
Real Analysis Exchange
Vol. 29(2), 2003/2004, pp. 895–904

Kandasamy Muthuvel, Department of Mathematics, University of
Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901-8631, USA.
email: muthuvel@uwosh.edu

SUM AND DIFFERENCE FREE SETS

Abstract

In this paper we prove that if X is an uncountable subset of the reals
and κ is a cardinal smaller than the cardinality of the set X , then the
algebraic difference X − X of the set X is not a finite union of κ sum
free or κ difference free sets. An application of the above result is that
for any function f : R → {1, 2, ..., n} and for each cardinal λ < 2ω, the
set of all x such that |{h > 0 : f (x − h) = f (x + h)}| ≥ λ is of the size
of the continuum. Among other things, we show that a finite union of
countably many translates of 2ω difference free subsets of the reals is not
residual in an interval. In the above statement, “countably many”can be
replaced by “fewer than continuum many”provided that 2ω is a regular
cardinal.

1 Introduction

Throughout this paper all sets are subsets of the reals. A set S is said to be
κ sum free if, for every real number r, the equation x + y = r has less than κ
solutions in S. A set S is said to be κ difference free if, for every nonzero real
number r, the equation x− y = r has less than κ solutions in S. A countable
partition P = {Pn : n < ω} of R is called κ difference free partition if, for
every 0 6= r ∈ R, the equation x − y = r has less than κ solutions, where
x and y belong to the same set Pn for some n. Theorems 2.3 and 3.2 in [2]
say that, for any vector space V over the rationals, if |V | ≤ ω1, then there
is a countable ω difference free partition of V , but if |V | ≥ ω1, then there is
no countable κ difference free partition of V for any κ < ω. A subset C of
R is called κ covering for R if the set C contains a translated copy of every
subset of R of size κ. For subsets A and B of R, A+B is defined to be the set
{x + y : x ∈ A and y ∈ B}.
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In this paper we prove two theorems about covering sets which imply that
(i) for any cardinal κ < 2ω, if Pi is a κ+ difference free set and Gi is a set of size
smaller than 2ω, then a finite union of sets of the form Pi+Gi is not residual in
an interval; (ii) under the assumption of 2ω ≥ ω2, for any cardinal κ < 2ω, no
ω1 covering set for R, in particular R, is a countable union of κ+ difference free
sets and, hence there is no countable κ+ difference free partition of R; (iii) a
countable union of 2ω difference free sets is not residual in an interval provided
that R is not a union of ω1 many meager sets and cf(2ω) > ω1. We also prove
that if κ is an infinite cardinal smaller than 2ωand V is a subset of the reals of
size κ+, thenV -V is not a finite union of κ sum free or κ difference free sets.
An application of the above result is that if f : R → {1, 2, ..., n} is a function
and Sx= {h > 0 : f (x − h) = f (x + h)}, then for each cardinal λ < 2ω, the
cardinality of the set {x : |Sx| ≥ λ} is 2ω.

2 Notation

The set of all real numbers and the set of all rational numbers are denoted by
R and Q, respectively. For subsets A and B of R, the symbols A − B and
A + B stand for the sets {x − y : x ∈ A and y ∈ B} and {x + y : x ∈ A and
y ∈ B}, respectively. A\B is the set theoretic difference of sets A and B. For
r ∈ R, A + r = {x + r : x ∈ A}. The cardinality of a set A is denoted by |A| .
κ stands for a positive cardinal.

Definition 2.1. A subset S of R is said to be κ sum free in a subset T of R
if, for every t ∈ T , the equation x + y = t has less than κ solutions in S. That
is, for each t in T , |{{x, y} : x, y ∈ S and x + y = t}| < κ. A subset S of R
is said to be κ sum free if it is κ sum free in R. A subset S of R is said to
be κ difference free in a subset T of R if, for every 0 6= t ∈ T , the equation
x − y = t has less than κ solutions in S. That is, for each nonzero t in T ,
|{{x, y} : x, y ∈ S and x−y = t}| < κ. A subset S of R is said to be κ difference
free if it is κ difference free in R. A countable partition P = {Pn : n < ω}
of R is called κ difference free partition if, for every 0 6= r ∈ R, the equation
x− y = r has less than κ solutions, where x and y belong to the same set Pn

for some n. That is, | ∪n<ω {{x, y} : x, y ∈ Pn and x− y = r}| < κ.

Note that (i) if S and T are subsets of R and S is κ sum free or κ difference
free (in R), then S is κ sum free or κ difference free in T ;

(ii) if P = {Pn : n < ω} is κ difference free partition of R, then R is a
countable union of κ difference free sets Pn.
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3 Results

Theorem 3.1. Let κ be an infinite cardinal smaller than 2ω. If V is a subset
of the reals of size κ+, then V − V is not a finite union of κ sum free or κ
difference free sets in V − V and hence, V − V is not a finite union of κ sum
free or κ difference free sets in R. In fact,

∣∣(V − V )\ ∪i=n
i=1 Si

∣∣ = κ+, where
each Si is a κ sum free or κ difference free set in V − V.

First, we prove the following lemmas.

Lemma 3.2. Let S be a κ sum free set in V − V. If |S ∩ (V − v)| = κ+

or |S ∩ (v − V )| = κ+ for some v ∈ V , then there exists a set W such that
|W | = κ+ and W ⊆ W −W ⊆ ((V − V )\S) ∪ {0}.

Proof. Suppose that |S ∩ (V − v)| = κ+ for some v ∈ V. Define a set
mapping F from S ∩ (V − v) into the power set of S ∩ (V − v) by F (x) =
(−S + x) ∩ S ∩ (V − v). Since the set S is κ sum free in V − V , for every
x ∈ V −V , we have |(−S + x)∩S| < κ. (A classical result of Hajnal [3] states
that if F is a set mapping from an uncountable set A into the power set of A
and |F (x)| < κ∀x ∈ A, where κ < |A|, then there exists a subset B of A such
that |B| = |A| and x /∈ F (y) for all distinct x, y in B.) By Hajnal’s set mapping
theorem, there exists a subset X of S∩(V −v) such that |X| = κ+ and x /∈ F (y)
for all distinct x, y in X, that is, x /∈ −S + y. Hence (X − X) ∩ S ⊆ {0}.
Let a be a fixed element of X and let W = X − a. Then |W | = κ+ and
W ⊆ W −W = X −X ⊆ ((V − v − (V − v))\S) ∪ {0} = ((V − V )\S) ∪ {0}.
The proof is essentially the same for the case |S ∩ (v − V )| = κ+.

Lemma 3.3. Let S be a κ difference free set in V − V. If |S ∩ (V − v)| = κ+

or |S ∩ (v − V )| = κ+ for some v ∈ V , then there exists a set W such that
|W | = κ+ and W ⊆ W −W ⊆ ((V − V )\S) ∪ {0}.

Proof. Define a set mapping F from S ∩ (V − v)\{0} into the power set of
S∩(V −v)\{0} by F (x) = (S+x)∩S∩(V −v)\{0}. Note that |(S+x)∩S| < κ
for every nonzero x ∈ V −V. By following the proof of Lemma 3.2, we get the
required result.

Lemma 3.4. Let V be a subset of the reals of size κ+. If S is a set such that
|S ∩ (V − v)| ≤ κ and |S ∩ (v−V )| ≤ κ∀v ∈ V , then there exists a set W such
that |W | = κ+ and W ⊆ W −W ⊆ ((V − V )\S) ∪ {0}.

Proof. Let v1 ∈ V. Since |(S +v1)∩V | = |S∩ (V −v1)| ≤ κ and |(−S +v1)∩
V | = |−S∩(V−v1)| = |S∩(v1−V )| ≤ κ, we have |((S+v1)∪(−S+v1))∩V | ≤ κ.
Hence, because of |V | = κ+, there exists an element v2 ∈ V such that v2 6= v1
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and v2−v1 /∈ S∪−S. Since |((S+v1)∪(S+v2)∪(−S+v1)∪(−S+v2))∩V | ≤ κ
and |V | = κ+, there exists an element v3 ∈ V such that v1, v2, v3 are distinct
and v3 − v1, v3 − v2, v2 − v1 /∈ S ∪ −S. Continuing in this way, by transfinite
induction, we get a set Y = {vi : i < κ+} such that vi − vj /∈ S for all
vi, vj ∈ Y with i 6= j. Let W = Y − v1. Then the set W is of size κ+ and
W ⊆ W −W = Y − Y ⊆ ((V − V )\S) ∪ {0}.

Proof of Theorem 3.1. Let (Si)1≤i≤n be a finite collection of κ sum free
or κ difference free sets in V − V. By Lemma 3.2, 3.3, or 3.4, there exists a
set W such that |W | = κ+ and W ⊆ W − W ⊆ ((V − V )\S1) ∪ {0}. Again
by applying Lemma 3.2, 3.3, or 3.4 to W , we obtain that there exists a set
Y such that |Y | = κ+ and Y ⊆ Y − Y ⊆ ((W − W )\S2) ∪ {0} . Hence
Y −Y ⊆ ((W −W )\S2)∪{0} ⊆ ((V −V )\(S1 ∪S2))∪{0}. Continuing in this
way, we obtain that ((V −V )\∪i=n

i=1 Si)∪{0} contains a set of size κ+ . Hence
|(V − V )\ ∪i=n

i=1 Si| = κ+, and V − V is not a finite union of k sum free or k
difference free sets in V − V. By definition, any k sum free or k difference free
set in R is k sum free or k difference free set in V − V. Thus V − V is not a
finite union of k sum free or k difference free sets in R.

Corollary 3.5. If G is an additive subgroup of the reals of size κ+ and κ < 2ω,
then G is not a finite union of κ sum free or κ difference free sets in G. In
fact,

∣∣G\ ∪i=n
i=1 Si

∣∣ = κ+, where each Si is a κ sum free or κ difference free set
in G.

Corollary 3.6. Let κ be a cardinal smaller than 2ω. Then the cardinality of
the complement of a finite union of κ sum free or κ difference free subsets of
the reals is 2ω.

Proof. To see this, suppose that
∣∣R\ ∪i=n

i=1 Si

∣∣ = λ < 2ω, where each Si is a κ
sum free or κ difference free subset of the reals. Let µ = max{κ, λ} and let G
be an additive subgroup of the reals of size µ+. Note that any κ sum free or κ
difference free set is µ sum free or µ difference free set and any µ sum free or
µ difference free set (in R) is µ sum free or µ difference free set in G. It follows
from Corollary 3.5 that

∣∣G\ ∪i=n
i=1 Si

∣∣ = µ+, where each Si is µ sum free or µ

difference free in G. This contradicts our assumption that
∣∣R\ ∪i=n

i=1 Si

∣∣ = λ
and λ ≤ µ.

Corollary 3.7. Let f : R → {1, 2, ..., n} be a function and, for each x ∈ R,
let Sx = {h > 0 : f(x − h) = f(x + h)}. Then, for each cardinal λ < 2ω the
cardinality of the set {x : |Sx| ≥ λ} is 2ω.

Proof. Let λ < 2ω and X = {x : |Sx| ≥ λ}. Assume, to the contrary, that
|X| = µ < 2ω . Hence |Sx| < λ for some real number x. By translating the
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function f if necessary, we may assume that |S0| < λ. Let κ = max{λ, µ}. In
Lemma 3.4, choose S = 2X and V to be an additive subgroup of the reals of
size κ+. Now let Y = V \2X. Then, by Lemma 3.4 together with the fact that
V − V = V and 0 /∈ X, the set Y contains a set W such that |W | = κ+ and
W −W ⊆ Y. We will show that, for each 1 ≤ i ≤ n, the set f−1(i) is λ sum
free in the set Y. For, let y ∈ Y. If y = a + b for some a, b ∈ f−1(i) with a 6= b,
then a = y

2 −
b−a
2 and b = y

2 + b−a
2 and hence∣∣∣a− y

2

∣∣∣ =
∣∣∣∣b− a

2

∣∣∣∣ ∈ S y
2
. (1)

By the choice of y, y
2 /∈ X. Since |S y

2
| < λ, it follows from (1) that the set

f−1(i) is λ sum free in Y. Hence R, in particular W −W , is a finite union of
λ sum free sets in Y. Since W −W ⊆ Y , any λ sum free set in Y is λ sum free
in W −W. Consequently, since λ ≤ κ, W −W is a finite union of κ sum free
sets in W −W , which contradicts Theorem 3.1.

Definition 3.8. For any two subsets X and C of R, we define Tr(X, C) =
{r ∈ R : X+r ⊆ C}. A subset C of R is called κ covering for R, if Tr(X, C) 6=
∅ for each subset X of R of size κ.

It follows from the following theorem that a finite union of countably many
translates of 2ω difference free sets is not residual in an interval. In the
above statement, “countably many”can be replaced by “fewer than contin-
uum many”provided that 2ω is a regular cardinal.

Theorem 3.9. Let G be a set such that |G| < 2ω, µ an infinite cardinal
smaller than 2ω, and C a µ covering for R.

(i) If κ is a cardinal smaller than 2ω and a set S is κ+ difference free, then
the set C\(S + G) is µ covering for R.

(ii) If a set S is 2ω difference free and cf(2ω) > Max{|G|, µ}, then the set
C\(S + G) is µ covering for R. In particular, if a set S is 2ω difference
free and cf(2ω) > |G|, then the set R\(S + G) is ω covering for R.

Lemma 3.10. If a set C is µ covering for R, ω ≤ µ < 2ω, and X is a set of
size µ, then |Tr(X, C)| = 2ω.

Proof. Let r ∈ R. Since |X + {0, r}| = µ and the set C is µ covering,
X +{0, r}+y ⊆ C for some real number y. Hence, 0+y and r+y are elements of
Tr(X , C). This implies that ∀r ∈ R , r = (r+y)−(0+y) ∈ Tr(X , C)−Tr(X , C)
. Consequently, R = Tr(X , C)− Tr(X , C) and |Tr(X , C)| = 2ω.
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Proof of Theorem 3.9(i). Assume, to the contrary, that C\(S + G) is not µ
covering for R. Then there exists a subset X of R of size µ such that (X + r)∩
(S +G) 6= ∅ ∀r ∈ Tr(X , C). Let H be the additive group generated by the set
G−X . Then |H| < 2ω and Tr(X , C) ⊆ S +H. Pick real numbers a and b such
that a− b /∈ H and denote the set X + {a, b} by Y. Then, since the cardinality
of the set Y is µ and the set C is µ covering, Y + r ⊆ C ∀r ∈ Tr(Y, C).
Note that ∀r ∈ Tr(Y,C), a + r, b + r ∈ Tr(X , C) ⊆ S + H , |Tr(Y, C)| = 2ω

and |H| ≤ λ < 2ω, where λ = max{|G|, µ, κ}. Hence, there exist h ∈ H and
a subset P of Tr(Y, C) of size λ+ such that a + p ∈ S + h∀p ∈ P. Since
b + p ∈ Tr(X , C) ⊆ S + H∀p ∈ P , there exist h1 ∈ H and a subset T of P
such that |T | = λ+ and b + t ∈ S + h1∀t ∈ T. Consequently, ∀t ∈ T , a + t− h
and b + t − h1 belong to the set S and (a + t − h) −(b + t − h1) is constant.
Also, note that (a + t − h) − (b + t − h1) is nonzero; otherwise a − b would
belong to the additive group H, contradicting the choice of a and b. Thus, we
obtain that the set S is not λ+ free and, since λ ≥ κ, S is not κ+ free. This
contradicts the hypothesis of the theorem that the set S is κ+ free.

Proof of Theorem 3.9(ii). In the proof of Theorem 3.9(i), we obtained that
a + r, b + r ∈ S + H ∀r ∈ Tr(Y, C). Since |H| = |G|µ = Max{|G|, µ} < 2ω,
|Tr(Y, C)| = 2ω, and cf(2ω) > Max{|G|, µ}, by a slight modification of the
proof of (i), we obtain that there exist h, h1 ∈ H and a set W of size 2ω such
that a + w ∈ S + h and b + w ∈ S + h1∀w ∈ W. This contradicts that the set
S is 2ω difference free.

Corollary 3.11. Let κ be a cardinal smaller than 2ω. Then a finite union of
fewer than continuum many translates of κ+ difference free sets is not residual
in an interval.

Proof. Assume, to the contrary, that I\F ⊆ ∪i=n
i=1 (Si + H), where I is a

nonempty open interval, F is a meager set, each set Si is κ+ difference free,
and H is any set of size less than 2ω. Then R \(F + Q) ⊆ ∪i=n

i=1 (Si + H + Q).
Since F + Q is meager, it is easy to see that R \(F + Q) is ω covering for R.
By applying part (i) of Theorem 3.9, we obtain that the set

(R\(F + Q))\
n⋃

i=1

(Si + H + Q)

is ω covering and empty, which is impossible.

Corollary 3.12.

(i) Let κ be a cardinal smaller than 2ω. If cf(2ω) > κ, then R is not a
finite union of κ many translates of 2ω difference free sets. In fact, if
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cf(2ω) > κ, a finite union of κ many translates of 2ω difference free sets
is not residual in an interval.

(ii) A finite union of countably many translates of 2ω difference free sets is
not residual in an interval.

The proof of this corollary follows from part (ii) of Theorem 3.9 and the
idea of the proof of Corollary 3.11.

Corollary 3.16 of the following theorem implies that, under the assumption
of Martin’s axiom, a countable union of 2ω difference free sets is not residual
in an interval.

Theorem 3.13. Let a set C be ω1 covering for R.

(i) Let κ be a cardinal smaller than 2ω. If 2ω ≥ ω2 and Si is κ+

difference free set for each i, then C\ ∪1≤i<ω Si is ω covering for R.

(ii) If 2ω ≥ ω2, Si is 2ω difference free set for each i, and cf(2ω) > ω1,
then C\ ∪1≤i<ω Si is ω covering for R.

Proof of Theorem 3.13(i). Suppose that C\∪1≤i<ω Si is not ω covering for R.
Then there exists a countable subset X of R such that (X +r)∩ (∪1≤i<ωSi) 6=
∅∀r ∈ Tr(X , C). For simplicity, denote Tr(X , C) by T. Hence, since X is
countable and T ⊆ ∪1≤i<ωSi−X , the set T is a subset of a countable union of
countably many translates of κ+ difference free sets Si. Let T ⊆ ∪1≤i<ωHi,
where each Hi is κ+ difference free set. Let Y ⊆ R and |Y | = ω1. Then
T + y ⊆ ∪1≤i<ω(Hi + y) ∀y ∈ Y.

(1) Hence ∩y∈Y (T + y) ⊆ ∩y∈Y ∪1≤i<ω (Hi + y).

(2) Because Hi is κ+ difference free set, |(Hi +u)∩(Hi +v)| ≤ κ for distinct
elements u and v of the set Y.

Since |Y | = ω1 and ∩y∈Y ∪1≤i<ω (Hi + y) ⊆ ∪1≤i<ω ∪u,v∈Y,u 6=v (Hi +
u) ∩ (Hi + v), (1) and (2) imply that

(3) | ∩y∈Y (T + y)| ≤ κω1 < 2ω.

Let G be the additive group generated by the set ∩y∈Y (T + y) . By (3),
|G| < 2ω. Let a ∈ R\G. Since |X − Y + {a, 0}| = ω1 and C is ω1 covering,
we have X − Y + {a, 0} + r ⊆ C for some real number r. This implies that
−y +a+ r,−y +0+ r ∈ T∀y ∈ Y and hence a+ r, r ∈ ∩y∈Y (T + y) ⊆ G. Now
a = a + r − r ∈ G − G = G, which contradicts the choice that a /∈ G. Thus
the proof of (i) is complete.
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Proof of Theorem 3.13(ii). By the hypothesis, cf(2ω) > ω1. It follows from
the proof of (i) that |(Hi + u) ∩ (Hi + v)| < 2ω and | ∩y∈Y (T + y)| < 2ω( see
(2) and (3) in proof of (i)). The rest of the proof is identical to the proof of
(i).

An immediate consequence of Theorem 3.13 is the following.
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Corollary 3.14.

(i) If 2ω ≥ ω2 and κ < 2ω, then the complement of a countable union of
κ+ difference free sets is ω covering for R and hence it is of the size of
the continuum.

(ii) If 2ω ≥ ω2 and cf(2ω) > ω1, then the complement of a countable
union of 2ω difference free sets is ω covering for R and hence it is of
the size of the continuum. In particular, if 2ω is a regular cardinal and
2ω ≥ ω2, then the complement of a countable union of 2ω difference free
sets is ω covering for R.

Theorem 2.3 in [2] says that if V is a vector space over the rationals and
|V | ≤ ω1, then there exists a countable ω difference free partition of V . It
follows from the following corollary that the converse of the above statement
is true for R.

Theorem 3.2 in [2] says that if V is a vector space over the rationals and
|V | ≥ ω1, then there is no countable κ difference free partition of V for any
κ < ω. A generalization of this theorem is given below.

Corollary 3.15. If 2ω ≥ ω2 and κ < 2ω, then R is not a countable union
of κ+ difference free sets and hence, there is no countable κ+ difference free
partition of R.

Corollary 3.16. If R is not a union of ω1 many meager sets and cf(2ω) > ω1,
in particular if MA(ω1) holds, then a countable union of 2ω difference free sets
is not residual in an interval.

Proof. Assume, to the contrary, that I\F ⊆ ∪1≤i<ωSi, where I is a nonempty
open interval, F is a meager set, and each set Si is 2ω difference free. Then
R \(F + Q) ⊆ ∪1≤i<ω(Si + Q). First, note that R \(F + Q) is ω1 covering for
R; otherwise for some set X of size ω1, (X + r) ∩ (F + Q) 6= ∅ ∀r ∈ R and
hence R is a union of ω1 many meager sets, which is a contradiction. By part
(ii) of Theorem 3.13, R\(F + Q)\ ∪1≤i<ω (Si + Q) = ∅ is ω covering, which is
impossible.
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