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QUANTIZATION DIMENSION VIA
QUANTIZATION NUMBERS

Abstract

We give a characterization of the quantization dimension of Borel probabil-
ity measures oiR? in terms ofe-quantization numbers. Using this concept,
we show that the upper rate distortion dimension is not greater than the upper
guantization dimension of order one. We also prove that the upper quantiza-
tion dimension of a product measure is not greater than the sum of that of its
marginals. Finally, we introduce the notion of thessential radius for a given
measure to construct an upper bound for its quantization dimension.

1 Introduction

Quantization problems originate in engineering technologies such as signal process-
ing or data compression. In return, mathematical results concerning quantization
have a large variety of applications to other sciences (see [5]). Mathematically, the
quantization problem is to approximate a given probability meagurg a finitely
supported probability measurawith respect to thd,,—\Wasserstein (or Kantorovich)
metric given by

1/r
ey =gt ([l =l d@())

where the infimum is taken over all Borel probability measupesn R? x R? with
marginalsu, v, and1 < r < oo. One of the main goals is to determine theh
quantization error

Vi (1) = Vleng” (pr (1,v))"
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whereP,, denotes the set of probability measures with at most N supporting
points. Note that this number is also determined by the following formula

Vo, r(1) = inf {/meln |z —a|" du: a c R card(a) < n} , (1.1)

which is more suitable for our purposes (cf. [2, Lemma 3.1]). The efficiency of this
approximation can be expressed by the convergence ratg dfi) := (V. » (u))l/ "
tending to0 asn increases. This leads to the notion of quantization dimension first
introduced by ADoR (cf. [9]). For a Borel probability measupe on R? fulfilling
themoment conditiory ||z||” du < oo theupperandlower quantization dimension

of p of orderr > 1 are defined by

logn logn

, D,.(p) :=liminf

D, (p) := limsup _
(w) R T logenr (1)

n—oo IOg en,r(,u/)

T

The upperandlower quantization dimension of order infinigye defined in the
same fashion by replacing, ,- (1) with then-th covering radius:,, (1) given by

€n.00(p) := inf sup min|z —al : o CRY card(a) <ny,
' z€supp(p) 9€

wheresupp(u) denotes the topological support of the measureSeveral authors,
especially RAF and LUSCHGY, have treated the quantization dimension systemati-
cally (seee.qg. [1, 2, 3,4, 7, 8)]).

This paper is organized as follows. In Theorem 2.1 we give as the main result
a description of the quantization dimension of finite order in terms of quantization
numbers defined in (2.1) below. As a first application of this theorem we solve a
guestion on the upper rate distortion dimension which is left open in [2, p. 163].
As a second application we prove an inequality for the upper quantization dimension
of product measures. Finally, we introduce #iessential radius of order of a
probability measure to give an upper bound for its quantization dimension ky the
essential covering rate. An example is included to show that our concept can be used
to give a good upper bound for the quantization dimension when-thenoment is
finite but all the(r + §)-momentsg > 0, are infinite.

2 Quantization Numbers
Forr € [1, 00] let us call

Npe(p) :==inf{n >1: e, (1) <e} (2.1)



QUANTIZATION DIMENSION VIA QUANTIZATION NUMBERS 859

the e-quantization number of: of order r. Note that this quantity has previously
been used in the proof of [2, Theorem 11.10]. From [2, Theorem 11.7] we already
know that

Y 1 o0,E . . 1 o0,E

Deo(p) = lim sup w, Do (p) = lim inf W~

Itis natural to ask whether analogous equalities also hold for the quantization dimen-
sion of finite order. We state the answer in the following theorem.

Theorem 2.1. Let1 < r < oo, and lety be a Borel probability measure di? with
Jllz||" di < oo. Then forn,. . (1) defined as above we have

D log e o logn,
D, (p) = limsup logmre(p) and D, (p) = liminf M,
=0 —loge c—0 —loge

The proof of this theorem relies on an elementary observation, stated in the fol-
lowing lemma.

Lemma 2.2. Let (6,),~, be a non-increasing sequence of non-negative real num-
bers withlim,, .., 3, = 0 and defineB (¢) := inf {n € N: 3, <e}. Suppose
either of the two conditions holds.

1. There exist®V > 1 such that3, = 0foralln > N.

2. The sequendg,),, -, is strictly decreasing.

We then have

) logn . logB(e) . . logn .. logB(e)
limsup ———— = limsup ———, liminf = liminf ———.
n—oo —log 0y em0 —loge n—oo —log 3, e—0 —loge

PROOF. First suppose that Condition 1 holds. Without loss of generality we assume
that N is the smallest integer fulfilling Condition 1. ¥ = 1, then the lemma
trivially holds. Otherwise we havéy_1 > 0. Since forany) < ¢ < By_1, we have
B (e) = N andfy = 0, the equalities in the lemma hold.

Now we assume thdf3,),,-, is strictly decreasing. Then for all € N we have
Bn > 0 and by the definition oB3 (¢), we know that

(1) B <&, () Bpe-1>¢ and () B(B(n)) =n.
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It follows that

1 by (Il log B by (1) log B
lim sup _osn yi ) lim su L(g) < limsup L(g)
n—oo log ﬁn e—0 — 108; ﬁB(s) e—0 - 108; £
by (1f) log B —
< limsup o8 (€) = lim sup —log (B(e) 1)
e—0 —logBp)-1 ce—0  —log Bpe)—1
by (I11) . logn
= limsup ————,
n—oo — log Oy

proving the first equality stated in the lemma. Since the argument above also holds if
we interchangelim sup” with “lim inf”, the second equality in the lemma follows.
O

PROOF OFTHEOREM 2.1. For any Borel probability measurefulfilling the mo-
ment condition/ ||z||" du < oo, which is additionally supported on a set with infinite
cardinality, we have thdk,, (1)), is @ strictly decreasing sequence converging to
zero. This is a direct consequence of [2, Theorem 4.1, Theorem 4.12, Lemma 6.1]).
Hence, Condition 2 of Lemma 2.2 is satisfied for this sequence.

If on the other handard supp (1) < oo, then clearly Condition 1 of Lemma 2.2
is satisfied. Combining both observations the theorem follows. O

Remark.We remark that the crucial property of strict monotonicity is in general not
shared by the sequence of covering raglii, (). This follows from a simple counter
example - the classical Cantor set - whefe, (1) = e,—1,00 () for infinitely many

n € N.

3 Applications

In this section, we will use the observation of Theorem 2.1 to prove four propositions,
stated within the following three subsections. In there we make use of the notion of
n-optimal sets. If the infimum in the definition (1.1) ©f, . (x) is attained for some
seta, then we calkv ann-optimal set of order. The collection of all-optimal sets

of orderr is denoted by”,, ,-(1). Note that under the moment conditigrjz||” du <

oo the setC,, ,.(u) is never empty and that we halien,, .o V,, (1) = 0.

Rate Distortion Dimension

Let us recall a question left open in [2] concerning an upper bound for the upper rate
distortion dimension. We start by giving its definition.

Again, lety be a Borel probability oiR¢ with [ ||z|" du < oo andQ a Borel
probability onR? x R?. By @1, Q. we denote the first and second marginatf
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respectively. IfQ); = p, then theaverage mutual informatioi(u, Q) of Q is given
by

I(p, Q) :=/h(w7y) log h(z,y) d(p ® Q2)(z,y)

whenevel) is absolutely continuous with respectita® (- andh is the correspond-
ing Radon-Nikodym derivative, otherwidéu, Q) := co. Now, theupperandlower
rate distortion dimension of order of i are defined to be

— . Rur(e") o Rur(e)
dimp(p) := hIglj(lle _”ng, dimp(p) == hIEIl_}élf _“ng,

whereR,, ,(t) is therate distortion function of order defined by

Ry (t) = inf{m@) Q= [l =l Q) < t}.

KAwaBATA and DEmMBO proved in [6] that the upper and lower rate distortion di-
mension do not depend erand are equal to the upper and lower Rényi information
dimension respectively. In [2, Theorem 11.10] it is proved that

dimp(p) < Dy (p) < D, ().
The following proposition covers the corresponding inequalities for the upper rate
distortion dimension questioned in [2] and will prove to be a straightforward conse-

quence of Theorem 2.1.

Proposition 3.1. Let1 < r < oo and lety be a Borel probability measure dR?
with [ [|z||" dpu < oo. Then we have

dimp(p) < D1(p) < D).

PrROOF. We use the fact from [2, p. 163] that (1) < € impliesR,, . (¢") < logn.
By observing the definition of, . (1) = inf{n > 1: e, (1) < e} we clearly have
R, (e") <logn,.(p). It follows that

TN 1 &
dimpg(p) < limsup M.
0 —loge

Thus, the inequalities follow from Theorem 2.1. O
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Quantization Dimension of Product Measures

As another application we will give bounds for the upper quantization dimension of
product measures. In [2, Lemma 4.15], the authors have already studied the relation-
ship between the-th quantization error of a random variable BA and that of its
one-dimensional marginals, but the quantization dimension of product measures is
not considered there.

Let 1, uo be Borel probability measures respectively Rft, R%. Let y :=
11 @0 be the product measure of, 1, onR¥+42 Especially, we have(Ax B) =
p1(A)uo(B) for all measurable setd andB. Let|| - ||, || - ||, be two arbitrary norms
respectively o, R, For anyw = (z,y) € R%+492 we define

lwll = llzlly, + llyll, -

Then|| - || is a norm onR%*42, Since, on finite-dimensional spaces, quantization
dimensions do not depend on the norms used, we will henceforth adopt the norms
introduced above.

Proposition 3.2. Let1 < r < oo, and lety; be a Borel probability measure dR®:
satisfying the moment conditigh||z||" du; < oo, @ =1,2. Then

max { D, (pu1), Dy (p2) } < Dy(p1 ® pig) < Dy (pa1) + D (pa2)-

PROOF. Leta € C),  (p1 x p2) be ann-optimal set of order and leta;, a; re-
spectively denote the projections@bntoR?, R%2. Then clearlyn C a; x ay and
card(a;) < n, 7 = 1,2. Using this and the fact th@td + B)" > A" + B" for any
A,B > 0andr > 1, we have

Vi @ p2) = [ min o " d(ps @ 1a) )

> [ min [w—al" d(p @ p2)(w)

acoy X

> [ in o = Bl dpn(a) + [ | in el duaty
R41 beay Rd2 cEag

ZVn,r(lffl) + Vn,r(,“/?) > max {Vn,r(,ull)a Vn,r(/JQ)} .

Hence, the first inequality follows. To show the second inequalityjlet C,, (1)
for ny,ny € N. We then haveard(5; x 2) = ning such that by Fubini's theorem
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we get

Vorma (i @ pa) < [ wwin o=l dn ) (w)
R41 x Rd2 a€B1 X B2

<2 min ||z — b||7 + min ||y — ¢||5) dui (z) d
= /w = bl + min [y — ell3) dpus (2) dpn(y)

=9or min ||z —b||" d —|—2T/ min ||y — |5 d
or be | ||1 K1 s cC ||y Hz M2
=2"Vay (1) + 2"V, 1 (112).

It follows that
Ny o/ (1 @ f12)) < My (1)1 (H2).-
Using Theorem 2.1 we conclude

_ 1
B (111 & piz) = limsup w
e—0 —loge
— limsu log n,. cot+1) /- (1 @ pi2)
~ Y Sloge — ((r + 1)/r) log2
< Tim sup log n,. (p1) + log nr,s(/@)
0 —loge
Sﬁr(l‘l) Jrﬁr(l@)- D

An Upper Bound for the Quantization Dimension

Finally, we give an upper bound for the quantization dimension in terms of-the
essential covering rate of orderwhich involves thes-essential radius defined in
(3.1) below.

In general, the upper quantization dimension of a Borel probability measure on
R%is not bounded by if its support is not compact. This is illustrated by [2, Example
6.4], where the lower quantization dimension equals infinity sincerttrequantiza-
tion error of order is comparable withog . On the other hand, for Borel probability
measureg with [ [|z||"*° du < oo for some positive) we haveD, (1) < d (cf. [2,
Theorem 6.2]). In particular, if the absolutely continuous part with respect times
not vanish, we know thab,.(u) = d. By some straightforward maodifications of [2,
Example 6.4] it is easy to show that for arbitrary large [0, oc] there exists a Borel
probability measurg with D,.(u) = s. Therefore, it is significant to examine when
the upper quantization dimension is finite or even bounded by
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We define the-essential radius of: of orderr by

Ry c(p) := inf {R : / llz||" du < 5’} , (3.1)
B(0,R)C

where B(0, R) denotes the closed ball centered)awith radius R, and B(0, R)“
denotes its complement. Let, (1) denote the smallest number of balls with radii
e coveringsupp(u) N B(0, R, - (u)). Theupperandlower e-essential covering rate
are then respectively defined by

A log m,. . logm,
A, (p) == limsup M7 A, () == liminf M_

0 —loge e—0 —loge

Proposition 3.3. Let1 < r < oo, and letu. be a Borel probability measure di?
fulfilling the moment conditiorf ||z|" du < co. Then we have

D, (1) < A, (1), Drlp) < Bo(p).

PrROOF. For anyes > 0, by the moment condition, there exigts> 0 such that

/ 2| dp < <.
B(0,R)C

By the continuity of measures and the definition/f. (1), we know that

/ lell” du < &,
B(0,Rr,c(n))c

Let m, (1) € N be defined as above. Then there exists a collectiom,0f (1)
balls with radius: coveringsupp(x) N B (0, R, - (1)). Let us denote the set of their
centersby{z; : 1 <14 <m, (1)} we have

min |z — x| <e,
lgiSmT,s(N)

while for any point outsidé3(0, R, . (1)) we have

i — x| < |z = 0| = [|z]|.
o i il < e 0] = ]

It follows that

Vit < [ min o =il d

< / S+ / el du
B(07R7‘,E(/L)) B(Oer,s(/L))C

<e"+4¢e" <2

(3.2)
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By the definition ofn,. . (1), we immediately have,. 51/-. (1) < m,. () + 1 and by
Theorem 2.1 we conclude

_ log n,
D, (p) =limsup 7Og7; (1)
c—o —loge
— lim su log Ny 21/re (:u)
5_>0p —loge — (1/r)log2
1 r —
<limsup 28T _ R ()
0 —loge

The inequality for the lower quantization dimension follows immediately by just re-
placing ‘lim sup” by “lim inf”. O

Remark.The inequality (3.2) in the above proof also shows the known fact that under
the moment conditiotim,, o V5, (1) = 0.

Next, we illustrate Proposition 3.3 by an example.

Example. Let C be the middle-third Cantor set dR and v the classical Cantor
measure. Lefi;, i € N be the Cantor measure on the Cantor(§et 2¢), where
C+2:={x+2:xcC}ieu=wvoS; ' whereS, : z — x4+ 2. Let
w= >0, sifti, wheres; := ¢ (24'1)~" and

0o —1

¢:= (Z(z%“)”) .
=1

Then we havef ||z||” du < oo and [ ||lz||""® du = oo for all § > 0, but using

Proposition 3.3 we geb,. (1) < s + 1/10, wheres = dimy C. This can be seen as
follows.

JR Z/ " dp; = Z/ (42 d
§2r02i11r<00

JC Z Y —Zsz/ (o4 2743
ECZ%:

=1
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For anye > 0, takek(e) := [¢~"/(117=1)] + 2 where[z] denotes the integer part of
z. Then it follows that

/ " dp < ATe",
B(0,2k()4+1)¢

whereA” = 27¢, implying thatR,. a. < 2%¢) + 1,
On the other hand, far small enough, there exists some integee> 1 such that

37K < Ae < 37KHL,

and hence each Cantor gkt 2° can be covered b3X balls of radiiAs. Combining
this observations we get

— log(Ae)

My ac(p) < k(e) - 25 < k(e)2 ez T,

It follows that D, (1) < A,(u) < s+1/10 < 1.

Proposition 3.3 provides us with an upper bound for the quantization dimension
by means of some covering number which is not difficult to calculate in many inter-
esting cases. However, by a careful examination of the proof, we find that we can
further refine the upper bound in terms of the quantization numberuLebe the

i . _ #(NBO,Rrc(1)) i

conditional probability measure.. = = 557, )y~ and write
o log ny o (fire) e e logmy ()
Up) = hlglj(l)lp ng, Lp) = hrgn_}élf nga

wheren, . (ur.) is thee-quantization number of orderof u, .. Clearly, we have
N (pr,e) < My e (i)

Proposition 3.4. Let i be a Borel probability measure dk? with [ ||z||" du < .
Then o B
Dy(p) < U(p), D,(n) < Lw).

PROOF. For anys > 0 and eacln € N note that

[ i lealans [ i el e
B(0,Ry . (p)) 1SiSn B(0,R,..(p)) 1Si<n

Thus, we have:,. 5a/n (1) < 1y (r,c)+1 and the corollary follows from Theorem
2.1. O
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