Artur Bartoszewicz, Institute of Mathematics, Łódź Technical University, Al. Politechniki 11, 90-924 Łódź, Poland. e-mail: arturbar@ck-sg.p.lodz.pl
Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA. e-mail: K_Cies@math.wvu.edu
http://www.math.wvu.edu/~ kcies

ERRATA: MB-REPRESENTATIONS AND TOPOLOGICAL ALGEBRAS

Theorem 5(b) from [BC] says the following.

$$
\begin{aligned}
& \text { Let }|X|=\kappa \geq \omega, \mathcal{F}_{0} \subset[X]^{\kappa} \text { be an almost disjoint family, and } \\
& \mathcal{F}=\left\{F \triangle A: F \in \mathcal{F}_{0} \& A \in[X]^{<\kappa}\right\} \text {. If }\left|\mathcal{F}_{0}\right|>\kappa \text { then the algebra } \\
& S(\mathcal{F})=\{A \subset X:(\forall P \in \mathcal{F})(\exists Q \in \mathcal{F})(Q \subset A \cap P \text { or } Q \subset P \backslash A)\} \\
& \text { is not topological, that is, } \mathcal{A} \neq S(\tau \backslash\{\emptyset\}) \text { for any topology } \tau \text { on } X \text {. }
\end{aligned}
$$

Unfortunately, the printed proof has a gap. (It shows only that the pair $\left\langle S(\mathcal{F}), S_{0}(\mathcal{F})\right\rangle$ is not topological.) A correct proof for this result follows.
Proof. By way of contradiction suppose that there exists a topology τ on X such that $S(\mathcal{F})=S\left(\tau_{0}\right)$, where $\tau_{0}=\tau \backslash\{\emptyset\}$. Notice that for every $F \in \mathcal{F}$ we have $F \in S(\mathcal{F})=S\left(\tau_{0}\right)$ and

$$
\begin{equation*}
U \notin S(\mathcal{F}) \text { for every } U \in[F]^{\kappa} \text { with }|F \backslash U|=\kappa \tag{1}
\end{equation*}
$$

In particular, $\mathcal{P}(F) \not \subset S\left(\tau_{0}\right)$; so F does not belong to $S_{0}\left(\tau_{0}\right)$, which is defined as $\{A \subset X:(\forall P \in \mathcal{F})(\exists Q \in \mathcal{F})(Q \subset P \backslash A)\}$. Thus,

$$
\begin{equation*}
\operatorname{int}_{\tau}(F) \neq \emptyset \text { for every } F \in \mathcal{F} \tag{2}
\end{equation*}
$$

For every $F \in \mathcal{F}_{0}$ let \mathcal{V}_{F} be a maximal pairwise disjoint subfamily of $\tau \cap[F]<\kappa$ and notice that $\left|\bigcup \mathcal{V}_{F}\right|<\kappa$. Indeed, otherwise we could find a subfamily \mathcal{V} of \mathcal{V}_{F} with $|\bigcup \mathcal{V}|=|F \backslash \bigcup \mathcal{V}|=\kappa$. But then $U=\bigcup \mathcal{V} \in \tau \subset S\left(\tau_{0}\right)=S(\mathcal{F})$ would contradict (1). So, $F \backslash \bigcup \mathcal{V}_{F} \in \mathcal{F}$ and $V_{F}=\operatorname{int}_{\tau}\left(F \backslash \bigcup \mathcal{V}_{F}\right)$ is nonempty by (2). To finish the proof it is enough to notice that $\left\{V_{F}: F \in \mathcal{F}_{0}\right\}$ is a family of nonempty pairwise disjoint subsets of X, contradicting the fact that $\left|\mathcal{F}_{0}\right|>\kappa=|X|$.

[^0]
References

[BC] A. Bartoszewicz, K. Ciesielski, MB-representations and topological algebras, Real Anal. Exchange 27(2) (2001-2002), 749-755.

[^0]: Key Words: Generalized Marczewski's sets, topology.
 Mathematical Reviews subject classification: Primary 54E52; Secondary 06E25, 03E35
 Received by the editors November 11, 2002
 Communicated by: Jack Brown

