Real Analysis Exchange
Vol. 29(2), 2003/2004, pp. 813-820

Nikolaos Efstathiou Sofronidis, Department of Economics, Aristotle
University of Thessaloniki, Thessaloniki 54006, Greece.
email: sofnik@otenet.gr
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Abstract

The purpose of this note is to show that if —oco < a < <
and E? is the equivalence relation, which is defined on the Polish group
C(la, B),R%) by fESg «— lim, _, 5- J;Eg = 1, where f, g are in
C(Ja, B),R%), then E? is induced by a turbulent Polish group action.
Hence if L is any countable language and A : C([a, 8),R}) — X, is any
Baire measurable function from the Polish group C([«, 3),R}) to the
Polish space X, of countably infinite structures for L with the property
that fESg = A(f) = A(g), whenever f, g are in C([a, 8),R%), then
there exists a EZ-invariant comeager subset S of C([, 8), R%.) for which
all countable structures in A[S] are isomorphic.

1 Introduction

An equivalence relation which is introduced in elementary calculus (see, for
example, page 124 of Nikolsky [1977]) is the following. Given any real numbers
a and (3 such that a < 3, two continuous functions f : [a, ) — R% and g :
[, B) — R are said to be equivalent or asymptotically equal as the argument
tends to 3 from the left, in symbols fE?g, if

lim 1(@)

a—p- g(x)

Even though this equivalence relation seems to be very simple (for it is
introduced in elementary calculus!), our purpose in this paper is to show that
it is complicated.

A way to measure the complexity of an equivalence relation E defined on
some Polish space X is to determine whether there exists a countable language
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L and a non-trivial Baire measurable function f : X — X with the property
that

(V(z,y) € X*)(zBy = f(z) = f(y)) (*)

Here X, is the Polish space of countably infinite structures for L (see, for
example, 16.5 on page 96 of Kechris [1995]) and = stands for isomorphism of
structures, while f : X — X is said to be trivial if there exists a E-invariant
comeager subset A of X for which all countable structures in f[A] are isomor-
phic. When such a language L and such a non-trivial function f : X — X,
exist, we say that F is classifiable by countable structures and E is considered
to be “less complicated” than the equivalence relation of isomorphism between
countable structures. But if for any countable language L, every Baire mea-
surable function f : X — X with property (%) is trivial, then we say that
E is not classifiable by countable structures and E is considered to be “more
complicated” than the equivalence relation of isomorphism between countable
structures.

A method to prove that an equivalence relation E defined on some Polish
space X is not classifiable by countable structures is to show that there exists
a Polish group G acting continuously on X with the following properties:

e F is induced by the action of G on X; that is, we have E = Eé, where
Eé is the corresponding orbit equivalence relation; namely,

2ESy <= (39€G)(g-z=1y),
whenever x, y are in X.
e The action of G on X is generically turbulent.

We explain what we mean below. (See, for example, Chapter 3 on pages 37-58
of Hjorth [2000] or pages 1461-1462 of Kechris-Sofronidis [2001].)

Definition. (Hjorth) Let G be any Polish group acting continuously on a
Polish space X and let x € X. For any open neighborhood U of x in X and
for any symmetric open neighborhood V of 1¢ in G, the (U, V)-local orbit
O(z,U,V) of z in X is defined as follows:

y € O(z,U, V) if there exist go, ..., gr in V (k € N) such that if xg =«
and z;41 = g; - ¢; for every i € {0,...,k}, then all the x; are in U and
Th+1 =Y.

The action of G on X is said to be turbulent at the point z, in symbols z € Té( ,
if for any such U and V, there exists an open neighborhood U’ of z in X such
that U' C U and O(z,U, V) is dense in U’.
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Theorem. (Hjorth) Let G be any Polish group acting continuously on a Polish
space X in such a way that the orbits of the action are meager and at least
one orbit is dense. Then the following are equivalent:

e The action of G on X is generically turbulent, in the sense that TX is
comeager i X.

e For any countable language L and for any Baire measurable function
f: X — X with the property that

(V(z,y) € X*)(zEGy = f(z) = f(y)),

there exists a EX -invariant comeager subset A of X for which all count-
able structures in f[A] are isomorphic.

We are finally in position to state our result.

Theorem. If —co < a < 3 < 00, then the relation EP of asymptotic equality
of functions in the Polish group C([c, 3),R%) as the argument tends to 3 from
the left is induced by a turbulent Polish group action.

Hence if L is any countable language and A : C([a, 8),R%) — X is any
Baire measurable function with the property that

(V(f,9) € C(la, B),R})*)(fESg = A(f) = Alg)),

then there is a ES-invariant comeager subset S of C([a, 3),R?%.) for which all
countable structures in A[S] are isomorphic. In other words, the equivalence
relation of asymptotic equality of functions in the Polish group C([a, 8),R% )
as the argument tends to 3 from the left is “more complicated” than the
equivalence relation of isomorphism between countable structures.

2 The Proof of the Theorem

In what follows let o and 8 be two arbitrary but fixed real numbers such that
a < f.

Proposition 1. C([a,3),R%) equipped with the compact-open topology con-
stitutes a commutative Polish group under the operation of point-wise multi-
plication.

PROOF. Since obviously [, 5) = ) (a - ﬁ,ﬂ) constitutes a G subset of
neN
R and R% = (0,00) is open and therefore G5 in R, by virtue of 3.11 on page
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17 of Kechris [1995], we deduce that [o, 3) and R are Polish in the relative
topology. Moreover [a, ) is easily seen to be locally compact. Therefore,
Theorem 1 on page 93 and Theorem 3 on page 94 of Kuratowski [1968] imply
that the compact-open topology on C([a, 3),RY ) is Polish. The commutative
group operation on C([a, 3),R%) is point-wise multiplication. Thus, in order
to prove that C([a, 3),R%) is a commutative Polish group, by virtue of 9.15
on page 62 of Kechris [1995], it is enough to show that the mapping

D : C([e, B),R%) 3 f % € C([e, B),RY)

is continuous and given any g € C([a, 3),R% ), the mapping
‘Ijg : C([avﬂ)ij—) = f = fg S O([O&,ﬂ),Ri)

is also continuous. So let f € C([a,3),R%), e >0and 0 <7 < f—a. If
M = max g(x) > 0and h € C([or, §),R%) is such that Jnax |f( ) —

a<z<a+n
h(z)| < 7, then given a < 2 < a + 1), we have

[f(@)g(x) — h(z)g(z)| < M|f(z) — h(z)].
Henceamax |f(z)g(x) —h(x)g(z)| < M- Jnax |f() h(z)| < e. There-

fore ¥, is contlnuous at f. The proof that <I> is also continuous at f is left as
an exercise.

O

The following proposition constitutes an immediate consequence of Propo-
sition 5.6 (ii) on pages 1470-1471 of Kechris-Sofronidis [2001].

Proposition 2. C([a, 8], R%) equipped with the topology of uniform conver-
gence constitutes a Polish group under the operation of point-wise multiplica-
tion.

A corollary of Proposition 2 is the following.

Proposition 3. § = {f € C([o, 8], R%) : f(B) = 1} constitutes a closed
subgroup of C([a, 5], R%) and consequently it constitutes a Polish group with
respect to the operation of point-wise multiplication and the topology of uniform
convergence.

Proposition 4. For any f € C([o, 8),RY), the equivalence class [f]gs of f
is dense in C([or, B),R%).
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PROOF. Let g € C([a, 3),R%) and let 0 < 7 < B—a. It is enough to construct
h € [f]gp such that h = g on [, a+17)]. Solet § > 0 be such that a+n+6 < 5.
We set

9(x) if z € [a,a+1)
h(z) = g(a+n)+wm—a—n) ifrela+na+n+0)
f(x) ifrxela+n+6,0)

It is not difficult to verify that h € C([a, 8),R}) and h € [f]s, while by
definition h = g on [, a + 7). O

Proposition 5. For any f € C([a, 3),R% ), the equivalence class [f]Efj of f
is meager in C([o, §),R7%).

PROOF. If g € [f]Eg, then hrg % = 1. Hence there exists r € QN (o, §)

such that for any « € [r, 3), we have ‘% - 1‘ < 3= g(z) < 3 f(x). There-

fore, we have [f]Eg C M, where

- U ﬂ){gec 8RS s 9(o) < 110

reQn(a,B) z€[r,B

is easily seen to be F, in C([c, §),R% ). Hence it is enough to show that M is
meager or (equivalently) that G = C([a, 8),R% )\ M is dense in C([a, 3),RY%).
But this can be shown by similar methods as the ones employed in the proof
of Proposition 4. O

Proposition 6. The mapping
A:Gx C([e, B),RY) 2 (9, f) = g f = (glla, B)) f € C(lev, B), RY)
constitutes a continuous action of G on C([, §),RY ).

PROOF. It is not difficult to verify that the mapping in question constitutes
an action of G on C([w, 8),RY%). Since

C[e B, RY) 3 g = glle, B) € C([av, B), RY)

is easily seen to be continuous, it follows that so is

G939+ glla,B) € Cle, B), R )

and by virtue of Proposition 1 we deduce that A is continuous because so is

C(le, B),R})? 2 (f.9) = fg € C(la, B),RY). O
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Proposition 7. Ef is induced by the action of G on C([, B),R%).

PrOOF. What we need to show is that given any u, v in C([o, 3),R%), we
have
uBPv <= (g€ G)(v=yg-u).

Indeed, if there exists g € G such that v = g - u, then

. o(x) .
xir/?f u(z) a;_l%— 9(z) ’

which implies that vESu. Conversely, if vESu, then lim v@) — 1. Hence

_ u(z)
it is not difficult to verify that the function g : [a, 8] — R% defined by the

relation
v(z)
o) =] s Toelnd)
1 ife=0

is in G and moreover v = g - u. O

In what follows let

Utien) = {o e Cllo R max 17(0) - )] <<}
whenever f € C([o, 5),R%), € >0and 0 <7 < f— . It is not difficult to see
that the U(f;€,n) form a base of open neighborhoods of f in C([«, 3),R%).

Proposition 8. If f € C([a,3),R%), € >0,0<n < fB—a and g € G are
such that g - f € U(f;¢€,m), then there exists a continuous path

0,15t h €6
such that hg =19, hy = g and hy - f € U(f;€,n) for every t € [0,1].

PRrOOF. Given t € [0,1], we set hy =1 — ¢+ tg and it is not difficult to verify
that h; € G, while obviously hg = 19 and hy = g. Moreover, if s, t are in [0, 1],
then for any = € [«, (], we have

hs(2) = hu(z)| = |g(x) = 1] - |s — 1.

Hence
max |hs(z) — he(z)| < Cls —t,

a<lz

where

C= Jmax lg(z) — 1] € Ry
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Therefore, we deduce that the path
[0,1]5t— h€G

is continuous. What is left to show is that h;- f € U(f;¢€,n) for every t € [0, 1].
So let t € [0,1] and let = € [a, &« + 1. Then

|(he- f) (@) = f(2)] = tlg(x) f(x) = f(2)| < lg(a)f(x) = f(2)] = [(g-)(2) = f(2)],

hence

max |(h - f)(z) = f(2)] < max |(g- f)(x) - f(z)] <e

a<z<a+n a<z<a+n
since g - f € U(f;€,7), and consequently h; - f € U(f;€,n). O

The following proposition is Lemma 5.7 on page 1472 of Kechris-Sofronidis
[2001].

Proposition 9. Let G be any Polish group acting continuously on a Polish
space X and let x € X. Suppose G - x is dense in X and there exists a basis
of open neighborhoods U of x in X with the property that for any g € G for
which g -x € U, there exists h € G and a continuous path

[0,1]2t+— h € G

such that g-x = h-x, hg = 19, hy = h and hy - © € U, whenever t € [0,1].
Then the action of G on X is turbulent at the point x.

PRrROOF. Let V' be any open neighborhood of z in X and let W be any sym-
metric open neighborhood of the identity in G. Then there exists an open
neighborhood U of z in X which is contained in V' and satisfies the condition
stated in the formulation of Proposition 9. We need only prove that

O(z,UW)=UnN(G - x).
So let g € G be such that g- 2 € UN (G - x) and let h € G and
[0,1]2t+— h € G

be as in the statement of Proposition 9. Then there exists a positive integer
N such that for any s, t in [0, 1], we have

|s —t| < N '=hy-hyteW.
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Hence, setting tg = 0, tp, = tp_1 + N~ ! and ¢, = he, h;cl_l, whenever
ke {l,...,N}, it follows immediately that g, € W and
gk .g1-x=hy -z €U,
whenever k € {1,..., N} , while
gN...g1-T=g-T.
We have thus proved that O(z,U,W)=U N (G - x). O

Thus, Propositions 4-9 imply that E? is induced by a turbulent Polish
group action and the proof of the Theorem is complete.
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