François G. Dorais, Department of Mathematics, Dartmouth College, 6188 Bradley Hall, Hanover, NH 03755, USA.
email: francois.g.dorais@dartmouth.edu
Rafał Filipów, Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland. email: rafal.filipow@math.univ.gda.pl

ALGEBRAIC SUMS OF SETS IN MARCZEWSKI-BURSTIN ALGEBRAS

Abstract

Using almost-invariant sets, we show that a family of MarczewskiBurstin algebras over groups are not closed under algebraic sums. We also give an application of almost-invariant sets to the difference property in the sense of de Bruijn. In particular, we show that if G is a perfect Abelian Polish group then there exists a Marczewski null set $A \subseteq G$ such that $A+A$ is not Marczewski measurable, and we show that the family of Marczewski measurable real valued functions defined on G does not have the difference property.

1 Introduction.

The algebraic sum of two subsets A, B of a group G is the set $A+B=\{a+b$: $a \in A, b \in B\}$. If \mathcal{A} is an algebra of subsets of the group G it is natural to ask whether \mathcal{A} is closed under algebraic sums. It is a well-known result that the algebras of Lebesgue measurable sets and sets with the Baire property are not closed under algebraic sums over \mathbb{R}. In fact, there is a null (resp. meager) $A \subseteq \mathbb{R}$ such that $A+A$ is not Lebesgue measurable (resp. $A+A$ does not have the Baire property). For various proofs of these facts (and some generalizations) see [9], [15] and [10], for example.

[^0]In this paper we show that certain of Marczewski-Burstin algebras, including Marczewski and Miller algebras on Abelian Polish groups, are not closed under algebraic sums. If \mathcal{K} is a family of subsets of an infinite Abelian group G, we define

$$
\begin{gathered}
\mathcal{S}(\mathcal{K})=\left\{A \subseteq G:(\forall K \in \mathcal{K})\left(\exists K^{\prime} \in \mathcal{K}\right) K^{\prime} \subseteq K \cap A \vee K^{\prime} \subseteq K \backslash A\right\} \\
\mathcal{S}_{0}(\mathcal{K})=\left\{A \subseteq G:(\forall K \in \mathcal{K})\left(\exists K^{\prime} \in \mathcal{K}\right) K^{\prime} \subseteq K \backslash A\right\}
\end{gathered}
$$

It is easy to see that $\mathcal{S}(\mathcal{K})$ is an algebra of subsets of G and $\mathcal{S}_{0}(\mathcal{K}) \subseteq \mathcal{S}(\mathcal{K})$ is an ideal. The set $\mathcal{S}(\mathcal{K})$ (resp. $\mathcal{S}_{0}(\mathcal{K})$) is the Marczewski-Burstin algebra (resp. Marczewski-Burstin ideal) associated with the family \mathcal{K}. (cf. [2] or [1].)

A set $B \subseteq G$ is \mathcal{K}-Bernstein if $K \cap B \neq \emptyset$ and $K \backslash B \neq \emptyset$ for all $K \in \mathcal{K}$. Obviously, $B \notin \mathcal{S}(\mathcal{K})$ when B is \mathcal{K}-Bernstein.

We also address the question of whether the family of $\mathcal{S}(\mathcal{K})$-measurable functions on G has the difference property. For any function $f: G \rightarrow \mathbb{R}$ and $y \in G$ we define the difference function $\Delta_{y} f: G \rightarrow \mathbb{R}$ by $\Delta_{y} f(x)=$ $f(x+y)-f(x)$ for every $x \in G$. A family \mathcal{F} of real valued functions defined on G is said to have the difference property (in the sense of de Bruijn) if every function $f: G \rightarrow \mathbb{R}$ such that $\Delta_{y} f \in \mathcal{F}$ for each $y \in G$ is of the form $f=g+h$, where $g \in \mathcal{F}$ and h is an algebraic homomorphism. The notion of the difference property was introduced by de Bruijn [4], see [12] for a recent survey.

The key to our approach is to relate these questions to the existence of appropriate almost-invariant sets. Let \mathcal{J} be an arbitrary ideal on G. A set $A \subseteq G$ is \mathcal{J}-almost-invariant if the symmetric difference $(A+g) \Delta A \in \mathcal{J}$ for every $g \in G$. We simply say that A is almost-invariant if it is $[G]<|G|$-almostinvariant.

The relationship between algebraic sums and almost-invariant sets is provided by the following theorem.

Theorem 1 (Ciesielski-Fejzić-Freiling [3]). Let G be an infinite Abelian group of size κ and let \mathcal{K} be a family of subsets of G such that $|\mathcal{K}|=\kappa$ and $|K|=\kappa$ for every $K \in \mathcal{K}$. If there is a set $A \subseteq G$ such that $|(A+g) \cap(-A)|=\kappa$ for every $g \in G$ then there is $B \subseteq A$ such that $B+B$ is a \mathcal{K}-Bernstein set.

Although Ciesielski, Fejzić and Freiling only consider the above theorem for $G=\mathbb{R}$, the reader will have no problem adapting their proof to our more general context. Observe that if A is symmetric (i.e. $A=-A$) almost-invariant and $|A|=\kappa$ then the condition $|(A+g) \cap(-A)|=\kappa$ follows immediately.

To relate the difference property to symmetric almost-invariant sets, we use a theorem of the second author.

Theorem 2 (Filipów [5]). Let G be an infinite Abelian group, \mathcal{A} a σ-algebra of subsets of G and $\mathcal{I} \subseteq \mathcal{A}$ an ideal. If \mathcal{A} is closed under reflections; i.e., $A \in \mathcal{A}$ implies $-A \in \mathcal{A}$, and there is a symmetric \mathcal{I}-almost-invariant set $S \notin \mathcal{A}$, then the family of \mathcal{A}-measurable functions does not have the difference property.

2 Construction of Almost-Invariant Sets.

Throughout this section G will stand for an uncountable Abelian group of size $\kappa, G=\left\{g_{\alpha}: \alpha<\kappa\right\}$ is a fixed enumeration of G and G_{α} denotes the subgroup of G generated by $\left\{g_{\beta}: \beta<\alpha\right\}$. Note that $\left|G_{\alpha}\right| \leq|\alpha| \omega<\kappa$ since κ is uncountable. Our results also apply for countable groups G provided that we may write $G=\bigcup_{n<\omega} G_{n}$ where G_{n} is an increasing sequence of finite subgroups of G.

Sierpiński formulated a construction of almost-invariant sets. Most constructions use his method which is summarized in the following proposition.

Proposition 3 (Sierpiński [16]). For any sequence $\left\{x_{\alpha}: \alpha<\kappa\right\} \subseteq G$, the set $A=\bigcup_{\alpha<\kappa}\left(G_{\alpha}+x_{\alpha}\right)$ is almost-invariant.

It is easy to use this to construct \mathcal{K}-Bernstein almost-invariant sets.
Theorem 4. If $\mathcal{K} \subseteq[G]^{\kappa}$ is a family of size at most κ, then there is a symmetric almost-invariant set that is \mathcal{K}-Bernstein.

Proof. Write $\mathcal{K}=\left\{K_{\alpha}: \alpha<\kappa\right\}$. We will construct two sequences $\left\{x_{\alpha}: \alpha<\right.$ $\kappa\}$ and $\left\{y_{\alpha}: \alpha<\kappa\right\}$ as follows. Take

$$
x_{\alpha} \in K_{\alpha} \backslash\left(G_{\alpha}+\left(\left\{ \pm x_{\beta}: \beta<\alpha\right\} \cup\left\{ \pm y_{\beta}: \beta<\alpha\right\}\right)\right)
$$

and

$$
y_{\alpha} \in K_{\alpha} \backslash\left(G_{\alpha}+\left(\left\{ \pm x_{\beta}: \beta \leq \alpha\right\} \cup\left\{ \pm y_{\beta}: \beta<\alpha\right\}\right)\right)
$$

Now we put $S=\bigcup_{\alpha<\kappa}\left(G_{\alpha} \pm x_{\alpha}\right)$. It follows from Proposition 3 that S is almost-invariant. It is easy to see that S is symmetric since each $G_{\alpha} \pm x_{\alpha}$ is.

Finally, it remains to show that S is \mathcal{K}-Bernstein. We see that $S \cap K \neq \varnothing$ for every set $K \in \mathcal{K}$ (since $x_{\alpha} \in S$ for all $\alpha<\kappa$). On the other hand, we show that $y_{\alpha} \notin S$ for all $\alpha<\kappa$. Suppose instead that there is $\alpha<\kappa$ such that $y_{\alpha} \notin G \backslash S$. Then there is β such that $y_{\alpha} \in G_{\beta} \pm x_{\beta}$. If $\alpha \geq \beta$, then we get a contradiction with the definition of points y_{α}. So $\beta>\alpha$, but in that case $x_{\beta} \in G_{\beta} \pm y_{\alpha}$ which is a contradiction.

As a consequence of this we obtain our main result regarding the difference property for $\mathcal{S}(\mathcal{K})$-measurable functions.

Theorem 5. Suppose that $\mathcal{K} \subseteq[G]^{\kappa}$ is a family of size at most κ that satisfies the following property
(*) For every set $K \in \mathcal{K}$ and $Z \in[G]^{<\kappa}$, there is a set $K^{\prime} \in \mathcal{K}$ with $K^{\prime} \subseteq$ $K \backslash Z$.

If moreover $\mathcal{S}(\mathcal{K})$ is a σ-algebra that is closed under reflections, then the family of $\mathcal{S}(\mathcal{K})$-measurable functions does not have the difference property.

Proof. Note that property ($*$) is necessary and sufficient for $[G]^{<\kappa} \subseteq \mathcal{S}_{0}(\mathcal{K})$. So every almost-invariant set is also $\mathcal{S}_{0}(\mathcal{K})$-almost-invariant. The result then follows immediately from Theorem 2.

We can also use Sierpiński's method to construct almost-invariant sets in $\mathcal{S}_{0}(\mathcal{K})$ for many families \mathcal{K}.

Theorem 6. Suppose that $\mathcal{K} \subseteq[G]^{\kappa}$ is a family of size at most κ with property (*). If \mathcal{K} is invariant under translations and no collection of fewer than κ sets from \mathcal{K} cover G, then there is an almost-invariant set $T \in \mathcal{S}_{0}(\mathcal{K})$ with size κ.

Proof. Write $\mathcal{K}=\left\{K_{\alpha}: \alpha<\kappa\right\}$. We will construct two sequences, $\left\{Q_{\alpha}\right.$: $\alpha<\kappa\}$ and $\left\{x_{\alpha}: \alpha<\kappa\right\}$, which satisfy the following induction hypotheses:

1. $x_{\alpha} \neq x_{\beta}$ for $\alpha \neq \beta$,
2. $Q_{\alpha} \in \mathcal{K}$,
3. $Q_{\alpha} \subseteq K_{\alpha}$ for every $\alpha<\kappa$,
4. $\left(\bigcup_{\beta<\alpha} G_{\beta}+x_{\beta}\right) \cap \bigcup_{\beta<\alpha} Q_{\beta}=\varnothing$.

Let $\alpha<\kappa$ and suppose that we have already constructed Q_{β} and x_{β} for $\beta<\alpha$. First we show that we can find $x_{\alpha} \in G$ with

$$
\left(G_{\alpha}+x_{\alpha}\right) \cap\left(\bigcup_{\beta<\alpha} Q_{\beta} \cup K_{\alpha} \cup\left\{x_{\beta}: \beta<\alpha\right\}\right)=\varnothing
$$

For the sake of contradiction, suppose that for every $x \in G$ we have

$$
\left(G_{\alpha}+x\right) \cap\left(\bigcup_{\beta<\alpha} Q_{\beta} \cup K_{\alpha} \cup\left\{x_{\beta}: \beta<\alpha\right\}\right) \neq \varnothing
$$

Then

$$
G=\bigcup_{g \in G_{\alpha}}\left(\left(\bigcup_{\beta<\alpha} Q_{\beta} \cup K_{\alpha} \cup\left\{x_{\beta}: \beta<\alpha\right\}\right)-g\right)=\bigcup \mathcal{F}
$$

where
$\mathcal{F}=\left\{P+x_{\beta}-g: \beta<\alpha, g \in G_{\alpha}\right\} \cup\left\{Q_{\beta}-g: \beta<\alpha, g \in G_{\alpha}\right\} \cup\left\{K_{\alpha}-g: g \in G_{\alpha}\right\}$
and P is any element of \mathcal{K} with $0 \in P($ so $x \in P+x$ for every $x \in G)$. Since \mathcal{K} is invariant under translation, we have $\mathcal{F} \subseteq \mathcal{K}$ and $|\mathcal{F}| \leq(2|\alpha|+1)\left|G_{\alpha}\right|<\kappa$ since $\left|G_{\alpha}\right|<\kappa$ by convention. This contradicts the fact that no collection of fewer than κ sets from \mathcal{K} cover G so there must be an $x_{\alpha} \in G$ as claimed above.

Now it follows immediately from $(*)$ that there is a $Q_{\alpha} \in \mathcal{K}$ such that $Q_{\alpha} \subseteq K_{\alpha}$ and

$$
Q_{\alpha} \cap \bigcup_{\beta \leq \alpha}\left(G_{\beta}+x_{\beta}\right)=\varnothing
$$

It is easy to see that this choice of Q_{α}, x_{α} satisfies our four induction hypotheses. Now let

$$
T=\bigcup_{\alpha<\kappa}\left(G_{\alpha}+x_{\alpha}\right) .
$$

We will show that the set T is as required; i.e., $T \in \mathcal{S}_{0}(\mathcal{K})$ is an almostinvariant set of size κ.

Proposition 3 implies that T is almost-invariant and since x_{α} are distinct and $x_{\alpha} \in G_{\alpha}+x_{\alpha}$ we have $|T|=\kappa$.

To see that $T \in \mathcal{S}_{0}(\mathcal{K})$, fix any $K \in \mathcal{K}$ and let $\alpha<\kappa$ be such that $K=K_{\alpha}$. We show that $Q_{\alpha} \cap T=\varnothing$. Take any $\beta<\kappa$ and let $\delta=\max \{\alpha, \beta\}+1$. By condition 4 we have

$$
\left(\bigcup_{\gamma<\delta}\left(G_{\gamma}+x_{\gamma}\right)\right) \cap\left(\bigcup_{\gamma<\delta} Q_{\gamma}\right)=\varnothing
$$

so $\left(G_{\beta}+x_{\beta}\right) \cap Q_{\alpha}=\varnothing$ as well. But the latter holds for every $\beta<\kappa$, hence $Q_{\alpha} \cap T=\varnothing$ as required. This shows that for every $K \in \mathcal{K}$ there is a $Q \in \mathcal{K}$ with $Q \subseteq K$ and $Q \cap T=\varnothing$ and hence $T \in \mathcal{S}_{0}(\mathcal{K})$ as required.

As a corollary we get our main result regarding algebraic sums of sets in Marczewski-Burstin algebras.

Theorem 7. Suppose that $\mathcal{K} \subseteq[G]^{\kappa}$ is a family of size at most κ with property $(*)$. If \mathcal{K} is invariant under translations and reflections and no collection of fewer than κ sets from \mathcal{K} cover G, then there is a set $A \in \mathcal{S}_{0}(\mathcal{K})$ such that $A+A$ is \mathcal{K}-Bernstein and hence not in $\mathcal{S}(\mathcal{K})$.

Proof. Since \mathcal{K} satisfies all the hypotheses of Theorem 6 , let T be as in the conclusion of that theorem. Then the symmetric set $S=T \cup(-T) \in \mathcal{S}_{0}(\mathcal{K})$ is also almost-invariant since \mathcal{K}, and hence $\mathcal{S}_{0}(\mathcal{K})$, is invariant under reflections. The sets $(S+g) \cap S=(S+g) \cap(-S)$ for $g \in G$ necessarily have size κ for every $g \in G$ since $|(S+g) \Delta S|<\kappa$ and $|(S+g) \cup S|=\kappa$. By Theorem 1, there is a set $A \subseteq S$ (hence $\left.A \in \mathcal{S}_{0}(\mathcal{K})\right)$ such that $A+A$ is \mathcal{K}-Bernstein.

3 Applications.

In this section, we apply our two main results about algebraic sums and the difference property to Marczewski and Miller measurable sets.

3.1 Marczewski Measurable Sets.

Let X be a Polish space. By a perfect set in X we mean a nonempty, closed subset of X without isolated points. The algebra of Marczewski measurable subsets of X is defined by $\left(s^{X}\right)=\mathcal{S}\left(\operatorname{Perf}_{X}\right)$ where Perf_{X} is the family of perfect subsets of X. The ideal of Marczewski null subsets of X is similarly defined by $\left(s_{0}^{X}\right)=\mathcal{S}_{0}\left(\operatorname{Perf}_{X}\right)$.

It is well known (cf. [13]) that $\left(s^{X}\right)$ is a σ-algebra and that $\left(s_{0}^{X}\right) \subseteq\left(s^{X}\right)$ is a σ-ideal. This is a proper σ-ideal if and only if X is not σ-discrete; i.e., X is not a countable union of discrete subspaces. Moreover, we always have $[X]^{<\mathfrak{c}} \subseteq\left(s_{0}^{X}\right)$ since a perfect set can always be split into \mathfrak{c} many disjoint perfect subsets.

If G is a perfect Abelian Polish group, then $\left(s^{G}\right)$ and $\left(s_{0}^{G}\right)$ are invariant under translations and reflections since these transformations are homeomorphisms.

Theorem 8. If G is a perfect Abelian Polish group, then there is a Marczewski null set $A \subseteq G$ such that $A+A$ is not Marczewski measurable.

Remark. Theorem 8 was proved later by Kysiak [11] using different methods.
The following easy lemma is key to the proofs of Theorem 8 and, later, for Theorem 11.

Lemma 9. Every perfect Abelian Polish group G has a proper σ-compact subgroup H with $|H|=|G / H|=\mathfrak{c}$.

Proof. A well-known theorem of Mycielski [14] says that we can always find a nonempty independent perfect set $P \subseteq G$. Choose a compact perfect set
$P_{0} \subseteq P$ with $P_{1}=P \backslash P_{0}$ of size \mathfrak{c}. The subgroup H generated by P_{0} is σ compact and $|H|=\mathfrak{c}$ since P_{0} is perfect. Since P is independent, the elements of P_{1} belong to different cosets in G / H and so $|G / H|=\mathfrak{c}$ also.

Proof of Theorem 8. Let H be as in Lemma 9 and let \mathcal{K} be the family of all perfect sets $P \subseteq G$ such that either

- $P \subseteq H+g$ for some $g \in G$, or else
- $|P \cap(H+g)| \leq 1$ for all $g \in G$.

Clearly, the family \mathcal{K} is invariant under translations and reflections, and $|\mathcal{K}|=$ \mathfrak{c}. Therefore it suffices to verify that no collection of fewer than \mathfrak{c} many sets from \mathcal{K} can cover G and the result will follow from Theorem 7. Given $\mathcal{F} \in$ $[\mathcal{K}]^{<\mathfrak{c}}$ we can always find a $g \in G$ such that $|P \cap(H+g)| \leq 1$ for all $P \in \mathcal{F}$. But then $|(H+g) \cap \bigcup \mathcal{F}| \leq|\mathcal{F}|<\mathfrak{c}=|H+g|$ and so $\bigcup \mathcal{F} \neq G$.

Finally we show that \mathcal{K} is cofinal in Perf_{G}, from which it follows that $\left(s^{G}\right)=\mathcal{S}(\mathcal{K})$ and $\left(s_{0}^{G}\right)=\mathcal{S}_{0}(\mathcal{K})$. But first we recall a well-known result of Galvin [7] (or [8], Theorem 19.7), which says that if Q is a perfect Polish space and $c:[Q]^{2} \rightarrow\{0,1\}$ is Borel, then there is a perfect set $P \subseteq Q$ such that c is constant on $[P]^{2}$.

For a perfect set $Q \subseteq G$, let $c:[Q]^{2} \rightarrow\{0,1\}$ be given by $c\{x, y\}=1$ iff $x-y \in H$. This is a Borel map since H is σ-compact, so by Galvin's Theorem there is a perfect set P such that c is constant on $[P]^{2}$. But c has constant value 1 iff $P \subseteq H+g$ for some $g \in G$, and c has constant value 0 iff $|P \cap(H+g)| \leq 1$ for all $g \in G$. So $P \in \mathcal{K}$ is a subset of Q as required.

Since $\left(s^{G}\right)$ is a σ-algebra, we obtain a strengthening of a result of Recław and the second author [6] as an immediate consequence of Theorem 5.

Theorem 10. If G is a perfect Abelian Polish group, then the family of Marczewski measurable functions on G does not have the difference property.

3.2 Miller Measurable Sets.

Miller measurability is defined in a similar way to Marczewski measurability. By a superperfect set we mean a nonempty, closed subset of X in which compact sets are nowhere dense; i.e., have empty interior. The algebra of Miller measurable subsets of X is defined by $\left(m^{X}\right)=\mathcal{S}\left(\operatorname{Super}_{X}\right)$ where Super_{X} is the family of superperfect subsets of X. The ideal of Miller null subsets of X is similarly defined by $\left(m_{0}^{X}\right)=\mathcal{S}_{0}\left(\operatorname{Super}_{X}\right)$.

Again, it is well known that $\left(m^{X}\right)$ is a σ-algebra and that $\left(m_{0}^{X}\right) \subseteq\left(m^{X}\right)$ is a σ-ideal. This is a proper σ-ideal if and only if X is not σ-compact. Moreover, we always have $[X]^{<\mathfrak{c}} \subseteq\left(m_{0}^{X}\right)$ since a superperfect set can always be split into \mathfrak{c} many disjoint superperfect subsets.

If G is a superperfect Abelian Polish group, then $\left(m^{G}\right)$ and $\left(m_{0}^{G}\right)$ are invariant under translations and reflections since these transformations are homeomorphisms.

Theorem 11. If G is a superperfect Abelian Polish group, then there is a Miller null set $A \subseteq G$ such that $A+A$ is not Miller measurable.

Proof. Let H be as in Lemma 9 and let \mathcal{K} be the family of all superperfect sets $S \subseteq G$ such that $|S \cap(H+g)| \leq 1$ for all $g \in G$. Clearly, this family is invariant under translations, $|\mathcal{K}|=\mathfrak{c}$, and no collection of fewer than \mathfrak{c} many elements of \mathcal{K} can cover G (or even H). Therefore the family \mathcal{K} satisfies the assumptions of Theorem 7.

To finish we show that the family \mathcal{K} is cofinal in Super_{G}, from which it follows that $\left(s^{G}\right)=\mathcal{S}(\mathcal{K})$ and $\left(s_{0}^{G}\right)=\mathcal{S}_{0}(\mathcal{K})$. To do this we appeal to a recent result of Spinas [17], which is a generalization to superperfect sets of the result of Galvin that we used in the proof of Theorem 8: if T is a superperfect Polish space and $c:[T]^{2} \rightarrow\{0,1\}$ is Borel, then there is a superperfect set $S \subseteq T$ such that c is constant on $[S]^{2}$.

For a superperfect set $T \subseteq G$, let $c:[T]^{2} \rightarrow\{0,1\}$ be given by $c\{x, y\}=1$ iff $x-y \in H$. This is a Borel map since H is σ-compact, so by Spinas' Theorem there is a superperfect set $S \subseteq T$ such that c is constant on $[S]^{2}$. Now c cannot have constant value 1 on $[\bar{S}]^{2}$ for then we would have $S \subseteq H+g$ for some $g \in G$, which is impossible since $H+g$ is σ-compact by definition. So c must have constant value 0 on $[S]^{2}$, which means that $|S \cap(H+g)| \leq 1$ for all $g \in G$. Hence $S \in \mathcal{K}$ is a subset of T as required.

Also, since $\left(m^{G}\right)$ is a σ-algebra, the following result follows immediately from Theorem 5.

Theorem 12. If G is a superperfect Abelian Polish group, then the family of Miller measurable functions on G does not have the difference property.

Acknowledgements.

Both authors would like to thank the Fields Institute for Research in Mathematical Sciences for its hospitality during the Fall semester of 2002 when
we attended a program on set theory and analysis. We would also like to thank Krzysztof Ciesielski, Marcia Groszek, Andrzej Nowik and the referees for insightful and helpful comments and suggestions.

References

[1] M. Balcerzak, A. Bartoszewicz, K. Ciesielski, On Marczewski-Burstin Representations of Certain Algebras of Sets, Real Anal. Exchange, 26(2) (2000-01), 581-591.
[2] M. Balcerzak, A. Bartoszewicz, J. Rzepecka, S. Wroński, Marczewski Fields and Ideals, Real Anal. Exchange, 26(2) (2000-01), 703-715.
[3] K. Ciesielski, H. Fejzić, C. Freiling, Measure Zero Sets with NonMeasurable Sum, Real Anal. Exchange, 27(2) (2001-02), 783-793.
[4] N. Govert de Bruijn, Functions Whose Differences Belong to a Given Class, Nieuw Arch. Wiskunde, 23(2) (1951), 194-218.
[5] R. Filipów, On the Difference Property of Families of Measurable Functions, Colloq. Math., 97(2) (2003), 169-180.
[6] R. Filipów and I. Recław, On the Difference Property of Borel Measurable and (s)-Measurable Functions, Acta Math. Hungar., 96(1,2) (2002), 2125.
[7] F. Galvin, Partitions Theorems for the Real Line, Notices Amer. Math. Soc., 15 (1968), 660, Erratum, 16 (1969), 1095.
[8] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.
[9] A. B. Kharazishvili, Some Remarks on Additive Properties of Invariant σ-Ideals on the Real Line, Real Anal. Exchange, 21(2) (1995-96), 715724.
[10] S. Kurepa, Convex Functions, Glasnik Mat.-Fiz. Astr. Ser. II., 11 (1956), 89-94.
[11] M. Kysiak, Nonmeasurable Algebraic Sums of Sets of Reals, Colloq. Math., 102(1) (2005), 113-122.
[12] M. Laczkovich, The Difference Property, Paul Erdős and his mathematics, I, Budapest, (1999), Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, (2002), 363-410.
[13] E. Marczewski (Spilrajn), Sur une Classe de Fonctions de M. Sierpiński et la Classe Correspondante d'Ensembles, Fund. Math., 24 (1935), 17-34.
[14] J. Mycielski, Independent Sets in Topological Algebras, Fund. Math., 55 (1964), 139-147.
[15] W. Sierpiński, Sur la Question de la Mesurabilité de la Base de M. Hamel, Fund. Math., 1 (1920), 105-111.
[16] W. Sierpiński, Sur les Translations des Ensembles Linéaires, Fund. Math., 19 (1932), 22-28.
[17] O. Spinas, Ramsey and Freeness Properties of Polish Planes, Proc. London Math. Soc., (3), 82(1) (2001), 31-63.

[^0]: Key Words: algebraic sum, Marczewski-Burstin algebra, Marczewski measurable set, Miller measurable set, perfect set, superperfect set, almost-invariant set, difference property

 Mathematical Reviews subject classification: 28A05, 39A70
 Received by the editors January 7, 2005
 Communicated by: Krzysztof Chris Ciesielski
 *The second author was supported by the Fields Institute during his visit there and later he was partially supported by KBN Grant 2 PO3A 005 23. Part of this work was done when the second author was a PhD student in the Institute of Mathematics of the Polish Academy of Sciences.

