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ARE CONE-MONOTONE FUNCTIONS
GENERICALLY INTERMEDIATELY

DIFFERENTIABLE?

Abstract

On a separable Banach space, we show that a cone-monotone func-
tion is generically intermediate differentiable provided its Dini-derivatives
are finite along every direction and the cone has nonempty interior.

1 Introduction

Let X be a Banach space with dual space X∗, let A ⊂ X be a non-empty open
set, and let K ⊂ X be a closed convex cone with int(K) 6= ∅. The open ball
with center x and radius r is denoted by Br(x). We say that f : A → R∪{+∞}
is K-increasing on a set A if f(x + k) ≥ f(x) whenever x ∈ A, x + k ∈ A for
k ∈ K. The upper Dini derivative of f at x ∈ A in the direction v is defined
by

f+(x; v) := lim sup
t↓0

f(x + tv)− f(x)
t

,

and the lower Dini derivative of f at x ∈ A in the direction v by

f+(x; v) := lim inf
t↓0

f(x + tv)− f(x)
t

.
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We observe that both f+(x; ·) and f+(x; ·) are K-monotone whenever f is.
Following [4] we say that f is intermediately differentiable at x if there exists
a continuous linear functional x∗ on X such that

f+(x; v) ≤ 〈x∗, v〉 ≤ f+(x; v) for every v ∈ X.

This is the same as, there exists x∗ ∈ X∗ such that for every v ∈ X there
exists tn ↓ 0 with

lim
n→∞

f(x + tnv)− f(x)
tn

= 〈x∗, v〉.

Fabian and Preiss [4] showed that for a large class of Banach spaces which
includes the Asplund spaces, a locally Lipschitz function on an open subset of
such a space is intermediately differentiable on a residual subset of its domain.
It is our goal in this note to show that under mild assumptions, when X is
separable, this also holds for cone-monotone functions.

2 Main Results

We begin with an observation on upper and lower Dini derivatives.

Lemma 1. Let f : X → R be K-increasing. Fix x ∈ X and e ∈ int(K).

(i) If f+(x; e) < +∞, then f+(x; v) < +∞ for every v ∈ X. Therefore,
if f+(x; v) = +∞ for some v ∈ X, then f+(x; k) = +∞ for every
k ∈ int(K).

(ii) If f+(x;−e) > −∞, then f+(x; v) > −∞ for every v ∈ X. Therefore,
if f+(x; v) = −∞ for some v ∈ X, then f+(x;−k) = −∞ for every
k ∈ int(K).

Proof. (i) Assume f+(x; v) = +∞ for some v. Because e ∈ int(K), there
exists ε > 0 such that e + Bε(0) ⊂ K. We have

f+(x; ε
v

‖v‖
) ≤ f+(x; e);

so f+(x; e) = +∞. This contradicts the assumption.
(ii) Assume f+(x; v) = −∞ for some v. Since e ∈ int(K), there exists ε > 0

such that
f+(x;−ε

v

‖v‖
) ≥ f+(x;−e),

so f+(x;−e) = −∞. This contradicts the assumption.

Now we can formulate our result.
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Theorem 1. Let X be a separable Banach space and K ⊂ X be a closed convex
cone with non-empty interior. Suppose that f : X → R is continuous and K-
increasing. If there exists e ∈ int(K) such that f+(x; e) < ∞ and f+(x;−e) >
−∞ for every x ∈ X, then f is generically intermediately differentiable on X.

Proof. Choose a countable dense set {ki}∞i=1 from int(K). For latter conve-
nience, we let k1 = e. Write

Yp = span{k1, . . . , kp}, and BYp :=
{ p∑

i=1

liki : |li| ≤ 2 for 1 ≤ i ≤ p
}

.

(a): Finding intermediate derivatives on a finite dimensional space.
Define On :={

x ∈ X| sup
v∈BYp

∣∣∣∣f(x + txv)− f(x)
tx

− 〈x∗, v〉
∣∣∣∣ <

1
n

for some tx > 0

and x∗ ∈ X∗
}

.

Because f is continuous and BYp is compact, On is open. Indeed, let x ∈ On.
There exists ε > 0 such that Bε(x) ⊂ On. Suppose not. Then there exists
xm → x such that for every m there exists vm ∈ BYp

such that∣∣∣∣f(xm + txvm)− f(xm)
tx

− 〈x∗, vm〉
∣∣∣∣ ≥ 1

n
.

Because BYp
is compact, there exists a subsequence of (vm)m∈N, without re-

labeling, say vm → v ∈ BYp . Taking the limit, we have∣∣∣∣f(x + txv)− f(x)
tx

− 〈x∗, v〉
∣∣∣∣ ≥ 1

n
.

This contradicts the choice of x.
Borwein, Burke, and Lewis [2] show that when f is K-monotone, f is

Gâteaux differentiable almost everywhere on X. This shows that On is dense
in X. It follows that Gp :=

⋂
{On|n ∈ N}, is a dense Gδ in X. Let x ∈ Gp.

We will show that f is intermediately differentiable at x. As x ∈ Gp, for every
n, there exists tn > 0 such that∣∣∣∣f(x + tnv)− f(x)

tn
− 〈x∗n, v〉

∣∣∣∣ <
1
n

whenever v ∈ BYp
. (1)

For fixed v, we have

− 1
n

+
f(x + tnv)− f(x)

tn
≤ 〈x∗n, v〉 ≤ 1

n
+

f(x + tnv)− f(x)
tn

.



732 Xianfu Wang

So by Lemma 1

−∞ < f+(x; v) ≤ lim inf
n→∞

〈x∗n, v〉 ≤ lim sup
n→∞

〈x∗n, v〉 ≤ f+(x; v) < ∞. (2)

Let Q denote rational numbers. Let

Dp :=
{ p∑

i=1

riki| ri ∈ Q, |ri| ≤ 1
}

.

Since Dp is countable, we write Dp := {d1, d2, . . .}. For d1, by (2) we may
take a subsequence of (〈x∗n, d1〉)n∈N such that 〈x∗n1, d1〉 converges as n1 →∞;
For d2, by (2) we may take a subsequence of (〈x∗n1, d2〉)n∈N such that 〈x∗n2, d2〉
converges as n2 →∞. Continuing in this way, we obtain (x∗nn)n∈N such that
for every dk we have

〈x∗nn, dk〉 converges as nn →∞. (3)

Associated with (x∗nn)n∈N are tnn ↓ 0 which verifies∣∣∣∣f(x + tnnv)− f(x)
tnn

− 〈x∗nn, v〉
∣∣∣∣ <

1
nn

for all v ∈ BYp
.

For every v ∈ X we let

g(v) := lim sup
nn→∞

f(x + tnnv)− f(x)
tnn

.

Clearly, f+(x; v) ≤ g(v) ≤ f+(x; v) for all v ∈ X. We proceed to show that g
is linear on Yp.

Now for every dk ∈ Dp, by (3)

g(dk) = lim sup
nn→∞

f(x + tnndk)− f(x)
tnn

= lim
nn→∞

〈x∗nn, dk〉.

From (1), when ri ∈ Q and |ri| ≤ 1 we have∣∣∣∣∣f(x + tnn

∑p
i=1 riki)− f(x)
tnn

− 〈x∗nn,

p∑
i=1

riki〉

∣∣∣∣∣ <
1

nn
,∣∣∣∣f(x + tnn(−ki))− f(x)

tnn
− 〈x∗nn, (−ki)〉

∣∣∣∣ <
1

nn
,
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and ∣∣∣∣∣f(x + tnn(−
∑p

i=1 riki))− f(x)
tnn

− 〈x∗nn,−
p∑

i=1

riki〉

∣∣∣∣∣ <
1

nn
.

As nn →∞, we obtain

g
( p∑

i=1

riki

)
=

p∑
i=1

rig(ki), (4)

whenever ri ∈ Q and |ri| ≤ 1. Because g is K-increasing and K is a convex
cone, for each l1, l2, . . . , lp we can find rationals l̂1 ≥ l1, . . . , l̂p ≥ lp such that

g
( p∑

i=1

liki

)
≤ g

( p∑
i=1

l̂iki

)
=

p∑
i=1

l̂ig(ki),

where the equality follows from (4). Letting l̂1 → l1, . . . , l̂p → lp, we obtain

g
( p∑

i=1

liki

)
≤

p∑
i=1

lig(ki).

Similarly, we have g
( ∑p

i=1 liki

)
≥

∑p
i=1 lig(ki). Hence

g
( p∑

i=1

liki

)
=

p∑
i=1

lig(ki),

when |li| ≤ 1 for 1 ≤ i ≤ p. Because g is positive homogeneous, g is linear on
Yp.

(b): From finite dimensional spaces to a dense linear span.
Write Y =

⋃∞
p=1 Yp. Because {ki}∞i=1 is dense in K, and X = K −K, Y is

dense in X. For each Yp, by (a) there exists Gp, a dense Gδ subset of X, such
that for every x ∈ Gp there exists g : X → R satisfying

(i) g is linear on Yp;

(ii) g is K-increasing on X and g(v) ≤ f+(x; e) for v ≤K e with v ∈ X;

(iii) f+(x; v) ≤ g(v) ≤ f+(x; v) for v ∈ X.
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Let G :=
⋂∞

p=1 Gp and x ∈ G. By (ii), there exists g : X → R satisfying (i),
(ii), and (iii) such that 〈g, y〉 ≤ 〈g, e〉 ≤ f+(x; e), when y ≤K e and y ∈ Yp.
(Note here that we use 〈g, y〉 because g is linear on Yp.) Because e ∈ int(K),
there exists a α > 0 such that Bα(0) ⊂ {y ∈ X : y ≤K e}. Therefore,

〈g, y〉 ≤ f+(x; e)
α

‖y‖ for y ∈ Yp.

By the Hahn-Banach theorem, there exists x∗ ∈ X∗ such that x∗|Yp = g|Yp

and 〈x∗, y〉 ≤ f+(x;e)
α ‖y‖, for y ∈ X. Set

Cp :=
{
x∗ ∈ X∗| f+(x; v) ≤ 〈x∗, v〉 ≤ f+(x; v) for v ∈ Yp, ‖x∗‖ ≤

f+(x; e)
α

}
.

Then Cp is weak∗ closed and bounded, so weak∗ compact. By (a) we have
{Cp : p ∈ N} has finite intersection property. Indeed, for any finite number of
finite dimensional subspaces Yp1 , . . . , Ypk

, there exists p large such that

Yp1 ∪ Yp2 ∪ . . . ∪ Ypk
⊂ Yp.

Since x ∈ Gp, we know Cp ⊂
⋂k

i=1 Cpi
. It follows that C :=

⋂∞
p=1 Cp 6= ∅. For

x∗ ∈ C, we have

f+(x; y) ≤ 〈x∗, y〉 ≤ f+(x; y) for every y ∈ Y.

(c): From dense linear space to the separable space.
From (b), for x ∈ G, there exists x∗ ∈ X∗ such that

f+(x; y) ≤ 〈x∗, y〉 ≤ f+(x; y) for every y ∈ Y, (5)

where Y is dense in X. For every v ∈ X, v + int(K) and v− int(K) are open.
Because Y is dense in X, there exist yn, zn ∈ Y arbitrary nearby v such that
yn ∈ v − int(K) and zn ∈ v + int(K). That is, we can find yn, zn ∈ Y such
that yn ≤K v ≤K zn, while yn → v and zn → v in norm. Now by (5),

〈x∗, yn〉 ≤ f+(x; yn) ≤ f+(x; v), and
〈x∗, zn〉 ≥ f+(x; zn) ≥ f+(x; v).

Letting n → ∞, we obtain f+(x; v) ≤ 〈x∗, v〉 ≤ f+(x; v). Therefore, x∗ is an
intermediate derivative of f at x ∈ G.

Recall that a function f : X → R is quasiconvex if the lower level sets
Sλ(f) = {x ∈ A| f(x) ≤ λ} is convex for every λ ∈ R. We need the following
fact from [1].
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Lemma 2. Assume f is quasiconvex and lower semicontinuous (l.s.c.) on a
Banach space X. Suppose that Sλ has non-empty interior. Then for every a
with f(a) > λ, there exist an open neighborhood V of a and a convex cone K
with non-empty interior, such that f is K-monotone on V .

Corollary 1. Let X be a separable Banach space. Suppose that f : X → R
is continuous, quasiconvex, and f+(x; v) > −∞, f+(x; v) < +∞ for all x, v ∈
X. Then f is intermediately differentiable generically on X.

Proof. Consider λ such that whenever µ < λ < λ, the set Sµ(f) has no
interior and Sλ(f) has interior. Define

A := {x ∈ X| f(x) < λ}, B := {x ∈ X| f(x) = λ},

C := {x ∈ X| f(x) ≤ λ}.
The set A =

⋃∞
n=1 An with An := {x ∈ X| f(x) ≤ λ − 1/n}. Since An has

no interior and closed, A is of first category. bdry (B) is also nowhere dense.
For each x ∈ (X \C), by Lemma 2, there exists a neighborhood Ux of x such
that f is K-monotone on Ux for some closed convex cone K with int(K) 6= ∅.
By Theorem 1, f is intermediate differentiable generically on Ux. Since X is
separable, f is generically intermediate differentiable on X \ C.

A function f : X → R ∪ {+∞} is called directionally Lipschitz at x in the
direction u ∈ X if there exists ε > 0 such that when ‖z− x‖ < ε, ‖h− u‖ < ε,
0 < t < ε, one has

f(z + th)− f(z)
t

< M.

In particular, f+(z;h) < M when ‖z − x‖ < ε, ‖h− u‖ < ε. Borwein, Burke,
Lewis [2] show that if f is directionally Lipschitz at x, then there exists a
neighborhood Ux of x, a continuous linear functional φ ∈ X∗, and a closed
convex cone K with int(K) 6= ∅ such that f +φ is K-monotone on Ux. There-
fore, we can apply Theorem 1 to f + φ on Ux provided that f+(z, v) > −∞
and f+(z; v) < +∞ for z ∈ Ux and v ∈ X. With this in mind, we have the
following consequence.

Corollary 2. Let X be a separable Banach space, A ⊂ X be nonempty open.
If f is continuous, directionally Lipschitz at every point of A, and f+(x; v) >
−∞, f+(x; v) < ∞ for x ∈ A and v ∈ X, then f is generically intermediate
differentiable on A.

We remark that Theorem 1 concerns finite intermediate derivatives. If we
remove the finiteness of Dini derivates, the result may fail. This is illustrated
by the following modified example from [3, page 288].
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Example 1. Let E be a dense Gδ subset in [0, 1] with Lebesgue measure 0.
There exists a continuous, strictly increasing function f : [0, 1] → R such that
f ′(x) = +∞ for every x ∈ E. The points at which f has finite intermediate
derivative must lie in [0, 1] \ E, which is of first category.

3 Appendix

We say that f : X → R is Lipschitz at x if

L(x) := lim sup
y→x

|f(y)− f(x)|
‖y − x‖

,

is finite. Prof. D. Preiss informed me of the following.

Lemma 3. Let X be an arbitrary Banach space. Assume that f : X → R is
pointwise Lipschitz on X; that is, L(x) < +∞ for every x ∈ X. Then there
exists a dense open set O of X such that f is locally Lipschitz on O.

Proof. Define

gn(x) := sup
0<‖y−x‖<1/n

|f(y)− f(x)|
‖y − x‖

.

Then L(x) = infn≥1 gn(x) for every x ∈ X. Since gn is lower semicontinuous
on X, there exists a dense Gδ set Dn of X such that gn is continuous at every
point of x ∈ Dn. Define D =

⋂∞
n=1 Dn. Then D is dense Gδ in X. At every

x ∈ D, L is upper semicontinuous. To see this, for ε > 0, there exists gN

such that gN (x) < L(x) + ε. Since gN is continuous at x, there exists an
open neighborhood Ux of x such that gN (y) < L(x) + ε. Since L ≤ gN , we
have L(y) < L(x) + ε for y ∈ Ux. One can take Ux to be convex. For every
y1, y2 ∈ Ux, [y1, y2] ⊂ Ux. By compactness, we have

|f(y2)− f(y1)| ≤ (L(x) + ε)‖y2 − y1‖.

Hence f is Lipschitz on Ux. It follows that the set

O := {x ∈ X| ∃ an open set Ux containing x such that f is Lipschitz on Ux}

is open and D ⊂ O. Thus, O is the required dense and open subset.

Lemma 4. Let X be a finite dimensional Banach space and suppose that
f : X → R is K-increasing with int(K) 6= ∅. Then the following are equivalent:

(a) At x ∈ X, f+(x; v) > −∞ and f+(x; v) < +∞ for every v ∈ X.
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(b) f is Lipschitz at point x.

Proof. It suffices to show (a)⇒(b). Suppose (b) does not hold. That is,
there exists yn → x such that

lim sup
yn→x

|f(yn)− f(x)|
‖yn − x‖

= ∞.

Without relabeling, let us assume

lim
yn→x

f(yn)− f(x)
‖yn − x‖

= +∞.

The other case is similar. Write yn = x + tnvn with tn = ‖yn − x‖ and
vn = (yn − x)/tn. As X is finite dimensional, there exists a subsequence of
(vn)n∈N converging. Without relabeling we assume vn → v. We have

lim sup
tn↓0,vn→v

f(x + tnvn)− f(x)
tn

= +∞.

Take e ∈ int(K). For n sufficiently large, (v − vn) + e ∈ int(K). Since f is
K-increasing, we have

f(x + tnvn)− f(x)
tn

≤ f(x + tn(v + e))− f(x)
tn

.

Taking limsup gives f+(x; v + e) = +∞. This contradicts (a).

These two lemmas show that Theorem 1 can be deduced from the results
for Lipschitz functions [4, 5] when X is finite dimensional. Nevertheless, when
X is infinite dimensional, it is not clear whether Lemma 4 holds.

Following [5] we say that a function f : X → R is said to be uniformly
intermediately differentiable at x if there exists a continuous linear functional
x∗ on X and a sequence tn ↓ 0 such that

lim
n→∞

f(x + tnv)− f(x)
tn

= 〈x∗, v〉, for all v ∈ X, ‖v‖ = 1.

Here ‘uniformly’ means that the same sequence is used for all v ∈ X, ‖v‖ = 1.
Using Lemma 3 and Preiss’ Differentiability Theorem, we can follow Giles and
Sciffer’s arguments in the proof of Theorem 1.4 to obtain the final result.

Theorem 2. A pointwise Lipschitz function f on an open subset A of an As-
plund space X is uniformly intermediately differentiable on a dense Gδ subset
of A.
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This refines Theorem 1.4 of Giles and Sciffer [5].

Acknowledgments. I wish to thank Prof. M. Fabian for his helpful conver-
sations.
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