
Real Analysis Exchange
Vol. 29(2), 2003/2004, pp. 905–920

Solomon Leader, Mathematics Department, Rutgers University, 110
Frelinghuysen Rd., Piscataway, NJ 08854-8019, U.S.A.

CHANGE OF VARIABLE IN
KURZWEIL-HENSTOCK STIELTJES

INTEGRALS

Abstract

We present conditions under which one may substitute the identity
function for h in Kurzweil-Henstock integrals of the form

R
(f ◦h) d(g◦h)

reducing them to equivalent integrals of the form
R

f dg . Our study
requires that we also consider reduction of

R
(f ◦ g)|d(g ◦h)| to

R
Nf |dg|

where N is the Banach indicatrix of h.

1 Introduction

Our primary objective here was to find conditions on a continuous function h
on K = [a, b] and on functions f , g on h(K) that would ensure the validity of
the integration formula∫ x

a

(f ◦ h)(t) d(g ◦ h)(t) =
∫ h(x)

h(a)

f(y) dg(y) (1.1)

for all x in K. This objective is attained in Theorems 1 and 3 where both
conditional and absolute integrability in (1.1) are treated. Theorem 1 treats
the case of nondecreasing h while Theorem 3 allows h to be of bounded varia-
tion. In order to get (1.1) under the latter condition we had to determine the
validity of ∫

K

(f ◦ h) |d(g ◦ h)| =
∫

h(K)

Nf |dg| (1.2)

where N(y) is the number of points x in K such that h(x) = y. The function
N is the indicatrix of h introduced by Banach [1] who proved that

∫∞
−∞N(y) dy
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equals the total variation of the continuous function h on K. This is (1.2) for
f = 1 and g the identity.

In Theorem 3 we get (1.2) from a transform in Theorem 2. This transform
was introduced in [3], [4] and subsequently treated in [2, § 9.2]. Our treatment
here is more general in that the previous treatments apply to (1.1) and (1.2)
only for g the identity function.

All integrals here are Kurzweil-Henstock integrals defined by gauge-directed
limits of approximating sums on endpoint-tagged partitions. For a detailed
exposition of this integration process and the concept of differential based
upon it we direct the reader to [2]. But for easy access we offer the following
introductory remarks.

A cell here is any closed, bounded, nondegenerate interval H = [r, s] in R. So
−∞ < r < s < ∞. (Actually, all our results remain valid if either r = −∞
or s = ∞, or both.) The interior H◦ of H is the open interval (r, s). The
boundary H• consists of the two endpoints r, s. Two cells overlap if their
intersection is a cell. They abut if their intersection is a common endpoint. A
figure is a finite union of cells. (In terms of its components a figure is a finite
union of disjoint cells.) A partition of a cell (or figure) K is a finite set K of
cells whose union is K with no two members of K overlapping. A tagged cell
is a pair (I, t) where I is a cell and t is one of its endpoints. A division K of
K is a finite set of tagged cells such that the cells form a partition of K. A
gauge on K is a function δ on K such that δ(t) > 0 for all t in K. A tagged
cell (I, t) is δ-fine if the length of I is less than δ(t). A δ-division is a division
whose members are δ-fine. A summant S on K is any function S(I, t) on the
set of all tagged cells in K. Given a summant S on K each division K of K
yields a real number

(ΣS)(K) =
∑

(I,t)∈K

S(I, t) . (1.3)

For each gauge δ on K we let S(δ)(K) be the supremum, and S(δ)(K) the
infimum, of (1.3) over all δ-divisions K of K. The upper and lower integrals
of S are defined respectively by∫

K

S = inf
δ
S(δ)(K) ,

∫
K

S = sup
δ
S(δ)(K) (1.4)

taken over all gauges δ on K. The integral
∫

K
S is the common value of (1.4)

in [−∞,∞] whenever the upper and lower integrals are equal. S is integrable
if its integral exists and is finite. S is absolutely integrable if both S and |S|
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are integrable. S is conditionally integrable if S is integrable but |S| is not.
For such S we have

∫
K
|S| = ∞.

An equivalence relation S1 ∼ S2 for summants on K is defined by
∫

K
|S1 −

S2| = 0. Every summant S on K represents a differential σ on K defined to
be the set [S] of all summants equivalent to S on K. The differentials on K
form a Riesz space with |σ| =

[
|S|

]
, σ+ =

[
S+

]
, and σ− =

[
S−

]
for σ = [S].

The definitions
∫

K
σ =

∫
K
S and

∫
K
σ =

∫
K
S are effective for σ = [S]. So

the concepts of integral, integrability, absolute and conditional integrability
extend to differentials. A differential σ = 0 if and only if

∫
K
|σ| = 0, and

σ ≥ 0 if and only if σ− = 0.

Every function g on K induces a differential dg = [∆g] which is integrable
with ∫

K

dg = ∆g(K) (1.5)

since ∆g is additive on abutting cells. Conversely, every integrable differential
σ on K equals dg for g(x) =

∫
[a,x]

σ with g(a) = 0. The integral
∫

K
|dg| exists

for every function g on K and defines the total variation (finite or infinite) of
g.

For every function f on K and differential σ = [S] on K the differential
fσ = [fS] is effectively defined with (fS)(I, t) = f(t)S(I, t). A subset E
of K is σ-null if 1E σ = 0 where 1E is the indicator of E. A function g on
K is continuous at a point p if and only if p is dg-null. A condition holds
σ-everywhere on K if it holds on the complement of a σ-null set in K. The
definition of the product fσ extends to any function f that is defined and
finite σ-everywhere on K.

2 Change of Variable for Continuous, Nondecreasing h

The conclusions of the following theorem also hold on any cell contained in K.

Theorem 1. Let h be continuous on a cell K with dh ≥ 0. Let g be continuous
on h(K). Then for every function f on h(K)∫

K

(f ◦ h) d(g ◦ h) =
∫

h(K)

f dg (2.1)

and ∫
K

(f ◦ h)
∣∣d(g ◦ h)∣∣ =

∫
h(K)

f
∣∣dg∣∣ (2.2)
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which also hold for the lower integrals. If either of the integrals
∫

K
(f◦h) d(g◦h)

or
∫

h(K)
f dg exists then both exist and they are equal. The same holds for the

integrals
∫

K
(f ◦ h)

∣∣d(g ◦ h)∣∣ and
∫

h(K)
f |dg|. Absolute integrability of either

(f ◦ h) d(g ◦ h) on K or f dg on h(K) implies absolute integrability of both.

Proof. We dismiss the case of constant h for which all the integrals in (2.1)
and (2.2) vanish. So h(K) is a cell L rather than a point.

For any tagged cell (I, t) in K the image h(I) is either a point or a cell. In
the latter case

(
h(I), h(t)

)
is a tagged cell with h(t) the left or right endpoint

according to whether t is the left or right endpoint of I. Whatever the case
may be we have

(f ◦ h)(t) ∆(g ◦ h)(I) = f
(
h(t)

)
∆g

(
h(I)

)
(2.3)

where both sides vanish if h(I) is a point.

Let β be an arbitrary gauge on L. Continuity of h yields a gauge α on K such
that (

h(I), h(t)
)

is a β-fine tagged cell in L if (I, t)

is an α-fine tagged cell in K with ∆h(I) > 0
(2.4)

If I, J are nonoverlapping cells in K with both ∆h(I) > 0 and ∆h(J) > 0 then
the cells h(I), h(J) do not overlap. Thus each α-division K of K is carried by
h into a β-division L of L (discarding those (I, t) in K with ∆h(I) = 0) such
that (

Σ(f ◦ h) ∆(g ◦ h)
)
(K) =

(
Σf ∆g

)
(L) (2.5)

by (2.3) and (2.4). For the supremum of the right-hand side of (2.5) over all
β-divisions L of L we get(

Σ(f ◦ h) ∆(g ◦ h)
)
(K) ≤

(
f ∆g

)(β)(L) (2.6)

for all α-divisions K of K. Taking the supremum of the left-hand side of (2.6)
over all such K we get(

(f ◦ h) ∆(g ◦ h)
)(α)

(K) ≤
(
f ∆g

)(β)(L) . (2.7)

By (1.4) and (2.7) ∫
K

(f ◦ h) d(g ◦ h) ≤ (f ∆g)(β)(L) (2.8)
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for all gauges β on L. Hence (1.4) gives∫
K

(f ◦ h) d(g ◦ h) ≤
∫

L

f dg . (2.9)

To reverse the inequality in (2.9) let α be an arbitrary gauge on K. Choose a
gauge β on L as follows. Given u in L take an open interval W in R about u
small enough so that both q − p < α(q) and s − r < α(r) for [q, r] = h−1(u)
with q ≤ r and the cell [p, s] = h−1(W ). Such W exist since h is continuous
and nondecreasing. Take β(u) small enough so that if J is any cell in L with
u as an endpoint and length less than β(u) then J is contained in W .

Given a β-division L of L each member (J, u) of L yields an α-fine tagged cell
(I, t) in K where I = h−1(J◦) and t is the left (right) endpoint of I if u is the
left (respectively, right) endpoint of J . In this way L yields an α-division H of
a figure H in K. Since h is constant on each component of the complementary
figure H ′ = (K \H)◦ the differential d(g ◦ h) = 0 on H ′. Take any α-division
H′ of H ′ (with H′ empty if H = K) and let K = H ∪ H′. Then K is an
α-division of K such that (2.5) holds for the given β-division L of L. By an
analogous argument to that which led from (2.5) to (2.7) we get the reversal
of the inequality in (2.9). So equality holds in (2.9) which proves (2.1).

The proof of (2.1) gives a proof of (2.2) if we replace ∆(g ◦ h), ∆g, d(g ◦ h)
and dg by their absolute values. To get (2.1) and (2.2) for the lower integrals
apply them to −f .

The rest of the theorem follows from these results since they also apply to
|f |.

3 The Transform Theorem

Our next theorem is needed to treat change of variable for continuous h of
bounded variation. Its proof requires two lemmas.

Lemma 1. Let h be continuous on a cell I. Given a cell J in h(I) there exists
a cell H in I such that

h(H•) = J• (3.1)

and
h(H◦) = J◦ . (3.2)

If J1, J2 are nonoverlapping cells in h(I) and H1, H2 are cells in I such that
(3.2) holds for H1, J1 and H2, J2 then H1, H2 are nonoverlapping. For every
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function g on h(I)∣∣∣∆(g ◦ h)(I)
∣∣∣ ≤ ∫

h(I)

|dg| ≤
∫

I

∣∣d(g ◦ h)∣∣ . (3.3)

So g is of bounded variation on h(I) if g ◦ h is of bounded variation on I.

Proof. Since the endpoints p, q of J are distinct points in h(I) the nonempty
sets h−1(p) and h−1(q) are disjoint and compact. So the minimum distance
|x−y| between them is attained by some x in h−1(p) and y in h−1(q). Let H be
the cell with endpoints x, y. Then (3.1) clearly holds. Since H has minimum
length for all cells linking h−1(p) with h−1(q) its interior H◦ contains no point
of these two sets while H links them. So (3.2) follows from the intermediate
value theorem for the continuous function h.

Given (3.2) for the pairs H1, J1 and H2, J2 let H = H1 ∩ H2. Then H◦ =
H◦

1 ∩H◦
2 so h(H◦) ⊆ J◦1 ∩ J◦2 by (3.2). Hence if J◦1 ∩ J◦2 is empty then so is

H◦. That is, if J1, J2 do not overlap then neither do H1, H2.

Given a partition J = {J1, . . . , Jn} of h(I) choose for each Ji a cell Hi in I
such that (3.1) and (3.2) hold for Hi, Ji. Then (3.1) implies that for every
function g on h(I) ∣∣∆g(Ji)

∣∣ =
∣∣∆(g ◦ h)(Hi)

∣∣ (3.4)

for i = 1, . . . , n. Since no two members of J overlap, the same holds for
H = {H1, . . . ,Hn}. So H is a partition of the figure H1 ∪ . . . ∪ Hn in I.
Summation of (3.4) gives

(
Σ|∆g|

)
(J) =

(
Σ|g ◦ h|

)
(H) ≤

∫
I

∣∣d(g ◦ h)∣∣ . (3.5)

Since J is an arbitrary partition of h(I) the second inequality in (3.3) follows
from (3.5). The first inequality in (3.3) is obvious.

Note that (3.2) implies (3.1).

Lemma 2. Let h be continuous on a cell K. Let g be continuous on h(K)
with g ◦ h of bounded variation on K. Then∫

h(K)

1h(D)|dg| ≤
∫

K

1D

∣∣d(g ◦ h)∣∣ (3.6)

for every subset D of K. So h(D) is dg-null for every d(g ◦ h)-null subset D
of K.
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Proof. Let U be any relatively open subset of K containing D. Then h(D) ⊆
h(U) = ∪i∈Mh(Ii) where the Ii’s are the components of U indexed by a finite
or countably infinite set M . So∫

h(K)

1h(D) |dg| ≤
∫

h(K)

1h(U) |dg|

≤
∑
i∈M

∫
h(Ii)

|dg|

≤
∑
i∈M

∫
Ii

∣∣d(g ◦ h)∣∣
=

∫
K

1U

∣∣d(g ◦ h)∣∣
by Theorem 2 (§2.7) and Theorem 9 (§4.3) in [2], and (3.3) in Lemma 1. Thus∫

h(K)

1h(D) |dg| ≤
∫

K

1U

∣∣d(g ◦ h)∣∣ (3.7)

for every open set U containing D. The infimum of the right-hand side of
(3.7) over all such U equals the upper integral on the right-hand side of (3.6)
by Theorem 3 (§5.1) in [2]. So (3.6) holds.

We can now confront the transform theorem. The transform (3.8) is deter-
mined by the continuous function h of bounded variation on K. It takes φ on
K to φ̂ on the set Y of all y in R for which the set h−1(y) is finite. It acts as a
positive linear transformation taking the Lebesgue space L1

(
|d(g ◦ h)|

)
on K

into L1
(
|dg|

)
on h(K) for every continuous g on h(K) such that g ◦ h (hence

also g) is of bounded variation.

Theorem 2. Let h be a continuous function of bounded variation on a cell
K. Let g be continuous on h(K) with g ◦ h of bounded variation on K. Given
a function φ on K such that φd(g ◦ h) is absolutely integrable on K define the
function φ̂ dg-everywhere on h(K) by

φ̂(y) =
∑

x∈h−1(y)

φ(x) (3.8)

which is valid since the set h−1(y) is finite for dg-all y in h(K). Then φ̂dg is
absolutely integrable on h(K) and∫

K

φ
∣∣d(g ◦ h)∣∣ =

∫
h(K)

φ̂|dg| . (3.9)
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Proof. Since g ◦ h is a continuous function of bounded variation there exists
a continuous, nondecreasing function V on K such that

dV =
∣∣d(g ◦ h)∣∣ on K. (3.10)

Moreover, φdV is absolutely integrable since both d(g ◦ h) and φd(g ◦ h) are
absolutely integrable, and d(g◦h) has a Borel measurable Hahn decomposition
of K. So there is a continuous function F of bounded variation on K such
that

dF = φdV . (3.11)

We shall treat three cases of increasing generality beginning with the condition

0 ≤ φ ≤ k for some positive integer k. (3.12)

Define the summant S, which is independent of the tags, by

S(I) =

{
∆F
∆V (I) if ∆V (I) > 0,
0 if ∆V (I) = 0

(3.13)

for all cells I in K. Also independent of the tags is the summant T defined by

T (I) =
∫

h(I)

|dg| (3.14)

for all cells I in K. By (3.3) in Lemma 1 and (3.10)∣∣∆(g ◦ h)
∣∣ ≤ T ≤ ∆V . (3.15)

By (3.11) and (3.12) 0 ≤ dF ≤ kdV whose integrals give

0 ≤ ∆F ≤ k∆V . (3.16)

From (3.16) and (3.13) we get

0 ≤ S ≤ k (3.17)

and
S∆V = ∆F . (3.18)

From (3.18), (3.17) and (3.15) we get∣∣∆F − ST
∣∣ = S∆V − ST = S(∆V − T ) ≤ k

(
∆V − |∆(g ◦ h)|

)
.

That is, ∣∣∆F − ST
∣∣ ≤ k

(
∆V − |∆(g ◦ h)|

)
. (3.19)
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Take a sequence of partitions Kj of K such that for j = 1, 2, . . .

Kj+1 refines Kj (3.20)

and
each member of Kj has length less than

1
j
. (3.21)

Since g ◦ h is continuous (3.20), (3.21) and (3.10) imply that as j ↗∞(
Σ|∆(g ◦ h)|

)
(Kj) ↗ ∆V (K) . (3.22)

From (3.22) and (3.19) we have the convergence(
ΣST

)
(Kj) → ∆F (K) (3.23)

since ∆V and ∆F are additive on abutting cells.

For each j define ψj on h(K) in terms of (3.13) by

ψj(y) =
∑
I∈Kj

S(I)1h(I)(y) . (3.24)

So ψj is a linear combination of indicators of intervals. By Lemma 1 g is of
bounded variation. Thus ψj |dg| is integrable on h(K) and∫

h(K)

ψj |dg| =
(
ΣST

)
(Kj) (3.25)

by (3.24), (3.14), and continuity of g. By (3.23) and (3.25)∫
h(K)

ψj |dg| → ∆F (K) (3.26)

as j →∞.

Let Nj(y) be the number of members I of Kj such that y belongs to h(I).
That is,

Nj(y) =
∑
I∈Kj

1h(I)(y) . (3.27)

By continuity of g, the second inequality in (3.15), and the definition (3.14)
of T we can integrate (3.27) against |dg| to get∫

h(k)

Nj |dg| = (ΣT )(Kj) ≤ ∆V (K) . (3.28)
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By (3.24), (3.17), and (3.27)

0 ≤ ψj ≤ kNj . (3.29)

Let E be the countable set of all endpoints of members of the Kj ’s. Consider
any y in A = h(K)\h(E). For all j (3.20) implies

0 ≤ Nj(y) ≤ Nj+1(y) ≤ N(y) and Nj(y) <∞ (3.30)

where N is the Banach indicatrix of h on K. Since g is continuous the count-
able set h(E) is dg-null. That is, 1A dg = dg. So (3.30) holds at dg-all y in
h(K).

Given y, in A consider any finite set x1 < . . . < xm of points in the nonempty
set h−1(y). For j large enough so that 1

j < xi+1 − xi for i = 1, . . . ,m − 1
(3.21) implies that each member I of Kj contains at most one xi. So

m ≤ Nj(y) ultimately as j →∞ . (3.31)

Thus if N(y) <∞ then for m = N(y) the inequalities (3.30) and (3.31) imply
Nj(y) = N(y) ultimately as j → ∞. If N(y) = ∞ then (3.31) holds for
arbitrarily large m. That is, Nj(y) ↗∞ in (3.30). In summary, for all y in A

Nj(y) ↗ N(y) as j ↗∞ . (3.32)

Since 1A dg = dg (3.32) holds for dg-all y in h(K).

Let B be the set of y in A such that N(y) < ∞. For y in B and j large
enough so that each member I of Kj contains at most one point of h−1(y) =
{x1, . . . , xm} the definition (3.24) of ψj takes the form

ψj(y) =
m∑

i=1

S(Ij,i) (3.33)

where Ij,i is the unique member I of Kj such that I◦ contains the point xi of
h−1(y).

Let C consist of all y in B such that

dF

dV
(x) = φ(x) (3.34)

for all x in h−1(y). At such a point x ∆V (I) > 0 for every cell I in K that
contains x, and

∆F
∆V

→ φ(x)
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as the length of I goes to 0 with x in I. For y in C (3.13) and (3.21) imply
that for each term of the sum in (3.33)

S(Ij,i) → φ(xi) as j →∞ . (3.35)

By (3.35), (3.33), and the definition (3.8) of φ̂

ψj(y) → φ̂(y) as j →∞ (3.36)

for all y in C.

From (3.28) and (3.32) the monotone convergence theorem gives∫
h(K)

Nj |dg| ↗
∫

h(K)

N |dg| ≤ ∆V (K) <∞ (3.37)

as j ↗ ∞. This implies that N < ∞ dg-everywhere on h(K). That is,
1B dg = dg since 1A dg = dg .

Theorem 2 (§6.3) in [2] applied to (3.11) gives (3.34) at all x in K \D where
D is dV -null, that is, d(g ◦ h)-null by (3.10). So h(D) is dg-null by Lemma 2.
Hence 1C dg = dg since 1B dg = dg.

On C we have the convergence (3.36) with the ψj ’s bounded by kN according
to (3.29) and (3.32). Thus, since kN |dg| is integrable by (3.37), the dominated
convergence theorem in [2, Theorem 4, §2.8] gives∫

h(K)

ψj |dg| →
∫

h(K)

φ̂ |dg| . (3.38)

Comparison of (3.38) with (3.26) gives

∆F (K) =
∫

h(K)

φ̂ |dg| . (3.39)

By (3.10) and (3.11) equation (3.39) is just (3.9). So (3.9) holds for the case
(3.12).

We can now prove (3.9) for the case

0 ≤ φ(x) <∞ for all x in K. (3.40)

Let φk = φ∧k for each positive integer k. Since φdV is integrable so is φk dV .
Since each φk satisfies (3.12) we have (3.9) in the form∫

K

φk dV =
∫

h(K)

φ̂k |dg| (3.41)



916 Solomon Leader

for φk by (3.10) Since φk ↗ φ as k ↗ ∞ the monotone convergence theorem
in [2, Theorem 3, §2.7] gives∫

K

φk dV ↗
∫

K

φdV . (3.42)

Similarly φ̂k ↗ φ̂ dg-everywhere under (3.8). So∫
h(K)

φ̂k |dg| ↗
∫

h(K)

φ̂ |dg| . (3.43)

The last three displays give (3.9) for the case (3.40).

For general case, −∞ < φ(x) <∞ for all x in K, we apply the case (3.40) to
φ+ and φ−, noting that φ̂ = φ̂+ − φ̂−, to get∫

K

φdV =
∫

K

φ+ dV −
∫

K

φ− dV

=
∫

h(k)

φ̂+ |dg| −
∫

h(K)

φ̂− |dg| =
∫

h(K)

φ̂ |dg| .

For the case φ = 1 (3.8) gives 1̂ = N , the Banach indicatrix of h. So (3.9)
then gives Lindner’s indicatrix integral for the total variation of g ◦ h,∫

K

|d(g ◦ h)| =
∫

h(K)

N |dg| . (3.44)

Lindner [5] proved this for all continuous h, g with both integrals equal to ∞
when g ◦ h is of unbounded variation. Banach’s indicatrix theorem [1] is the
special case of (3.44) for g the identity function,∫

K

|dh| =
∫ ∞

−∞
N(y) dy (3.45)

for any continuous h on K. For g the identity function, Theorem 2 reduces to
Theorem 1 (§9.2) in [2].

4 Change of Variable for Continuous h of Bounded Vari-
ation

Theorem 3. Let h be a continuous function of bounded variation on a cell
K = [a, b] with Banach indicatrix N . Let g be continuous on h(K) with g ◦ h
of bounded variation on K. Let f be a function on h(K).
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(i) If (f ◦ h) d(g ◦ h) is absolutely integrable on K then∫
K

(f ◦ h) |d(g ◦ h)| =
∫

h(K)

Nf |dg| (4.1)

and there exists a continuous function F of bounded variation on h(K)
such that

dF = f dg on h(K) (4.2)

and
d(F ◦ h) = (f ◦ h) d(g ◦ h) on K . (4.3)

For all x in K∫ h(x)

h(a)

f(y) dg(y) =
∫ x

a

(f ◦ h)(t) d(g ◦ h)(t) . (4.4)

(ii) If the integrability condition (4.2) holds for some F on h(K) such that
h−1(E) is d(F ◦ h)-null for every dF -null subset E of h(K) then (4.3)
and (4.4) hold.

Proof. To prove (4.1) in (i) apply Theorem 2 with φ = f ◦ h. Since φ has
constant value f(y) on h−1(y) (3.8) gives φ̂ = Nf . So (3.9) gives (4.1).

To complete the proof of (i) we collect some results from [2] that we shall need.

Given g continuous and of bounded variation on a cell L we call a point x in L
∆g-positive (∆g-negative) whenever ∆g(I) > 0 (respectively, ∆g(I) < 0) for
all sufficiently small cells I in L containing x. For P the set of all ∆g-positive
points and Q the set of all ∆g-negative points in L we have 1P dg = (dg)+ =
1P |dg| and −1Q dg = (dg)− = 1Q |dg|. So

1P+Q dg = dg , (1P − 1Q) dg = |dg|, and (1P − 1Q) |dg| = dg . (4.5)

(See [2, Theorem 3, §6.3].) We shall apply these results to g, h, and g◦h. So let
A be the set of all ∆h-positive, and B the set of all ∆h-negative, points in K.
Let C be the set of all ∆(g ◦h)-positive, and D the set of all ∆(g ◦h)-negative,
points in K.

For each subset E of K let NE be the Banach indicatrix of h on E. That is
NE(y) is the number of points x in E such that h(x) = y.

Consider any point x in h−1(P ). That is, h(x) is ∆g-positive. Such a point
x is ∆(g ◦ h)-positive if and only if it is ∆h-positive. That is, C ∩ h−1(P ) =
A ∩ h−1(P ). So 1PNC = NC∩h−1(P ) = NA∩h−1(P ) = 1PNA. That is,

1PNC = 1PNA . (4.6)
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Now we consider any x in h−1(Q). That is, h(x) is ∆g-negative. Such a point
x is ∆(g ◦ h)-positive if and only if it is ∆h-negative. That is, C ∩ h−1(Q) =
B ∩ h−1(Q) which gives

1QNC = 1QNB . (4.7)

Similar arguments give
1PND = 1PNB (4.8)

and
1QND = 1QNA . (4.9)

The sum of (4.6) and (4.7) minus the sum of (4.8) and (4.9) gives

1P+Q(NC −ND) = (1P − 1Q)(NA −NB) . (4.10)

By (4.5) and (4.10)

(NC −ND)|dg| = (NA −NB) dg . (4.11)

We also have

w |d(g ◦ h)| = d(g ◦ h) for w = 1C − 1D on K . (4.12)

For φ = wf ◦ h in (3.8) we get φ̂ = ŵf = (1̂C − 1̂D)f = (NC − ND)f which
together with (4.12) and (4.11) converts (3.9) into∫

K

(f ◦ h) d(g ◦ h) =
∫

h(K)

(NA −NB)f dg . (4.13)

To get (4.4) from (4.13) for the case x = b we need only prove∫
h(K)

(NA −NB)f dg =
∫ h(b)

h(a)

f(y) dg(y) (4.14)

under the convention
∫ q

p
= −

∫ p

q
.

Since g ◦ h is of bounded variation Lindner’s indicatrix integral in (3.44) is
finite. So N <∞ dg-everywhere and the same holds for NA and NB .

Consider any y distinct from h(a) and h(b) with N(y) < ∞. As t advances
continuously from a to b the point h(t) passes through y in the positive di-
rection NA(y) times and in the negative direction NB(y) times. Since h is
continuous these positive and negative transits must alternate. Let J be the
closed interval with endpoints h(a) and h(b). For y in J◦ the value of NA−NB

at y is 1 if h(a) < h(b) and −1 if h(b) < h(a). For y in R \ J the value of
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NA − NB at y is 0 in both of the cases h(a) ≤ h(b) and h(b) ≤ h(a). In
summary, since the endpoints of J are dg-null for the continuous function g,

NA −NB = 1J sgn
(
h(b)− h(a)

)
(4.15)

dg-everywhere on h(K). Integration of (4.15) against f dg gives (4.14). Since
our proof is valid for [a, x] in place of K we get (4.4) for all x in K.

Since (f ◦h) d(g◦h) is absolutely integrable on K, f dg is absolutely integrable
on h(K) by (4.1) and (4.4). Hence (4.2) holds for some continuous F of
bounded variation on h(K). So the left-hand side of (4.4) equals ∆(F ◦h)[a, x]
which under (4.4) gives (4.3). So we have the proof of (i).

Given the hypothesis in (ii) we invoke Theorem 2 (§6.3) in [2] to get h(K) =
D + E with dF

dg (y) = f(y) for all y in D, and E dg-null. So for all y in D

F (z)− F (y)− f(y)
(
g(z)− g(y)

)
= o

(
|g(z)− g(y)|

)
(4.16)

as z → y in h(K). For tagged cells (I, t) in K with t in h−1(D) we can apply
(4.16) with y = h(t) and z = h(s) where s is the endpoint of I opposite t.
This gives

(1D ◦ h)(t)
∣∣∆(F ◦ h)(I)− (f ◦ h)(t)∆(g ◦ h)(I)

∣∣ = o
(
|∆(g ◦ h)(I)|

∣∣ (4.17)

as the length of I goes to 0 with t an endpoint of I. This convergence is just
s → t which by the continuity of g ◦ h implies ∆(g ◦ h)(I) → 0. So (4.17)
implies

1h−1(D)

∣∣d(F ◦ h)− (f ◦ h) d(g ◦ h)
∣∣ = 0 (4.18)

since g◦h is of bounded variation and 1D ◦h = 1h−1(D). By hypothesis h−1(E)
is d(F ◦ h)-null since E is dg-null. So

1h−1(D) d(F ◦ h) = d(F ◦ h) . (4.19)

By Theorem 3 (§5.1) in [2] there exists a dg-null Borel set A containing the
dg-null set E. Since h is continuous, h−1(A) is a Borel set. So 1h−1(A) d(g ◦h)
is absolutely integrable since g ◦ h is of bounded variation. Thus Theorem 2
applies with φ = 1h−1(A) for which φ̂ = N1A. So by (3.9) we conclude that
h−1(A), hence also h−1(E), is d(g ◦ h)-null. Thus

1h−1(D) d(g ◦ h) = d(g ◦ h) . (4.20)

The last three displays give (4.3). Integration of (4.2) and (4.3) gives (4.4)
completing the proof of (ii).
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We remark that while (ii) demands integrability of (4.2), (i) demands absolute
integrability of (4.3). The case f = 1 in (i) reduces (4.1) to (3.44). More
generally, for f = 1E with E a Borel set in h(K) we have absolute integrability
of both 1E dg on h(K) and 1h−1(E) d(g ◦ h) on K, since h−1(E) is a Borel set.
So Theorem 3 gives∫

K

1h−1(E)

∣∣d(g ◦ h)∣∣ =
∫

h(K)

N1E |dg|

for (4.1) and ∫ h(x)

h(a)

1E(y) dg(y) =
∫ x

a

1h−1(E)(t) d(g ◦ h)(t)

for (4.4) since 1h−1(E) = 1E ◦ h.
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