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Abstract

Using almost-invariant sets, we show that a family of Marczewski–
Burstin algebras over groups are not closed under algebraic sums. We
also give an application of almost-invariant sets to the difference prop-
erty in the sense of de Bruijn. In particular, we show that if G is a
perfect Abelian Polish group then there exists a Marczewski null set
A ⊆ G such that A + A is not Marczewski measurable, and we show
that the family of Marczewski measurable real valued functions defined
on G does not have the difference property.

1 Introduction.

The algebraic sum of two subsets A,B of a group G is the set A+B = {a+ b :
a ∈ A, b ∈ B}. If A is an algebra of subsets of the group G it is natural to
ask whether A is closed under algebraic sums. It is a well-known result that
the algebras of Lebesgue measurable sets and sets with the Baire property
are not closed under algebraic sums over R. In fact, there is a null (resp.
meager) A ⊆ R such that A + A is not Lebesgue measurable (resp. A + A
does not have the Baire property). For various proofs of these facts (and some
generalizations) see [9], [15] and [10], for example.
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In this paper we show that certain of Marczewski–Burstin algebras, includ-
ing Marczewski and Miller algebras on Abelian Polish groups, are not closed
under algebraic sums. If K is a family of subsets of an infinite Abelian group
G, we define

S(K) = {A ⊆ G : (∀K ∈ K)(∃K ′ ∈ K)K ′ ⊆ K ∩A ∨K ′ ⊆ K \A},
S0(K) = {A ⊆ G : (∀K ∈ K)(∃K ′ ∈ K)K ′ ⊆ K \A}.

It is easy to see that S(K) is an algebra of subsets of G and S0(K) ⊆ S(K) is
an ideal. The set S(K) (resp. S0(K)) is the Marczewski–Burstin algebra (resp.
Marczewski–Burstin ideal) associated with the family K. (cf. [2] or [1].)

A set B ⊆ G is K-Bernstein if K ∩ B 6= ∅ and K \ B 6= ∅ for all K ∈ K.
Obviously, B /∈ S(K) when B is K-Bernstein.

We also address the question of whether the family of S(K)-measurable
functions on G has the difference property. For any function f : G → R
and y ∈ G we define the difference function ∆yf : G → R by ∆yf(x) =
f(x + y)− f(x) for every x ∈ G. A family F of real valued functions defined
on G is said to have the difference property (in the sense of de Bruijn) if
every function f : G → R such that ∆yf ∈ F for each y ∈ G is of the form
f = g + h, where g ∈ F and h is an algebraic homomorphism. The notion of
the difference property was introduced by de Bruijn [4], see [12] for a recent
survey.

The key to our approach is to relate these questions to the existence of
appropriate almost-invariant sets. Let J be an arbitrary ideal on G. A set
A ⊆ G is J -almost-invariant if the symmetric difference (A + g)∆A ∈ J for
every g ∈ G. We simply say that A is almost-invariant if it is [G]<|G|-almost-
invariant.

The relationship between algebraic sums and almost-invariant sets is pro-
vided by the following theorem.

Theorem 1 (Ciesielski–Fejzić–Freiling [3]). Let G be an infinite Abelian group
of size κ and let K be a family of subsets of G such that |K| = κ and |K| = κ
for every K ∈ K. If there is a set A ⊆ G such that |(A + g) ∩ (−A)| = κ for
every g ∈ G then there is B ⊆ A such that B + B is a K-Bernstein set.

Although Ciesielski, Fejzić and Freiling only consider the above theorem for
G = R, the reader will have no problem adapting their proof to our more gen-
eral context. Observe that if A is symmetric (i.e. A = −A) almost-invariant
and |A| = κ then the condition |(A + g) ∩ (−A)| = κ follows immediately.

To relate the difference property to symmetric almost-invariant sets, we
use a theorem of the second author.
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Theorem 2 (Filipów [5]). Let G be an infinite Abelian group, A a σ-algebra of
subsets of G and I ⊆ A an ideal. If A is closed under reflections; i.e., A ∈ A
implies −A ∈ A, and there is a symmetric I-almost-invariant set S /∈ A, then
the family of A-measurable functions does not have the difference property.

2 Construction of Almost-Invariant Sets.

Throughout this section G will stand for an uncountable Abelian group of
size κ, G = {gα : α < κ} is a fixed enumeration of G and Gα denotes the
subgroup of G generated by {gβ : β < α}. Note that |Gα| ≤ |α|ω < κ since
κ is uncountable. Our results also apply for countable groups G provided
that we may write G =

⋃
n<ω Gn where Gn is an increasing sequence of finite

subgroups of G.
Sierpiński formulated a construction of almost-invariant sets. Most con-

structions use his method which is summarized in the following proposition.

Proposition 3 (Sierpiński [16]). For any sequence {xα : α < κ} ⊆ G, the set
A =

⋃
α<κ(Gα + xα) is almost-invariant.

It is easy to use this to construct K-Bernstein almost-invariant sets.

Theorem 4. If K ⊆ [G]κ is a family of size at most κ, then there is a
symmetric almost-invariant set that is K-Bernstein.

Proof. Write K = {Kα : α < κ}. We will construct two sequences {xα : α <
κ} and {yα : α < κ} as follows. Take

xα ∈ Kα \ (Gα + ({±xβ : β < α} ∪ {±yβ : β < α}))

and
yα ∈ Kα \ (Gα + ({±xβ : β ≤ α} ∪ {±yβ : β < α})).

Now we put S =
⋃

α<κ(Gα ± xα). It follows from Proposition 3 that S is
almost-invariant. It is easy to see that S is symmetric since each Gα ± xα is.

Finally, it remains to show that S is K-Bernstein. We see that S ∩K 6= ∅
for every set K ∈ K (since xα ∈ S for all α < κ). On the other hand, we
show that yα /∈ S for all α < κ. Suppose instead that there is α < κ such that
yα /∈ G \ S. Then there is β such that yα ∈ Gβ ± xβ . If α ≥ β, then we get
a contradiction with the definition of points yα. So β > α, but in that case
xβ ∈ Gβ ± yα which is a contradiction.
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As a consequence of this we obtain our main result regarding the difference
property for S(K)-measurable functions.

Theorem 5. Suppose that K ⊆ [G]κ is a family of size at most κ that satisfies
the following property

(∗) For every set K ∈ K and Z ∈ [G]<κ, there is a set K ′ ∈ K with K ′ ⊆
K \ Z.

If moreover S(K) is a σ-algebra that is closed under reflections, then the family
of S(K)-measurable functions does not have the difference property.

Proof. Note that property (∗) is necessary and sufficient for [G]<κ ⊆ S0(K).
So every almost-invariant set is also S0(K)-almost-invariant. The result then
follows immediately from Theorem 2.

We can also use Sierpiński’s method to construct almost-invariant sets in
S0(K) for many families K.

Theorem 6. Suppose that K ⊆ [G]κ is a family of size at most κ with property
(∗). If K is invariant under translations and no collection of fewer than κ sets
from K cover G, then there is an almost-invariant set T ∈ S0(K) with size κ.

Proof. Write K = {Kα : α < κ}. We will construct two sequences, {Qα :
α < κ} and {xα : α < κ}, which satisfy the following induction hypotheses:

1. xα 6= xβ for α 6= β,

2. Qα ∈ K,

3. Qα ⊆ Kα for every α < κ,

4. (
⋃

β<α Gβ + xβ) ∩
⋃

β<α Qβ = ∅.

Let α < κ and suppose that we have already constructed Qβ and xβ for
β < α. First we show that we can find xα ∈ G with

(Gα + xα) ∩
(⋃

β<α Qβ ∪Kα ∪ {xβ : β < α}
)

= ∅.

For the sake of contradiction, suppose that for every x ∈ G we have

(Gα + x) ∩
(⋃

β<α Qβ ∪Kα ∪ {xβ : β < α}
)
6= ∅.
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Then
G =

⋃
g∈Gα

((⋃
β<α Qβ ∪Kα ∪ {xβ : β < α}

)
− g

)
=

⋃
F

where

F = {P+xβ−g : β < α, g ∈ Gα}∪{Qβ−g : β < α, g ∈ Gα}∪{Kα−g : g ∈ Gα}

and P is any element of K with 0 ∈ P (so x ∈ P + x for every x ∈ G). Since
K is invariant under translation, we have F ⊆ K and |F| ≤ (2|α|+ 1)|Gα| < κ
since |Gα| < κ by convention. This contradicts the fact that no collection of
fewer than κ sets from K cover G so there must be an xα ∈ G as claimed
above.

Now it follows immediately from (∗) that there is a Qα ∈ K such that
Qα ⊆ Kα and

Qα ∩
⋃

β≤α

(Gβ + xβ) = ∅.

It is easy to see that this choice of Qα, xα satisfies our four induction hypothe-
ses. Now let

T =
⋃

α<κ

(Gα + xα).

We will show that the set T is as required; i.e., T ∈ S0(K) is an almost-
invariant set of size κ.

Proposition 3 implies that T is almost-invariant and since xα are distinct
and xα ∈ Gα + xα we have |T | = κ.

To see that T ∈ S0(K), fix any K ∈ K and let α < κ be such that K = Kα.
We show that Qα ∩ T = ∅. Take any β < κ and let δ = max{α, β} + 1. By
condition 4 we have(⋃

γ<δ(Gγ + xγ)
)
∩

(⋃
γ<δ Qγ

)
= ∅

so (Gβ + xβ) ∩ Qα = ∅ as well. But the latter holds for every β < κ, hence
Qα ∩ T = ∅ as required. This shows that for every K ∈ K there is a Q ∈ K
with Q ⊆ K and Q ∩ T = ∅ and hence T ∈ S0(K) as required.

As a corollary we get our main result regarding algebraic sums of sets in
Marczewski–Burstin algebras.

Theorem 7. Suppose that K ⊆ [G]κ is a family of size at most κ with property
(∗). If K is invariant under translations and reflections and no collection of
fewer than κ sets from K cover G, then there is a set A ∈ S0(K) such that
A + A is K-Bernstein and hence not in S(K).
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Proof. Since K satisfies all the hypotheses of Theorem 6, let T be as in the
conclusion of that theorem. Then the symmetric set S = T ∪ (−T ) ∈ S0(K) is
also almost-invariant since K, and hence S0(K), is invariant under reflections.
The sets (S + g) ∩ S = (S + g) ∩ (−S) for g ∈ G necessarily have size κ for
every g ∈ G since |(S +g)∆S| < κ and |(S +g)∪S| = κ. By Theorem 1, there
is a set A ⊆ S (hence A ∈ S0(K)) such that A + A is K-Bernstein.

3 Applications.

In this section, we apply our two main results about algebraic sums and the
difference property to Marczewski and Miller measurable sets.

3.1 Marczewski Measurable Sets.

Let X be a Polish space. By a perfect set in X we mean a nonempty, closed
subset of X without isolated points. The algebra of Marczewski measurable
subsets of X is defined by (sX) = S(PerfX) where PerfX is the family of
perfect subsets of X. The ideal of Marczewski null subsets of X is similarly
defined by (sX

0 ) = S0(PerfX).
It is well known (cf. [13]) that (sX) is a σ-algebra and that (sX

0 ) ⊆ (sX)
is a σ-ideal. This is a proper σ-ideal if and only if X is not σ-discrete; i.e.,
X is not a countable union of discrete subspaces. Moreover, we always have
[X]<c ⊆ (sX

0 ) since a perfect set can always be split into c many disjoint perfect
subsets.

If G is a perfect Abelian Polish group, then (sG) and (sG
0 ) are invariant

under translations and reflections since these transformations are homeomor-
phisms.

Theorem 8. If G is a perfect Abelian Polish group, then there is a Marczewski
null set A ⊆ G such that A + A is not Marczewski measurable.

Remark. Theorem 8 was proved later by Kysiak [11] using different methods.

The following easy lemma is key to the proofs of Theorem 8 and, later, for
Theorem 11.

Lemma 9. Every perfect Abelian Polish group G has a proper σ-compact
subgroup H with |H| = |G/H| = c.

Proof. A well-known theorem of Mycielski [14] says that we can always find
a nonempty independent perfect set P ⊆ G. Choose a compact perfect set
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P0 ⊆ P with P1 = P \ P0 of size c. The subgroup H generated by P0 is σ-
compact and |H| = c since P0 is perfect. Since P is independent, the elements
of P1 belong to different cosets in G/H and so |G/H| = c also.

Proof of Theorem 8. Let H be as in Lemma 9 and let K be the family of
all perfect sets P ⊆ G such that either

• P ⊆ H + g for some g ∈ G, or else

• |P ∩ (H + g)| ≤ 1 for all g ∈ G.

Clearly, the family K is invariant under translations and reflections, and |K| =
c. Therefore it suffices to verify that no collection of fewer than c many sets
from K can cover G and the result will follow from Theorem 7. Given F ∈
[K]<c we can always find a g ∈ G such that |P ∩ (H + g)| ≤ 1 for all P ∈ F .
But then |(H + g) ∩

⋃
F| ≤ |F| < c = |H + g| and so

⋃
F 6= G.

Finally we show that K is cofinal in PerfG, from which it follows that
(sG) = S(K) and (sG

0 ) = S0(K). But first we recall a well-known result of
Galvin [7] (or [8], Theorem 19.7), which says that if Q is a perfect Polish
space and c : [Q]2 → {0, 1} is Borel, then there is a perfect set P ⊆ Q such
that c is constant on [P ]2.

For a perfect set Q ⊆ G, let c : [Q]2 → {0, 1} be given by c{x, y} = 1
iff x − y ∈ H. This is a Borel map since H is σ-compact, so by Galvin’s
Theorem there is a perfect set P such that c is constant on [P ]2. But c has
constant value 1 iff P ⊆ H + g for some g ∈ G, and c has constant value 0 iff
|P ∩ (H + g)| ≤ 1 for all g ∈ G. So P ∈ K is a subset of Q as required.

Since (sG) is a σ-algebra, we obtain a strengthening of a result of Rec law
and the second author [6] as an immediate consequence of Theorem 5.

Theorem 10. If G is a perfect Abelian Polish group, then the family of Mar-
czewski measurable functions on G does not have the difference property.

3.2 Miller Measurable Sets.

Miller measurability is defined in a similar way to Marczewski measurability.
By a superperfect set we mean a nonempty, closed subset of X in which com-
pact sets are nowhere dense; i.e., have empty interior. The algebra of Miller
measurable subsets of X is defined by (mX) = S(SuperX) where SuperX is
the family of superperfect subsets of X. The ideal of Miller null subsets of X
is similarly defined by (mX

0 ) = S0(SuperX).
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Again, it is well known that (mX) is a σ-algebra and that (mX
0 ) ⊆ (mX) is

a σ-ideal. This is a proper σ-ideal if and only if X is not σ-compact. Moreover,
we always have [X]<c ⊆ (mX

0 ) since a superperfect set can always be split into
c many disjoint superperfect subsets.

If G is a superperfect Abelian Polish group, then (mG) and (mG
0 ) are

invariant under translations and reflections since these transformations are
homeomorphisms.

Theorem 11. If G is a superperfect Abelian Polish group, then there is a
Miller null set A ⊆ G such that A + A is not Miller measurable.

Proof. Let H be as in Lemma 9 and let K be the family of all superperfect
sets S ⊆ G such that |S ∩ (H + g)| ≤ 1 for all g ∈ G. Clearly, this family is
invariant under translations, |K| = c, and no collection of fewer than c many
elements of K can cover G (or even H). Therefore the family K satisfies the
assumptions of Theorem 7.

To finish we show that the family K is cofinal in SuperG, from which it
follows that (sG) = S(K) and (sG

0 ) = S0(K). To do this we appeal to a recent
result of Spinas [17], which is a generalization to superperfect sets of the result
of Galvin that we used in the proof of Theorem 8: if T is a superperfect Polish
space and c : [T ]2 → {0, 1} is Borel, then there is a superperfect set S ⊆ T
such that c is constant on [S]2.

For a superperfect set T ⊆ G, let c : [T ]2 → {0, 1} be given by c{x, y} = 1
iff x − y ∈ H. This is a Borel map since H is σ-compact, so by Spinas’
Theorem there is a superperfect set S ⊆ T such that c is constant on [S]2.
Now c cannot have constant value 1 on [S]2 for then we would have S ⊆ H +g
for some g ∈ G, which is impossible since H + g is σ-compact by definition.
So c must have constant value 0 on [S]2, which means that |S ∩ (H + g)| ≤ 1
for all g ∈ G. Hence S ∈ K is a subset of T as required.

Also, since (mG) is a σ-algebra, the following result follows immediately
from Theorem 5.

Theorem 12. If G is a superperfect Abelian Polish group, then the family of
Miller measurable functions on G does not have the difference property.
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