
Real Analysis Exchange
Vol. 29(2), 2003/2004, pp. 891–894

Tamás Keleti, Department of Analysis, Eötvös Loránd University, Pázmány
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A NOWHERE CONVERGENT SERIES OF
FUNCTIONS WHICH IS SOMEWHERE

CONVERGENT AFTER A TYPICAL
CHANGE OF SIGNS

Abstract

On any uncountable Polish space we construct a sequence of contin-
uous functions (fn) such that

P
fn is divergent everywhere, but for a

typical sign sequence (εn) ∈ {−1, +1}N, the series
P

εnfn is convergent
in at least one point. This answers a question of S. Konyagin in the
negative.

1 Introduction

Let X be a topological space, fn : X → R, n ∈ N be a sequence of con-
tinuous functions. One can ask for a condition on the order of magnitude
of the sequence (fn) which guarantees that for a “typical” choice of signs
εn ∈ {−1,+1}, the signed series

∑
εnfn diverges everywhere on X. Such

conditions are known for Fourier and Dirichlet series if “typical” means for
almost every choice of signs in the product probability space Ω = {−1,+1}N

(see [2], [1]). However, in this note we consider Ω as a product of discrete
topological spaces and “typical” is understood in categorical sense.

In [1, Theorem 4.1] for X = R a condition on the divergence of the partial
sums of

∑
fn was given implying that

∑
εnfn diverges everywhere for a dense

Gδ set of sign sequences (εn) ∈ Ω. Motivated by this result, S. Konyagin
asked whether, in case of compact metric spaces X, the pure fact that

∑
fn

diverges everywhere could imply that
∑

εnfn diverges everywhere for a dense
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Gδ, hence residual set of sign sequences. We give a negative answer by the
following example, which is the main result of this note.

Theorem 1. Consider C = {−1, 0, 1}N as the topological product of the dis-
crete spaces (which is clearly homeomorphic to the Cantor set). There ex-
ists a sequence of continuous functions fn : C → [−1, 1] and a dense Gδ set
Ω0 ⊂ Ω = {−1,+1}N such that the series

∑
fn diverges everywhere on C, but

for every (εn) ∈ Ω0, the series
∑

εnfn converges in at least one point of C.

Then we can easily get examples on any uncountable Polish space (that is,
on any uncountable complete separable metric space; so in particular on R)
as well.

Corollary 2. On any uncountable Polish space (X, d) there exist a sequence
of continuous functions gn : X → R such that

∑
gn diverges everywhere on

X but the sign sequences (εn) ∈ Ω = {−1, 1}N for which
∑

εngn diverges
everywhere on X form a set of first category in Ω.

Proof. It is well known (see e.g. in [3, Corollary 6.5]) that any uncountable
Polish space contains a homeomorphic copy C of a Cantor set. Let fn : C →
[−1, 1] be the sequence of functions on C we get by Theorem 1, and for any
n ∈ N let f̃n : X → [−1, 1] be a continuous extension of fn to X. Then the
sequence of functions gn(x) = f̃n(x)+n · d(x, C) on X (where d(x, C) denotes
the distance of x from C) has all the required properties.
Notation. In this note Gδ stands for the class of those sets that can be
obtained as countable intersection of open sets; N and R+ stands for the set of
nonnegative integers and nonnegative reals, respectively. On finite sets (e.g.
{−1, 1} or {−1, 0, 1}) the topology we consider is always the discrete topology.
By a Polish space we mean a complete, separable, metric space.

2 The Example

In this section we prove Theorem 1.
For each fixed a = (aj) ∈ C = {−1, 0, 1}N we define the sequence (fn(a))

together with a sequence (mk(a)) by induction. Let m0(a) = 0. Suppose that
k ∈ N and the numbers m0(a) < . . . < mk(a) and f0(a), . . . , fmk(a)−1(a) are
already defined. Then let

fmk(a)(a) = fmk(a)+1(a) = . . . = fmk(a)+2k−1(a) =
1
2k

, (1)

mk+1(a) = min{j ≥ mk(a) + 2k : aj = 0}, (2)
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fn(a) =
an

2k
for mk(a) + 2k ≤ n < mk+1(a). (3)

(If {j ≥ mk(a) + 2k : aj = 0} is empty, then mk+1(a) = ∞ and after defining
fn(a) = an

2k for every n ≥ mk(a) + 2k the procedure terminates.)

Claim 1. Every function fn (n ∈ N) is continuous on C.
Proof. This is clear since fn(a) depends only on a1, . . . , an.

Claim 2. The series
∑

fn(a) diverges for every a ∈ C
Proof. If mk+1(a) = ∞ for some k ∈ N, then |fn(a)| = 2−k for every n ≥
mk+2k, so fn(a) does not even converge to zero. Otherwise - by (1) - infinitely
many blocks of sum 1 appears in

∑
fn(a), so it cannot be convergent.

Put

Ω0 =
⋂
k∈N

⋃
m∈N

m+k⋂
j=m

{(εn) ∈ {−1,+1}N : εj = (−1)j}.

Claim 3. The set Ω0 is a dense Gδ in the product space {−1,+1}N.

Proof. This is clear since {(εn) ∈ {−1,+1}N : εj = (−1)j} is open for any j

and
⋃

m∈N
⋂m+k

j=m{(εn) ∈ {−1,+1}N : εj = (−1)j} is dense for any k.

Claim 4. For every (εn) ∈ Ω0 there exist an a ∈ C such that
∑

εnfn(a)
converges.

Proof. For a fixed (εn) ∈ Ω0 let

J = {j ∈ N : εj = (−1)j}. (4)

Since (εn) ∈ Ω0, the set J contains arbitrarily long finite sequences of consec-
utive integers. Thus there exists a sequence 0 = m0 < m1 < . . . such that
mk+1 ≥ mk + 2k and

mk,mk + 1, . . . ,mk + 2k − 1 ∈ J (∀k ∈ N). (5)

Let

aj =
{

0 if j = mk for some k ∈ N
(−1)j/εj otherwise (6)

We have mk(a) = mk (k ∈ N) since m0 = 0 and the sequence (mk) satisfies
(2). For every k ∈ N and mk ≤ j < mk + 2k by (1) we have that fj(a) = 1/2k

and by (5) and (4) that εj = (−1)j . Thus εjfj(a) = (−1)j/2k. For every
k ∈ N and mk + 2k ≤ j < mk+1 by (3) we have that fj(a) = aj/2k and by (6)
that aj = (−1)j/εj . Thus again εjfj(a) = (−1)j/2k. Therefore

∑
εnfn(a) is

a Leibniz series, so it is convergent.

The four Claims above (together with the clear fact that, by definition,
every fn maps into [−1, 1]) complete the proof of Theorem 1.



894 Tamás Keleti and Tamás Mátrai
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