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A NOWHERE CONVERGENT SERIES OF
FUNCTIONS WHICH IS SOMEWHERE
CONVERGENT AFTER A TYPICAL
CHANGE OF SIGNS

Abstract

On any uncountable Polish space we construct a sequence of contin-
uous functions (f») such that 3 f,, is divergent everywhere, but for a
typical sign sequence (g,) € {—1,+1}", the series 3 &, f is convergent
in at least one point. This answers a question of S. Konyagin in the
negative.

1 Introduction

Let X be a topological space, f, : X — R, n € N be a sequence of con-
tinuous functions. One can ask for a condition on the order of magnitude
of the sequence (f,) which guarantees that for a “typical” choice of signs
en € {—1,41}, the signed series > e, f, diverges everywhere on X. Such
conditions are known for Fourier and Dirichlet series if “typical” means for
almost every choice of signs in the product probability space Q = {—1, +1}"
(see [2], [1]). However, in this note we consider € as a product of discrete
topological spaces and “typical” is understood in categorical sense.

In [1, Theorem 4.1] for X = R a condition on the divergence of the partial
sums of Y f,, was given implying that 3 e, f,, diverges everywhere for a dense
G5 set of sign sequences (g,) € . Motivated by this result, S. Konyagin
asked whether, in case of compact metric spaces X, the pure fact that > f,
diverges everywhere could imply that > e, f,, diverges everywhere for a dense
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Gy, hence residual set of sign sequences. We give a negative answer by the
following example, which is the main result of this note.

Theorem 1. Consider C = {—1,0,1}" as the topological product of the dis-
crete spaces (which is clearly homeomorphic to the Cantor set). There ex-
ists a sequence of continuous functions f, : C — [=1,1] and a dense Gy set
Qo C Q= {—1,+1} such that the series Y. f, diverges everywhere on C, but
for every (g,) € Qo, the series Y e, [, converges in at least one point of C.

Then we can easily get examples on any uncountable Polish space (that is,
on any uncountable complete separable metric space; so in particular on R)
as well.

Corollary 2. On any uncountable Polish space (X,d) there exist a sequence
of continuous functions g, : X — R such that Y g, diverges everywhere on
X but the sign sequences (e,) € Q = {11} for which 3 e,g, diverges
everywhere on X form a set of first category in €.

PRrROOF. It is well known (see e.g. in [3, Corollary 6.5]) that any uncountable
Polish space contains a homeomorphic copy C of a Cantor set. Let f, : C' —
[—1,1] be the sequence of functions on C' we get by Theorem 1, and for any
n € Nlet f, : X — [—1,1] be a continuous extension of f, to X. Then the
sequence of functions g, (z) = fn(z) +n-d(z,C) on X (where d(z,C) denotes
the distance of x from C') has all the required properties. O

Notation. In this note G stands for the class of those sets that can be
obtained as countable intersection of open sets; N and R stands for the set of
nonnegative integers and nonnegative reals, respectively. On finite sets (e.g.
{=1,1} or {—1,0,1}) the topology we consider is always the discrete topology.
By a Polish space we mean a complete, separable, metric space.

2 The Example

In this section we prove Theorem 1.

For each fixed a = (a;) € C = {—1,0,1}" we define the sequence (f,(a))
together with a sequence (mg(a)) by induction. Let mg(a) = 0. Suppose that
k € N and the numbers mg(a) < ... < my(a) and fo(a),..., fm,(a)—1(a) are
already defined. Then let

1
fmk(a)(a) = fmk(a)+l(a) = ... = fmk(a)+2kfl(a) = 27]67 (1)

my41(a) = min{j > mg(a) + 2% : a; = 0}, (2)
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fula) = ;7; for mx(a) + 28 < n < mys1(a). (3)
(If {j > mg(a) + 2% : a; = 0} is empty, then my41(a) = co and after defining
fn(a) = % for every n > my(a) + 2* the procedure terminates.)
Claim 1. Every function f, (n € N) is continuous on C.
PRrOOF. This is clear since f,(a) depends only on ay, ..., a,. O
Claim 2. The series Y fn(a) diverges for every a € C

PROOF. If myy1(a) = oo for some k € N, then |f,(a)] = 27F for every n >
mk+2%, so f,(a) does not even converge to zero. Otherwise - by (1) - infinitely
many blocks of sum 1 appears in Y f,,(a), so it cannot be convergent. O

Put
m—+k

Q= U M) e {1417, = (-1},

keN meN j=m
Claim 3. The set Q is a dense G5 in the product space {—1,+1}.
PrROOF. This is clear since {(g,) € {—1,+1} :e; = (—1)7} is open for any j
and |, en ﬂ]m:;:{(sn) € {-1,+1} : &; = (—1)7} is dense for any k. O

Claim 4. For every (g,,) € o there exist an a € C such that > ey fn(a)
converges.

PROOF. For a fixed (g,,) € Qg let

J={jeN g =(-1)y7}L (4)
Since (e,) € Qo, the set J contains arbitrarily long finite sequences of consec-
utive integers. Thus there exists a sequence 0 = mg < my < ... such that
M1 > Mg + 2k and
mp,me +1,...,my+28—-1€J (VkeN). (5)
Let
_J0 if 7 = my, for some k € N (6)
%7 (=1)i/e; otherwise

We have my(a) = my (k € N) since mg = 0 and the sequence (my,) satisfies
(2). For every k € N and my, < j < my + 2% by (1) we have that f;(a) =1/2*
and by (5) and (4) that e; = (—1)/. Thus ¢;f;(a) = (=1)7/2*. For every
k € N and my, + 2% < j < my41 by (3) we have that f;(a) = a;/2* and by (6)
that a; = (—1)7/e;. Thus again ¢, f;(a) = (—1)7/2%. Therefore Y e, f,(a) is
a Leibniz series, so it is convergent. O

The four Claims above (together with the clear fact that, by definition,
every f, maps into [—1,1]) complete the proof of Theorem 1.
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