition 3.2. If f ∈ C(I, I) for which h(f) = 0, then R(f) is a Gδ set.

Proof. From the Main Theorem of [15] we know that R(f)\R(f) is countable
whenever h(f) = 0. This allows us to express R(f)\R(f) as a countable union
of closed sets, each of which is a singleton; say R(f) \ R(f) = ∪∞n=1Fn. Then
R(f) = R(f) \ ∪∞n=1Fn = ∩∞n=1(R(f) \ Fn). Since the difference of closed sets
is a Gδ set it follows that R(f)\Fn is a Gδ set for any n, so that R(f) = ∩∞n=1

(R(f)− Fn) is also a Gδ set.

Our next result provides a sufficient condition on f ∈ C(I, I) for R(f) to
be closed.

Proposition 3.3. If f ∈ C(I, I) and the map ωf : I → (K, H) given by
x 7→ ω(x, f) is in the first Baire class, then R(f) is closed.

Proof. If f ∈ C(I, I) and the map ωf : I → (K, H) given by x 7→ ω(x, f) is
in the first Baire class, then all the ω-limit sets of f are either finite sets or
perfect sets [5]. It follows that Λ(f) ⊆ R(f), so that R(f) = Λ(f) is closed.

From Proposition 3.3 one gets the following pair of corollaries.

Corollary 3.4. If f ∈ C(I, I) is not chaotic in the sense of Li and Yorke,
then R(f) is closed.

Proof. We need only recall that the map ωf : I → (K, H) given by x 7→
ω(x, f) is in the first Baire class whenever f ∈ C(I, I) is not chaotic in the
sense of Li and Yorke [5].
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Corollary 3.5. If f ∈ C(I, I) and the map ωf : I → (K, H) given by x 7→
ω(x, f) is in the first Baire class, then P (f) = Λ(f).

Proof. If f ∈ C(I, I) and the map ωf : I → (K, H) given by x 7→ ω(x, f)
is in the first Baire class, then from the proof of Proposition 3.3 one sees
that R(f) = Λ(f). Since R(f) ⊂ P (f) for all f ∈ C(I, I), it follows that
P (f) = Λ(f) [1].

It follows from Proposition 3.3 and its Corollary 3.5 that there is a class of
functions chaotic in the sense of Li and Yorke for which the recurrent sets are
closed and the periodic points are dense in the collection of ω-limit points.

The next two examples show that, in some sense, Proposition 3.3 is the
best we can do in relating the closed nature of the recurrent set to the chaotic
nature of the generating function.

Example 3.6. There exists f ∈ C(I, I) such that the map ωf : I → (K, H)
given by x 7→ ω(x, f) is not in the first Baire class, but R(f) is closed.

Construction: Bruckner and Ceder create this type of function in the proof
of Theorem 4.3 [5].

Example 3.7. There exists f ∈ C(I, I) such that the map ωf : I → (K, H)
given by x 7→ ω(x, f) is not in the first Baire class, and R(f) is not closed.

Construction: The function created by Hsin and Xiong in [10] is an example
of such a function.

We note that for the function f found in Example 3.6, one clearly has
P (f) 6= Λ(f). Surprisingly, however, the example of [10] may provide an
example of a function f for which the map ωf : I → (K, H) given by x 7→
ω(x, f) is not in the first Baire class and R(f) 6= R(f), yet P (f) = Λ(f).

Our final result of the section shows that whenever a function has zero
topological entropy and is piecewise monotonic, its recurrent set is closed.

Proposition 3.8. If f ∈ C(I, I) is piecewise monotonic and h(f) = 0, then
R(f) is closed.

Proof. With Theorem 1.4 of [9] , Gedeon shows that every piecewise mono-
tonic function f with zero topological entropy possesses only perfect infinite
ω-limit sets. Since the map ωf : I → (K, H) given by x 7→ ω(x, f) is in the
first Baire class for such a function, our conclusion follows from Proposition
3.3.
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4 R(f) and Typical Elements of E

The main result of this section is the following theorem which shows that
the typical function possessing zero topological entropy has a set of recurrent
points which is closed.

Theorem 4.1. The set R = {f ∈ E :R(f) = R(f)} is a residual subset of E.

Our theorem follows easily from the following proposition.

Proposition 4.2. The set S = {f ∈ E :f possesses a simple system for which
intL 6= ∅} is a first category subset of E.

Proof. Let {(an, bn)}∞n=1 be an enumeration of the open subintervals of I
with rational endpoints, and set Sn = {f ∈ E :(an, bn) ⊂ L for a simple system
of f}. Since S = ∪∞n=1 Sn, our goal is to show that Sn is nowhere dense for
all n. It suffices to show that Sn is closed and that E \ Sn is dense.

E \ Sn is dense: From Theorem 4 of [13], functions generating only finite
ω-limit sets are dense in E; it follows that E \ Sn is dense.

Sn is closed: Let {fk} ⊂ Sn for which fk → f in C(I, I), and to each fk

is associated a simple system with (an, bn) ⊂ Lk. Since (K, H) is a compact
metric space, by restricting our attention to a subsequence of {fk} if neces-
sary, we may presume that Lk → L in (K, H) while fk → f in C(I, I). Since
(an, bn) ⊂ Lk for all k, and Lk → L, we know that (an, bn) ⊂ L; f is strongly
invariant on L, too, as fk(Lk) = Lk for all k. We now show that f is a simple
map on L . As fk is a simple map on Lk, each Lk has a decomposition Sk∪Tk

into disjoint compact portions that fk exchanges, and f2
k is simple on each

of these. Let us suppose that maxSk < minTk, and by again restricting our
attention to a subsequence of {fk} if necessary, we may assume that for each
k, (an, bn) is always an element of either Sk or Tk; say (an, bn) ⊂ Sk. Since
fk → f and Lk → L, it follows that limn→∞ Sk = S and limn→∞ Tk = T
both exist in (K, H), with S ∪ T = L, f(S) = T and f(T ) = S. Now, there
exists a fixed point xk for each fk such that max Sk < xk < minTk, so that
there exists a fixed point x for f where max S ≤ x ≤ minT ; moreover, since
f2

k is simple on both Sk and Tk, we conclude that maxS � x � minT . Since
(an, bn) ⊂ Sk for each k, (an, bn) ⊂ S, and as f(T ) = S, T must be a nonde-
generate closed interval, too. Thus, L can be decomposed into nondegenerate
compact portions S and T that f exchanges. In a similar manner one shows
that both S and T can be decomposed into nondegenerate compact portions
that f2 exchanges. We conclude that f possesses a simple system for which
(an, bn) ⊂ L , so that Sn is closed. This completes our proof.
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We now prove Theorem 4.1.
Proof. Suppose f is an element of the residual set C(I, I)−S. Then int L = ∅
for any simple system of f , so that all the elements of Ω(f) are either finite or
perfect. Thus, the map ωf : I → (K, H) given by x 7→ ω(x, f) is in the first
Baire class [5] . Our conclusion follows from Proposition 3.3.
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