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EIGENVALUES ASSOCIATED WITH
BOREL SETS

Abstract

Every Borel subset K of an interval [c, d] induces a sequence of eigen-
values. If K is closed, the asymptotic behavior of the eigenvalues is
related to the positions and lengths of its complementary intervals. The
rate of growth becomes “lowest possible” if K has self-similarity prop-
erties. Eigenvalues of a vibrating string with singular mass distribution
are eigenvalues associated with a set K.

1 Introduction.

Let K be a given Borel subset of the interval [c, d], and let χ
K denote its

characteristic function. We call λ ∈ C an eigenvalue associated with K if there
exist absolutely continuous functions u, v : [c, d] → C, not both identically
zero, that solve the system of differential equations

u′ = (1− χ
K(x))v, v′ = −λχ

K(x)u for x ∈ [c, d] a.e., (1)

and the boundary conditions

u(c) = u(d) = 0. (2)

This eigenvalue problem is a special case of a problem introduced and inves-
tigated by Atkinson [1, Chapter 8]. Some basic properties of the sequence of
eigenvalues associated with K are mentioned in Section 2.

How does the structure of K influence the asymptotic behavior of its se-
quence of eigenvalues? In Section 3 we show that knowledge of the lengths of
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the complementary intervals of a closed set K provides a lower bound on the
growth rate of the eigenvalues. For example, if the complementary intervals
of K have lengths 1/m2, m ∈ N, then the eigenvalues λn must grow at least
as fast as n3. Of course, the true growth rate of the eigenvalues depends not
only on the lengths of the complementary intervals but also on their location.
We show that the lower bound on the growth rate of eigenvalues is achieved
when K is a symmetric perfect set of positive measure. This indicates that the
growth rate of eigenvalues is “lowest possible” when K has fractal properties.

In Section 4 we show that the eigenvalue problem of a vibrating string
whose mass distribution is singular to Lebesgue measure can be transformed
to a problem of the form (1), (2) when K is properly chosen. This allows us
to relate results of this paper to those of Fujita [3], McKean and Ray [6], and
Uno and Hong [7].

2 Eigenvalues of Sets.

Let K be a Borel subset of [c, d]. We will assume that the Lebesgue measure
ν(K) of K is less than d− c, and that

ν(K ∩ [c, e)) > 0, ν(K ∩ (e, d]) > 0 for all e ∈ (c, d). (3)

We consider the eigenvalue problem consisting of the system (1) and the
boundary conditions (somewhat more general than (2))

cos α u(c) = sin α v(c), cos β u(d) = sin β v(d), (4)

where α ∈ [0, π), β ∈ (0, π]. This eigenvalue problem satisfies all of Atkinson’s
assumptions (i), (ii), (iii), (iv); see [1, pages 203–204].

We mention a few consequences. By [1, Theorem 8.3.1], the eigenvalues are
real. By [1, Theorem 8.4.5], the eigenvalues can be arranged as an increasing
sequence

λ0 < λ1 < λ2 < . . .

If (u, v) is an eigenfunction corresponding to the eigenvalue λn, then the set of
zeros of u within [c, d] consists of n disjoint intervals if we do not count those
intervals that contain c or d. The number of eigenvalues may be finite. If there
are infinitely many eigenvalues, the sequence of eigenvalues tends to infinity.
We know from [2, Theorem 4.3] that the number of eigenvalues of K is finite
if and only if there is a finite union L of intervals such that ν(K∆L) = 0.

In Atkinson’s analysis as in our own the Prüfer angle plays a crucial role.
For real λ let (u(x, λ), v(x, λ)) be the solution of (1) determined by the initial
values

u(c, λ) = sin α, v(c, λ) = cos α. (5)
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Let θ(x) = θ(x, λ) be the absolutely continuous Prüfer angle defined by

θ(x) = arg(v(x, λ) + iu(x, λ)), θ(c) = α.

The Prüfer angle satisfies the first order differential equation

θ′ = (1− χ
K(x)) cos2 θ + λχ

K(x) sin2 θ. (6)

The function θ(d, λ) is increasing and Atkinson showed that the eigenvalue λn

is the solution of
θ(d, λn) = β + nπ. (7)

Therefore, the behavior of θ(d, λ) as λ → +∞ determines the behavior of the
eigenvalues λn as n →∞.

If λ = 0, then (6) has constant solutions θ(x) = π
2 + kπ, k ∈ Z. Therefore

θ(d, 0) < 3
2π which shows that the eigenvalues λn with n ≥ 2 are positive.

The eigenvalues of the Dirichlet problem (α = 0, β = π) are all positive while
the eigenvalues of the Neumann problem (α = β = π/2) satisfy λ0 = 0 < λn

for all n ≥ 1.
Sometimes it is useful to consider a modified Prüfer angle φ(x). For given

λ, γ > 0 the absolutely continuous function φ(x) is determined by

φ(x) = arg(v(x, λ) + iγu(x, λ)), φ(c) ∈ [0, π).

The modified Prüfer angle satisfies the differential equation

φ′ = γ(1− χ
K(x)) cos2 φ + γ−1λχ

K sin2 φ. (8)

The values of φ(x) and θ(x, λ) agree when u(x, λ) = 0 or v(x, λ) = 0. There-
fore,

|φ(x)− θ(x, λ)| < π

2
for all x ∈ [c, d]. (9)

3 Eigenvalue Estimates.

If K is a closed set, then its complement K̃ = [c, d] \ K is open (relative to
[c, d]) and thus K̃ is a union of disjoint open intervals, the complementary
intervals of K.

Theorem 1. Let K be a closed subset of [c, d] with infinitely many comple-
mentary intervals Im, m ∈ N. For k ∈ N let

δk :=
∞∑

m=k

ν(Im).
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Then, for all λ > 0 and k ∈ N,

θ(d, λ)− θ(c, λ) ≤ 2λ1/2δ
1/2
k ν(K)1/2 + kπ, (10)

where θ(x, λ) is any solution of (6).

Proof. If ν(K) = 0, then (6) has constant solutions (q + 1
2 )π for each integer

q. Therefore, θ(d, λ) − θ(c, λ) < π which implies (10). Let us assume that
ν(K) > 0. Then we define a positive number γ by

λν(K) = δkγ2. (11)

Let φ(x) be the modified Prüfer angle satisfying (8). We write [c, d] as the
disjoint union of k − 1 complementary intervals Im, m = 1, 2, . . . , k − 1, and
(at most) k closed intervals Jm, m = 1, 2, . . . , k. For a subinterval I of [c, d]
let φ|I denote the increase of φ over I. Then, by integrating (8) over Jm, we
obtain

φ|Jm
≤ γν(K̃ ∩ Jm) + γ−1λν(K ∩ Jm).

We add these inequalities and use (11) to find

k∑
m=1

φ|Jm ≤ γδk + γ−1λν(K) = 2λ1/2δ
1/2
k ν(K)1/2.

On the complementary intervals Im the function χ
K vanishes. Therefore, we

have φ|Im
≤ π. Adding our inequalities we obtain

φ(d)− φ(c) =
k∑

m=1

φ|Jm
+

k−1∑
m=1

φ|Im

≤2λ1/2δ
1/2
k ν(K)1/2 + (k − 1)π.

Using (9) we obtain (10).

Of course, inequality (10) should be used with the complementary intervals
ordered by decreasing length; ν(I1) ≥ ν(I2) ≥ . . . . In (10) we will choose k

such that k and λ1/2δ
1/2
k are approximately of the same size. We may select

an increasing function g : (0,∞) → (0,∞) such that

g(k2δ−1
k ) = k, k ∈ N. (12)

Then, for given λ > 0, we choose a positive integer k such that

k − 1 < g(λ) ≤ k. (13)
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It follows that λδk ≤ k2, and (10) implies

θ(d, λ)− θ(c, λ) ≤ (2ν(K)1/2 + π)(g(λ) + 1) for λ > 0. (14)

For example, consider a closed set K whose complementary intervals Im have
length 1

m(m+1) , m = 1, 2, 3, . . . . Then δk = 1
k . We may choose g(λ) = λ1/3 to

obtain
θ(d, λ)− θ(c, λ) ≤ (2ν(K)1/2 + π)(λ1/3 + 1).

From equation (7) we obtain the following lower bound for eigenvalues.

Corollary 2. Let K be a closed subset of [c, d] with infinitely many comple-
mentary intervals and satisfying (3). Let g be chosen according to (12). Then
the positive eigenvalues λn associated with K for given α ∈ [0, π), β ∈ (0, π]
satisfy

g(λn) ≥ β − α + nπ

2ν(K)1/2 + π
− 1.

For example, for a closed set K with complementary intervals Im of length
1

m(m+1) , m = 1, 2, 3, . . . , the eigenvalues λn of the Dirichlet problem satisfy

λ1/3
n ≥ (n + 1)π

2ν(K)1/2 + π
− 1.

If we know the positions of the complementary intervals we may estimate
better. For instance, consider a sequence

c = 0 = ξ0 < ξ1 < ξ2 < · · · < 2 = d

with

ξ2k − ξ2k−1 = ξ2k−1 − ξ2k−2 =
1

k(k + 1)
for k ≥ 1.

Take

K = {2} ∪
∞⋃

k=0

[ξ2k, ξ2k+1].

The complementary intervals Im of K have length 1
m(m+1) . When we write

[0, 2] as a disjoint union of the intervals Im, m = 1, 2, . . . , k − 1 and closed
intervals Jm, m = 1, 2 . . . , k, then

φ|Im
≤ π, φ|Jm

≤ π for m = 1, 2, . . . , k − 1.
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When γ = λ1/2 we find

φ|Jk
≤ 2λ1/2δk = 2λ1/2 1

k

which leads to
θ(2, λ)− θ(0, λ) ≤ (2k − 1)π + 2λ1/2 1

k
.

If we select k such that (k − 1)4 < λ ≤ k4, it follows that

θ(2, λ)− θ(0, λ) ≤ 2(π + 1)λ1/4 + π for λ > 0,

and, for the eigenvalues λn of the Dirichlet problem,

λ1/4
n ≥ nπ

2π + 2
.

This demonstrates that the actual growth rate of eigenvalues may be larger
than that enforced by Corollary 2.

We now consider sets for which the lower bound of Corollary 2 gives us the
correct growth rate. Consider a symmetric perfect set K ⊂ [c, d] determined by
a sequence {εq}q∈N of parameters in (0, 1). This set is defined by a construction
similar to that which leads to the Cantor set. In the first step we remove from
[c, d] a central open interval of fractional length ε1. In the second step we
remove a central open interval of fractional length ε2 from each of the two
remaining closed intervals and so on. The set of points that is not removed is
the symmetric perfect set K. If [c, d] = [0, 1] and εq = 1

3 for all q, we obtain
the Cantor set. The measure of K is given by

ν(K) = (d− c)
∞∏

q=1

(1− εq).

In the qth step we remove 2q−1 complementary intervals Im, m = 2q−1, 2q−1 +
1, . . . , 2q − 1, each with length

ν(Im) = (d− c)2−q+1εq

q−1∏
j=1

(1− εj).

Then, if k = 2q,

δk =
∞∑

m=k

ν(Im) = (d− c)

(
q∏

i=1

(1− εi)−
∞∏

i=1

(1− εi)

)
. (15)



Eigenvalues Associated with Borel Sets 117

Theorem 3. Let K ⊂ [c, d] be a symmetric perfect set of positive measure.
Choose an increasing function g : (0,∞) → (0,∞) with

g(k2δ−1
k ) = k for k = 2q, q = 0, 1, 2, . . . ,

where δk is given by (15). Then, for every solution θ(x, λ) of (6),

θ(d, λ)− θ(c, λ) ≥ 1
2
Cg(λ)− π for λ > 0, (16)

where

C := min
{

π

6
,
1
2
ν(K)1/2

}
.

Proof. Inequality (16) certainly holds when g(λ) < 1. Therefore let λ > 0
be such that g(λ) ≥ 1. We choose a nonnegative integer q such that

k := 2q ≤ g(λ) < 2q+1. (17)

We write [c, d] as the disjoint union of the complementary intervals Im, m =
1, 2, . . . , k − 1, and closed intervals Jm, m = 1, 2, . . . , k. All intervals Jm have
the same length. By construction of K, the sets K ∩Jm are translates of each
other. Thus ν(K ∩ Jm) and ν(K̃ ∩ Jm) do not depend on m. We use the
modified Prüfer angle φ depending on the positive number γ defined by

λν(K ∩ Jm) = γ2ν(K̃ ∩ Jm).

Note that γ is independent of m. Suppose that the increase φ|Jm
is at most

π/6. Then there is an interval H of length at most π/6 such that φ(x) ∈ H
for all x ∈ Jm. There are r, s ≥ 0 with r + s = 1

2 such that cos2 t ≥ r and
sin2 t ≥ s for all t ∈ H. Integrating (8) over Jm we obtain

φ|Jm ≥ rγν(K̃ ∩ Jm) + sγ−1λ ν(K ∩ Jm).

By definition of γ this gives

φ|Jm
≥ (r + s)λ1/2ν(K ∩ Jm)1/2ν(K̃ ∩ Jm)1/2.

Hence we obtain, for all m,

φ|Jm ≥ min
{

π

6
,
1
2
λ1/2ν(K ∩ Jm)1/2ν(K̃ ∩ Jm)1/2

}
. (18)
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We have
ν(K̃ ∩ Jm)
ν(K ∩ Jm)

=
δk

ν(K)
.

It follows from (17) that λδk ≥ k2. Hence

λν(K ∩ Jm)ν(K̃ ∩ Jm) = λδkν(K)−1ν(K ∩ Jm)2

≥ k2ν(K)−1k−2ν(K)2 = ν(K).

Therefore, (18) gives

φ|Jm
≥ C for m = 1, 2, . . . , k.

Since φ|Im
≥ 0, we find that

φ(d)− φ(c) ≥
k∑

m=1

φ|Jm ≥ 2qC ≥ 1
2
Cg(λ).

Replacing φ by θ we obtain (16).

Corollary 4. Let K be as in Theorem 3. Then the positive eigenvalues λn

associated with K satisfy

g(λn) ≤ 2
C

(β − α + (n + 1)π).

If K is a symmetric perfect set with positive measure and we choose g as
in (12) then Corollaries 2 and 4 show that there are positive constants A,B
such that An ≤ g(λn) ≤ Bn for sufficiently large n.

4 Singular Vibrating Strings.

Consider a given finite measure ρ : B → [0,∞), where B denotes the σ-algebra
of Borel subsets of the interval [a, b]. For simplicity, we will assume that ρ has
no atoms. Measures with atoms can be treated along similar lines; see [8]. We
also assume that

ρ([a, e)) > 0, ρ((e, b]) > 0 for all e ∈ (a, b).

Consider the integral equations (ν denotes Lebesgue measure)

U(t)− U(a) =
∫

[a,t)

V (τ) dν(τ), t ∈ [a, b], (19)

V (t)− V (a) =− λ

∫
[a,t)

U(τ) dρ(τ), t ∈ [a, b] (20)
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subject to the boundary conditions

cos α U(a) = sin α V (a), cos β U(b) = sin β V (b), (21)

where α ∈ [0, π), β ∈ (0, π]. This is Krein’s eigenvalue problem for a vibrating
string whose mass distribution is given by ρ; see [5]. A complex number λ
is called an eigenvalue if there exists a nontrivial continuous solution (U, V ) :
[a, b] → C2 of bounded variation to the system (19), (20) satisfying (21). In
the remainder of this section we will assume that our string is singular; that
is, the measure ρ is singular with respect to Lebesgue measure ν. Eigenvalue
problems of this sort were considered first by McKean and Ray [6] and Uno
and Hong [7].

We transform the eigenvalue problem for a singular string to an eigenvalue
problem of the type considered in Section 2. To this end consider the measure
ω := ν + ρ, and let

h(t) := ω([a, t)) = t− a + ρ([a, t))

be its distribution function. Let d := ω([a, b]). Then h : [a, b] → [0, d] is
continuous, strictly increasing and onto. There is G ∈ B such that ν(G) =
ρ([a, b] \G) = 0. Let K := h(G) ⊂ [0, d]. Note that K is a Borel set, ν(K) < d
and (3) holds. Consider the solution u(x, λ), v(x, λ) of system (1) with c = 0
determined by the initial values (5). It is an exercise in Real Analysis to show
that

U(t, λ) := u(h(t), λ), V (t, λ) := v(h(t), λ) (22)

solve the integral equations (19), (20) and have initial values

U(a, λ) = sin α, V (a, λ) = cos α.

For the proof of this and more general statements see [8]. Consequently, the
eigenvalues of a singular vibrating string agree with the eigenvalues associated
with K. Note that the numbers α, β appearing in the boundary conditions are
the same for both problems. We see from (22) that (U(t, λ), V (t, λ)), t ∈ [a, b],
describes the same continuous curve in the plane as (u(x, λ), v(x, λ)), x ∈ [0, d].
If we define an absolutely continuous Prüfer angle θ(x, λ) as in Section 2, then
θ(h(t), λ) will be a corresponding Prüfer angle for the eigenvalue problem of a
vibrating string; that is,

θ(h(t), λ) = arg(V (t, λ) + iU(t, λ)).

We apply this transformation to obtain the following result.
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Theorem 5. Consider a vibrating string whose defining measure ρ is sup-
ported on the Cantor set G ⊂ [0, 1]. Then its positive eigenvalues λn satisfy

β − α + nπ√
6M + π

− 1 ≤ λτ
n, (23)

where τ := ln 2
ln 6 , and M := ρ(G) is the total mass of the string.

Proof. Since the complementary intervals of K = h(G) have the same lengths
as those of the Cantor set, we have δk = ( 2

3 )q when k = 2q. From Theorem 1
we know that

θ(d, λ)− θ(0, λ) ≤ 2λ1/2
(

2
3

)q/2
M1/2 + 2qπ. (24)

For λ ≥ 1 we choose q = 0, 1, 2, . . . such that 6q ≤ λ < 6q+1. We note that
6τ = 2 which implies 2q ≤ λτ and

( 2
3 )q/2 = 6q(τ−1/2) < (λ

6 )τ−1/2.

Then we obtain

θ(d, λ)− θ(0, λ) ≤ (
√

6M + π)λτ for λ ≥ 1.

Inequality (24) with q = 0 shows that

θ(d, λ)− θ(0, λ) ≤ (
√

6M + π)(λτ + 1) for λ > 0.

This implies (23).

It should be noted that the measure ρ in Theorem 5 can be any finite
(atomless) measure supported on the Cantor set. We now consider the special
case where ρ is the Cantor measure. One may define this measure through
its distribution function g(t) = ρ([0, t)), the Cantor ternary function. Then
h(t) = t + g(t). It is easy to verify that K = h(G) ⊂ [0, 2] is a symmetric
perfect set determined by the parameters

εq =
1
3

1 + ( 3
2 )q−1

. (25)

Its measure is ν(K) = ρ([0, 1]) = 1.

Theorem 6. The positive eigenvalues λn of the vibrating string whose mass
distribution is given by the Cantor measure satisfy

β − α + nπ√
6 + π

− 1 ≤ λτ
n ≤ 4(β − α + (n + 1)π). (26)
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Proof. The lower bound for λn follows from Theorem 5. Theorem 3 with
g(λ) = λτ yields

θ(2, λ)− θ(0, λ) ≥ 1
4λτ − π for λ > 0.

Therefore, using (7) we arrive at (26).

By different methods, Theorem 6 has been proved in [6], [7] in the form:
There are positive constants C1 and C2 such that C1 ≤ λτ

n

n ≤ C2. Our method
of proof has the advantage to lead to explicit estimates not containing unknown
constant.

The eigenvalues of the Neumann problem reflect the self-similarity of the
Cantor measure in the following striking way.

Theorem 7. The eigenvalues λn of the Neumann problem for the vibrating
string whose mass distribution is given by the Cantor measure satisfy

λ2n = 6λn, n = 0, 1, 2, . . . (27)

Proof. By making the substitution t = 3s in (19), (20) we find that

U(t, 6λ) = U(3t, λ), V (t, 6λ) = 3V (3t, λ) for 0 ≤ t ≤ 1
3 .

Since V (0, λn) = V (1, λn) = 0, the Prüfer angle satisfies

θ(h( 1
3 ), 6λn) = θ(2, λn) =

π

2
+ nπ.

Since χ
K(x) = 0 for 5

6 = h( 1
3 ) ≤ x ≤ h( 2

3 ) = 7
6 , it follows from (6) that

θ(x, 6λn) =
π

2
+ nπ if 5

6 ≤ x ≤ 7
6 .

Since χ
K(x + 7

6 ) = χ
K(x), we obtain

θ(x + 7
6 , 6λn) = nπ + θ(x, 6λn)

which leads to

θ(2, 6λn) = nπ + θ( 5
6 , 6λn) =

π

2
+ 2nπ = θ(2, λ2n).

This proves (27).
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Consider the sequence

λτ
n

n
, n = 1, 2, 3, . . . (28)

with the eigenvalues λn from Theorem 7. For every k = 1, 2, 3, . . . the subse-
quence

(λk2n)τ

k2n
=

(6nλk)τ

k2n
=

λτ
k

k
(29)

is constant. By approximating K by finite unions of intervals it is possible
to compute the eigenvalues λk for small k. For example, λ1 = 7.09 . . . and
λ3 = 61.26 . . . . It follows that the values of (29) for k = 1, k = 3 are
different. This shows that the sequence (28) does not converge. Hence the
factors π/(

√
6 + π) and 4 of n appearing in the lower and upper bounds in

(26) cannot be made equal.
Fujita [3] found the growth rate of eigenvalues of a more general family of

self-similar singular strings. The method of proof depends on the trace formula
for the Green’s function and a Tauberian theorem for the Stieltjes transform.
These results may be derived more directly using the Prüfer angle as follows.
We consider only an example since the general case treated in [3] can be dealt
with in a very similar way.

Consider a singular string over [a, b] = [0, 1] whose mass distribution is
defined as follows; see Hutchinson [4]. Given ρ1, ρ2 > 0 with ρ1 + ρ2 = 1 there
is a unique probability measure ρ : B → [0, 1] such that

ρ(A) = ρ1ρ(S−1
1 (A)) + ρ2ρ(S−1

2 (A)) for A ∈ B,

where
S1(t) :=

t

3
, S2(t) :=

2
3

+
t

3
.

The measure ρ is supported on the Cantor set G. If ρ1 = ρ2 = 1
2 we obtain

again the Cantor measure. Let K = h(G) be the corresponding subset of [0, 2].
The set K may be constructed in the same way as a symmetric perfect set
but, in general, the complementary intervals are not removed from the middle
of the remaining intervals. Define

f(λ) := θ(2, λ)− θ(0, λ).

The self-similarity of the measure ρ implies that U(Sj(t), λ), 1
3V (Sj(t), λ) solve

system (19), (20) with λ replaced by 1
3ρjλ. Therefore, θ(h(Sj(t)), λ) is a

modified Prüfer angle for a solution of system (19), (20) with λ replaced by
1
3ρjλ. We note that if θ1, θ2 are any solutions of (6), then

θ1(d)− θ1(c) ≤ θ2(d)− θ2(c) + π.
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We conclude that

f( 1
3ρ1λ)− 2π ≤ θ(h( 1

3 ), λ)− θ(0, λ) ≤ f( 1
3ρ1λ) + 2π

and
f( 1

3ρ2λ)− 2π ≤ θ(2, λ)− θ(h( 2
3 ), λ) ≤ f( 1

3ρ2λ) + 2π.

Adding these inequalities to

0 ≤ θ(h( 2
3 ), λ)− θ(h( 1

3 ), λ) ≤ π,

we arrive at the functional inequalities

f( 1
3ρ1λ) + f( 1

3ρ2λ)− 4π ≤ f(λ) ≤ f( 1
3ρ1λ) + f( 1

3ρ2λ) + 5π. (30)

If we set f1(λ) = f(λ) + 5π, we obtain

f1(λ) ≤ f1( 1
3ρ1λ) + f1( 1

3ρ2λ). (31)

Choose µ1 > 0 and set µ := 3(min{ρ1, ρ2})−1. Then (31) implies that

f1(λ) ≤ C1λ
η for λ ≥ µ1,

where η > 0 is determined by ρη
1 + ρη

2 = 3η and

C1 := max
µ1≤λ≤µµ1

f1(λ)
λη

.

Hence
θ(2, λ)− θ(0, λ) ≤ C1λ

η − 5π

which leads to the eigenvalue estimate

C1λ
η
n ≥ β − α + (n + 5)π (32)

provided that λn ≥ µ1. In a similar way we find that f2(λ) := f(λ) − 4π
satisfies

f2(λ) ≥ f2( 1
3ρ1λ) + f2( 1

3ρ2λ)
which implies that

f2(λ) ≥ C2λ
η for λ ≥ µ2,

where µ2 > 0 is chosen so large that

C2 := min
µ2≤λ≤µµ2

f2(λ)
λη

> 0.

Then we obtain the upper bound

C2λ
η
n ≤ β − α + (n− 4)π. (33)

We mention that using some simple estimates for the solutions of (6) with
λ between µj and µµj it is again possible to replace C1 and C2 by explicit
values.
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